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1 Introduction

In many fields, researchers have documented extreme risks with heavy-tailed distributions (Gabaix 2016).
These distributions are characterized by slowly decaying power law functions in their tails. The speed at
which they decay is determined by the exponent of these power laws. The latter is called the tail index
and indicates the degree of extreme risk. A lot of efforts have been devoted for estimating the value of
the tail index but the existing methods are not very satisfactory (Clauset et al. 2009). In this paper, We
revisit this issue by noting that, often, the absolute level of risk is of little interest and only the relative
level of risk is of importance. We take advantage of the fact that we do not try to estimate the absolute
value of the tail index. Therefore we are not interested in the accuracy of an estimator but only in its
precision. This allows us to consider a larger pool of tail index estimator, including estimators from
the stable law family. We compare the performance of the Hill estimator, which is the most commonly
used tail estimator with the McCulloch and the GMM stable estimators. We focus on the unconditional
distribution of stock market returns.

Our analysis is based on an extensive data set of 74 international stock market indexes. First, we
extend the work of Malevergne et al. (2005) and find that international stock market returns are not
Pareto distributed in their tails. Since the Hill estimator is not robust to departures from the Pareto
distribution, this result casts doubt on the use of the Hill method. Then we study the performance of
the Hill, the McCulloch and the GMM estimators, both using a Monte Carlo analysis and based on
empirical data. We show that the McCulloch estimator is the best able to track extreme risks measured
by the kurtosis, left and right tail of the stock market returns. Conversely, the GMM estimator performs
very poorly. Our finding is consistent across both the simulation study and the empirical study based on
the bootstrap analysis of our 74 country stock indexes. In the empirical study, the McCulloch estimator
outperforms the Hill estimator between 30% and 50% in the estimation of the extreme risk measures.
These results are confirmed by the Hansen (2005) and White (2000) test for superior predictive ability.
Of the three estimators, the McCulloch method is the most precise in estimating the relative tail risk
and in establishing their ranking across international stock markets.

The paper proceeds as follows: Section 2 reviews the extreme value distributions of international
stock market returns. Section 3 presents the tail index estimators. Section 4 compares the performance
of the Hill, the McCulloch and the GMM estimators. Section 5 concludes.

2 Which domain of attraction for the distribution of internati-
nal stock market returns?

Extreme Value Theory (EVT)! establishes that, assuming the existence of norming constants p (location
parameter) and o (scale parameter), the standardized series of extreme values generated by a cumulative
distribution function F' is represented by the Generalized Extreme Value (GEV) distribution which reads
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¢ is the shape parameter. £ > 0 corresponds to the Mazimum Domain of Attraction (MDA) of the
Fréchet law, & = 0 corresponds to the MDA of the Gumbel law and £ < 0 corresponds to the MDA of
the Weibull law?. Distributions of the Fréchet MDA have heavy tails and decays as power laws with
exponent a = . They include the Cauchy, Pareto, Student, Fisher, Fréchet and non-gaussian stable
distributions. The value of the tail index « characterizes the degree of extreme risk. The Fréchet MDA
is a necessary condition for many tail index estimators including the Hill estimator which is the most

commonly used in he literature.

1See for instance Rocco (2014) or Gomes and Guillou (2015) for a review of extreme value theory.

2An alternative parametric approach of EVT focuses on the excess distribution over the threshold u and finds that
its asymptotic cumulative distribution function F' is the generalized Pareto distribution (GPD). Both GEV and GPD
approaches have the same shape parameter &.



Many empirical distributions in finance seem to belong to the Fréchet MDA and follow a power law,
at least in their higher quantiles (Gabaix et al. 2003). However Malevergne et al. (2005) found that
for the U.S. stock markets, the tails decay faster than power laws, which questions the ability of the
Hill estimator to correctly evaluate the tail risk. We extend Malevergne et al. (2005) work to a large
panel of international stock markets. We compiled the daily returns of all stock market indexes across
the world that are consistently available in the Bloomberg database from 1994 to 2014. This gives a
database of 89 countries. We retained the stock markets indexes with at least 70 observations in the
positive and negative highest deciles, and obtained 74 stock market indexes. We study to which extent
some theoretical distributions fit the empirical data. We use the Anderson-Darling test and compare the
empirical distribution with the Pareto distribution, the Weibull distribution and the GEV distribution,
over the highest decile (Table 2). In the first case, when considering the full spectrum of the distribution,
we find that the Pareto or Weibull distributions are good approximation of the empirical distribution
(Table 1) for most countries. However, when focusing on the highest decile, we find that all countries
reject the Pareto or Weibull distribution. This confirms Malevergne et al. (2005)’s results and shows that
the tail of stock market return distribution is not well represented by Pareto distributions. The MDA
over the top decile of the distribution of returns across international stock market is not of Fréchet type.
Consequently, this questions the ability of the usual tail index estimators, such as the Hill estimator, to
measure tail risk.

3 Tail index estimators

For investors who are only interested in the relative riskiness of an investment and not in their abso-
lute value , it does not matter if the estimator misses the absolute value of risk provided it preserves
the relative ordering. In that case, the performance of relative tail risk estimators only depends on its
variance not on its bias. Consequently, when estimating relative tail risk, one must judge the merits
of estimators only on the basis of their precision, not on their accuracy. This allows us to consider a
larger pool of estimators, including biased ones. In particular, we are interested in revisiting the stable
law estimators, which had been discarded after a consensus emerged against the stable distribution for
financial series ((Longin 1996; Vilasuso and Katz 2000)). In this paper, we compare the Hill estimator
with two alternative stable distribution estimators, the McCulloch (1986)’s estimator (MCC) and the
generalized method of moments estimator (GMM).

3.1 The Hill estimator

The Hill estimator, also known as the maximum likelihood estimator (MLE), is the most popular tail
exponent estimator. It was proposed by Hill (1975) as

-1
Z?zl(log Xjn —log Xi.r)
Qf.n = A (2)

with Xy, > ... > X, , the order statistics of the data. k is the threshold from which start the k + 1
upper exceedances corresponding to the most extreme observations. As non-parametric tail estimator, it
has the advantage that one does not need to know the exact distribution of the data generating process
(DGP). The Hill estimator only needs to assume that cumulative distribution function (CDF) is in the
Fréchet MDA and consequently has a Pareto-type tail. In that case, the Hill estimator is generally the
most efficient tail index estimator ((McNeil and Frey 2000)).

However this estimator has two important drawbacks. First it is non-robust to departure from the Pareto
DGP. When the CDF is not in the MDA of a Fréchet distribution, the Hill estimator is strongly biased and
even small departures from the Pareto DGP can have large effects on the estimates ((Brzezinski 2016)).
The second drawback is its sensitiveness to the choice of the cut-off parameter k. This latter parameter
corresponds to the threshold where the CDF converges to a Pareto distribution. The choice of k entails a
trade-off between bias and variance. If one chooses a large k, the bias will be important since the sample
will include observations that are not from a Pareto DGP. Conversely, if k is too small, the sample will
be more Pareto-like but the variance of the estimates will increase dramatically. Unfortunately, since
the optimal threshold depends on both the sample size and the unknown parameters of the distribution



Table 1: Goodness of fit of empirical stock market return distribution over the full distribution (Q0-Q100) with respectively Pareto, Weibull and GEV
distribution. The figures give the confidence level of the Anderson-Darling statistics.

Negative tail

Positive tail

Negative tail

Positive tail

Pareto  Weibull GEV Pareto  Weibull GEV Pareto  Weibull GEV Pareto  Weibull GEV
Argentina 0.97 0.86 0.00 0.00 0.03 0.02 Malta 0.04 0.02 0.00 0.00 0.06 0.00
Australia 0.06 0.24 0.00 0.00 0.38 0.00 Mauritius 0.01 0.00 0.03 0.01 0.00 0.01
Austria 0.08 0.04 0.00 0.00 0.05 0.01 Mexico 0.47 0.78 0.00 0.00 0.06 0.00
Bahrain 0.53 0.15 0.01 0.99 0.98 0.01 Mongolia 0.88 0.00 0.00 0.96 0.00 0.00
Belgium 0.60 0.55 0.00 0.00 0.06 0.00 Morocco 0.62 0.58 0.00 0.16 0.07 0.00
Brazil 0.01 0.21 0.00 0.00 0.01 0.00 Namibia 0.04 0.52 0.06 0.01 0.44 0.05
Bulgaria 0.00 0.00 0.01 0.03 0.00 0.02 Netherlands 0.19 0.22 0.00 0.00 0.05 0.00
Canada 0.48 0.19 0.00 0.00 0.04 0.00 New Zealand 0.00 0.22 0.00 0.00 0.65 0.00
Chile 0.01 0.04 0.00 0.00 0.13 0.00 Nigeria 0.00 0.00 0.00 0.94 0.71 0.00
China 0.18 0.05 0.00 0.11 0.01 0.00 Norway 0.01 0.02 0.01 0.00 0.27 0.00
Colombia 0.18 0.06 0.00 0.10 0.07 0.00 Oman 0.68 0.00 0.00 0.00 0.00 0.01
Cote d’Ivoire NA NA NA 0.54 0.28 0.00 Pakistan 0.01 0.17 0.00 0.00 0.49 0.00
Croatia 0.09 0.02 0.02 0.01 0.01 0.09 Palestine 0.00 0.00 0.00 0.26 0.05 0.00
Cyprus 0.39 0.30 0.00 0.16 0.12 0.00 Peru 0.20 0.05 0.00 0.01 0.06 0.01
Czech Republic 0.01 0.08 0.00 0.00 0.27 0.00 Philippines 0.01 0.07 0.01 0.00 0.23 0.01
Denmark 0.01 0.24 0.00 0.00 0.61 0.00 Poland 0.28 0.08 0.00 0.02 0.11 0.00
Egypt, Arab Rep. 0.76 0.68 0.00 0.06 0.57 0.00 Portugal 1.00 0.64 0.00 0.04 0.64 0.00
Finland 0.28 0.19 0.00 0.04 0.15 0.00 Qatar 0.39 0.00 0.00 0.61 0.00 0.00
France 0.05 0.36 0.00 0.00 0.33 0.00 Romania 0.10 0.02 0.01 0.26 0.08 0.00
Germany 0.29 0.70 0.00 0.00 0.65 0.00 Russia 0.63 0.32 0.00 0.01 0.09 0.00
Greece 0.08 0.10 0.00 0.11 0.49 0.00 Saudi Arabia 0.00 0.00 0.00 0.04 0.00 0.00
Hong Kong, China 0.96 0.87 0.00 0.07 0.20 0.00 Singapore 0.52 0.72 0.00 0.00 0.21 0.02
Hungary 0.00 0.01 0.01 0.05 0.53 0.00 Slovenia 0.79 0.02 0.00 0.16 0.06 0.00
Iceland 0.18 0.00 0.00 0.03 0.41 0.00 South Africa 0.01 0.20 0.00 0.00 0.10 0.02
India 0.00 0.36 0.00 0.00 0.38 0.00 Spain 0.00 0.55 0.00 0.00 0.34 0.00
Indonesia 0.09 0.05 0.00 0.00 0.01 0.01 Sri Lanka 0.14 0.01 0.01 0.20 0.19 0.00
Ireland 0.07 0.03 0.00 0.00 0.03 0.01 Sweden 0.00 0.85 0.00 0.00 0.21 0.00
Israel 0.07 0.66 0.00 0.00 0.42 0.00 Switzerland 0.02 0.21 0.00 0.00 0.17 0.00
Ttaly 0.18 0.51 0.00 0.00 0.96 0.00 Taiwan 0.86 0.82 0.00 0.01 0.69 0.00
Jamaica 0.00 0.03 0.00 0.09 0.00 0.00 Thailand 0.63 0.80 0.00 0.01 0.16 0.00
Japan 0.00 0.37 0.00 0.00 0.44 0.00 Tunisia 0.12 0.02 0.05 0.15 0.17 0.00
Kazakhstan NA NA NA 0.00 0.18 0.00 Turkey 0.03 0.13 0.00 0.01 0.16 0.00
Kenya 0.07 0.01 0.01 0.01 0.00 0.04 Ukraine 0.01 0.04 0.00 0.04 0.01 0.00
Korea, Rep. 0.36 0.23 0.00 0.03 0.08 0.00 U.AE. 0.07 0.03 0.03 0.10 0.12 0.02
Kuwait 0.25 0.06 0.07 0.05 0.42 0.09 United Kingdom 0.02 0.12 0.00 0.00 0.18 0.00
Latvia 0.08 0.03 0.02 0.02 0.02 0.03 United States 0.76 0.77 0.00 0.01 0.04 0.00
Malaysia 0.04 0.00 0.01 0.02 0.00 0.00 Vietnam 0.02 0.12 0.00 0.81 0.67 0.00




Table 2: Goodness of fit of empirical stock market return distribution highest quantiles (Q90-Q100) with respectively Pareto, Weibull and GEV distribution.
The figures give the confidence level of the Anderson-Darling statistics.

Negative tail

Positive tail

Negative tail

Positive tail

Pareto  Weibull GEV Pareto  Weibull GEV Pareto  Weibull GEV Pareto  Weibull GEV
Argentina 0.00 0.00 0.50 0.00 0.00 0.25 Malta 0.00 0.00 0.27 0.00 0.00 0.22
Australia 0.00 0.00 0.18 0.00 0.00 0.31 Mauritius 0.00 0.00 0.23 0.00 0.00 0.29
Austria 0.00 0.00 0.30 0.00 0.00 0.09 Mexico 0.00 0.00 0.08 0.00 0.00 0.11
Bahrain 0.00 0.00 0.30 0.00 0.00 0.64 Mongolia 0.00 0.00 0.10 0.00 0.00 0.07
Belgium 0.00 0.00 0.27 0.00 0.00 0.55 Morocco 0.00 0.00 0.39 0.00 0.00 0.51
Brazil 0.00 0.00 0.22 0.00 0.00 0.41 Namibia 0.00 0.00 0.83 0.00 0.00 0.38
Bulgaria 0.00 0.00 0.42 0.00 0.00 0.39 Netherlands 0.00 0.00 0.15 0.00 0.00 0.50
Canada 0.00 0.00 0.31 0.00 0.00 0.04 New Zealand 0.00 0.00 0.39 0.00 0.00 0.56
Chile 0.00 0.00 0.36 0.00 0.00 0.18 Nigeria 0.00 0.00 0.63 0.00 0.00 0.75
China 0.00 0.00 0.11 0.00 0.00 0.26 Norway 0.00 0.00 0.23 0.00 0.00 0.17
Colombia 0.00 0.00 0.36 0.00 0.00 0.20 Oman 0.00 0.00 0.29 0.00 0.00 0.58
Cote d’Ivoire NA NA NA 0.00 0.00 0.50 Pakistan 0.00 0.00 0.40 0.00 0.00 0.19
Croatia 0.00 0.00 0.44 0.00 0.00 0.71 Palestine 0.00 0.00 0.22 0.00 0.00 0.38
Cyprus 0.00 0.00 0.45 0.00 0.00 0.17 Peru 0.00 0.00 0.14 0.00 0.00 0.17
Czech Republic 0.00 0.00 0.21 0.00 0.00 0.34 Philippines 0.00 0.00 0.33 0.00 0.00 0.33
Denmark 0.00 0.00 0.31 0.00 0.00 0.57 Poland 0.00 0.00 0.22 0.00 0.00 0.24
Egypt, Arab Rep. 0.00 0.00 0.48 0.00 0.00 0.32 Portugal 0.00 0.00 0.27 0.00 0.00 0.59
Finland 0.00 0.00 0.24 0.00 0.00 0.19 Qatar 0.00 0.00 0.37 0.00 0.00 0.03
France 0.00 0.00 0.17 0.00 0.00 0.22 Romania 0.00 0.00 0.34 0.00 0.00 0.16
Germany 0.00 0.00 0.05 0.00 0.00 0.17 Russia 0.00 0.00 0.42 0.00 0.00 0.26
Greece 0.00 0.00 0.22 0.00 0.00 0.16 Saudi Arabia 0.00 0.00 0.22 0.00 0.00 0.18
Hong Kong, China 0.00 0.00 0.38 0.00 0.00 0.48 Singapore 0.00 0.00 0.65 0.00 0.00 0.23
Hungary 0.00 0.00 0.30 0.00 0.00 0.67 Slovenia 0.00 0.00 0.26 0.00 0.00 0.13
Iceland 0.00 0.00 0.50 0.00 0.00 0.47 South Africa 0.00 0.00 0.53 0.00 0.00 0.07
India 0.00 0.00 0.37 0.00 0.00 0.20 Spain 0.00 0.00 0.40 0.00 0.00 0.57
Indonesia 0.00 0.00 0.48 0.00 0.00 0.24 Sri Lanka 0.00 0.00 0.61 0.00 0.00 0.63
Ireland 0.00 0.00 0.26 0.00 0.00 0.09 Sweden 0.00 0.00 0.26 0.00 0.00 0.10
Israel 0.00 0.00 0.19 0.00 0.00 0.22 Switzerland 0.00 0.00 0.32 0.00 0.00 0.24
Italy 0.00 0.00 0.04 0.00 0.00 0.39 Taiwan 0.00 0.00 0.19 0.00 0.00 0.24
Jamaica 0.00 0.00 0.24 0.00 0.00 0.12 Thailand 0.00 0.00 0.79 0.00 0.00 0.20
Japan 0.00 0.00 0.28 0.00 0.00 0.62 Tunisia 0.00 0.00 0.42 0.00 0.00 0.24
Kazakhstan NA NA NA 0.00 0.00 0.56 Turkey 0.00 0.00 0.19 0.00 0.00 0.19
Kenya 0.00 0.00 0.11 0.00 0.00 0.07 Ukraine 0.00 0.00 0.39 0.00 0.00 0.25
Korea, Rep. 0.00 0.00 0.34 0.00 0.00 0.05 U.AE. 0.00 0.02 0.78 0.00 0.00 0.38
Kuwait 0.00 0.02 0.42 0.00 0.00 0.39 United Kingdom 0.00 0.00 0.63 0.00 0.00 0.39
Latvia 0.00 0.00 0.35 0.00 0.00 0.21 United States 0.00 0.00 0.76 0.00 0.00 0.15
Malaysia 0.00 0.00 0.46 0.00 0.00 0.53 Vietnam 0.00 0.04 0.12 0.00 0.06 0.34




((Hall and Welsh 1985)), the methods for determining this threshold are purely empirical which makes
this method difficult to implement practically.

3.2 The stable law estimators

Non-gaussian stable laws have no analytical CDF but their characteristic function can be written as:

u
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with0<a<2,-1<3<1,6 R,y >0, and W(a,u) = 9
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Stable law implies a tail index « between 0 and 2. This is at variance with the empirical findings
and it is now widely accepted that the tail index of financial asset returns is between 2 and 5 ((Cont
2001)). Consequently, using stable law estimators to estimate stock market returns is bound to generates
strongly biased results. However, since we are not interested in the absolute value of tail risk but only
in its relative value, we are not concerned by the bias. Rather we are interested in the dispersion and
we investigate if stable law estimators could return relative tail estimates with a greater precision than
the Hill estimator.

We study the performance of two stable law estimators, the McCulloch estimator ((McCulloch 1986))
and the generalized method of moments (GMM) estimator ((Hansen 1982)). The McCulloch method is
very simple and consists in estimating quantiles v, and vg:

T95 — Zos
Vo = A‘)7A7 (4)
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and then recovering the parameters a and 3 of the stable distribution by interpolating these estimated
quantiles in the tables calculated by McCulloch (1986).

4 Comparing the Hill, the McCulloch and the GMM estimators
4.1 Methodology

We study the tail indexes estimated with the Hill estimator, which is based on a power law distribution,
and tail indexes estimated from the McCulloch estimation method (MCC) and the generalized method
of moments (GMM), which are both based on a stable law distribution. These tail index estimators will
be compared to the relative ranking of various extreme risk measures, including both single and double
extreme risk measures, namely the kurtosis, the left tail quantile and the right tail quantile. The detailed
description of the extreme risk measures are presented in the appendix. Our focus is to establish the
ability of the tail index in tracking the relative ranking of the above extreme risk measures. To do so,
we calculate the Spearman rank correlation coefficient between the tail index estimates and the extreme
risk measures. If the tail risk index is able to reflect the ranking of the extreme risk measure perfectly,
then the Spearman correlation coefficient will be one. Conversely, a low Spearman correlation coefficient
will indicate that the tail index tracks the relative ranking of the risk measure poorly. Denoting the
Spearman correlation coefficient as p; x, where j = (MCC,GM M, Hill) is the tail index estimator and
k = (kurtosis, left tail, right tail) is the extreme risk measure, we want to identify the tail index
estimator j that yields p;; that is (1) closest to one, and also (2) consistently high irrespective of the
extreme risk measure k.

4.2 Simulation Study

In this section, we study the performance of the different tail index estimators in a simulation study.
We generate distributions of stock returns based on common parametric distributions used to describe



the fat tail distributions of stock returns, namely, the Pareto distribution (PD), the Weibull distribution
to describe stretched exponential tail patterns ((Malevergne et al. 2005)) and the Generalized Extreme
Value distribution to cover the other possible tail patterns (Fréchet, Gumbel etc.). The parametric den-
sity distributions used are described as follow:

1. The Pareto Distribution:

=) ez
F(m)—{o e ()

where « is the tail parameter, and p is the location parameter.

2. The Weibull Distribution:

1— 9" 2 >0

P =07 2 ©
0 z <0

where x is the shape parameter, and A is the scale parameter.

3. The Generalized Extreme Value Distribution:
1
exp§ — (1 _ 5(900—10)5} £40

exp —(ey)} £E=0

where £ is the shape parameter, u is the location parameter, and o is the scale parameter.

F(z) =

To simulate the heavy tail distributions, we first calibrate the above parametric distributions to reflect
the actual stock market returns studied in the empirical study of section 4.3. From the 74 country’s stock
index returns, we extracted a range of estimated parameters for each type of parametric distribution
and present them in table 3. We then vary the parameters over this range to define different returns
distributions with different levels of heavy tails within each type of parametric distribution function
denoted by €, 4. Where n = 1,--- 45 denotes the n'" heavy tail distribution generated under the
parametric distribution d = (Pareto, Weibull, GEV).

Table 3: Range of Parameters for Heavy Tail Distributions

This table presents the range of parameters for the different parametric distributions, as extracted from
the 74 country’s stock index returns over the period of 1994 to 2014.

a - tail  p - location
Pareto 1-9 0.05 - 0.30
k - shape A - scale
Weibull | 0.1-0.9 0.005 - 0.009
¢ - shape p - location o - scale
GEV 0.1-0.9 0.002 - 0.009  0.001 - 0.009

For each defined distribution £, 4, we proceed to simulate 100 distributions (with 5000 observations
each) in our simulation study. For each simulated distribution, we then compute the tail index estimators
o, extreme risk measures 7 and finally, the Spearman’s correlation coefficient p;;. The range of
Spearman’s rank correlation coefficients p;, computed for the tail indexes j and extreme risk measures
k are presented in Figure 1 Panel A, B and C for respectively the simulated, Pareto, Weibull and GEV
distributions.

In Panel A of Figure 1, we see that for Pareto distribution, the Hill estimator exhibits the best
performance for the tail index estimates, both in terms of performance and the tracking of the ranks.
This is expected, as the Hill estimator is the most efficient estimator when the DGP is based on the
Power law (McNeil and Frey (2000)). Meanwhile, the McCulloch estimator performs relatively well too,
with a median of more than 0.95 and consistent precision for Kurtosis and both tail risk measures. When
we turn to the Weibull and GEV distributions, the McCulloch estimator exhibits consistently the best



Figure 1: Boxplot of Spearman rank correlation coefficient for the simulated distributions

This set of graphs presents the boxplots of the Spearman rank correlation coefficient calculated between the tail indexes

and extreme risk measures for the simulated distributions.
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performance in terms of tracking the ranks of the various risk measures, and in term of precision in
the estimation (Panel B and C). The Hill estimator shows less consistency and precision in tracking the
ranking of the extreme risk measures with a median around 0.92 in the Weibull case (Panel B). For the
GEV case (Panel C), the Hill estimator delivers some very poor results and cannot track any extreme
risk measure. Last, in all cases, the GMM estimator performs very badly. Since the Pareto and Weibull
distributions are strongly rejected for the highest decile (see Table 2), these results speaks in favor of
using the McCulloch estimator.

In should be noted that the McCulloch estimator is able to track the kurtosis measure closely, as it
also takes into account information from the body of the distribution (equations 4 and 5), which is similar
to the kurtosis measure. This could account for its outperformance compared to the Hill estimator, which
only focuses on the tails of the distribution.

4.3 Empirical Study

After the simulation study, we analyze the performance of the tail index estimators on ranking the
extreme risk measures in the actual stock market return distributions. To do so, we constructed the
return distributions of 74 different stock market indexes, based on the corresponding daily stock index
returns over 10 years. Table 5 presents the estimations of the tail index based on the Hill and McCulloch
estimators, as well as the common extreme risk measure kurtosis for the 74 countries, while Table 4
reports the summary statistics of the tail index estimates.

We can see from Table 4 that the range of the tail index estimated based on the Hill and the McCulloch
estimators, and the extreme risk measure kurtosis differs greatly. Upon Winsorizing the 5% outliers, the
range of the McCulloch estimator is relatively small, from 1.16 and 1.70, while the Hill estimator is in
the range 2.78 and 6.62. It should also be noted that the range of both indexes are way smaller than the
range of the kurtosis (0.83 to 8.30) estimated from the stock index returns.

Table 4: Descriptive statistics of the tail risk index estimation.

Tail index estimates are obtained from 74 stock index return distributions, constructed using daily observations over the
period of 1994 to 2014. The summary statistics are computed from the Winsorized sample eliminative the 5% outliers from
the sample.

Number of Hill McCulloch
Observations Estimator Estimator Kurtosis
Sample Average 4420 4.11 1.42 3.46
Minimum 2509 2.81 1.17 0.85
Maximum 5358 6.14 1.70 7.08
Standard Deviation® 1052 0.89 0.24 2.93

Figure 2 shows that the McCulloch estimates are very correlated to the kurtosis in a log-linear manner,
while the Hill estimates exhibits a much looser correlation with the kurtosis. As we are concerned with
the ranking of the country tail risk (relative tail risk), as long as the tail index tracks the kurtosis in a
monotonous manner, a pure linear relationship is not necessary.

Similar to the simulation study (Table 1), we first estimate the tail indexes «; for these 74 country
stock index returns using the McCulloch, GMM and Hill estimators. After which, we estimated the
extreme risk measures v, namely the kurtosis, left and right tails as defined in section 4 for the same set
of stock index returns. To measure the ability of the tail indexes to track the ranking of the extreme risk
measures, we compute the Spearman’s rank correlation coefficient p; ; between the tail indexes and the
extreme risk measures. In addition, as a robustness check, we conduct a bootstrap analysis on the return
distributions of the stock index returns. Following Patton and Timmermann (2010), to account for time
series dependencies, we set the average block length in the bootstrap analysis to be 6 days, so as to
preserve the limited time series dependencies at the daily horizon. The number of bootstrap replications
is set to 500 in this study. For each bootstrap sample, we repeat the procedure of estimating the tail
indexes a; and extreme risk measures 7y, and computing the Spearman’s rank correlation coefficient
between the tail index and extreme risk measures p; j.

For the bootstrap analysis, the McCulloch estimator exhibits the best performance in tracking all
the three extreme risk measures: kurtosis, left and right tails. As the bootstrap samples are replicated
from the actual data, which contains more noise than our simulated sample, the precision for tracking
the left and right tail estimates by the McCulloch and the Hill methods is less satisfactory than in the
simulated samples. Nevertheless, as compared to the Hill and GMM methods, the McCulloch method



Table 5: Tail risk estimates and extreme risk measure for 74 countries.

This ta-
bles shows the Hill and McCulloch tails risk estimates and the kurtosis. A higher tail risk estimates denotes a lower tail risk.

Number of Hill McCulloch
Country name Stock market index name observations estimator estimator Kurtosis
Argentina Buenos Aires Stock Exchange Merval Index 5120 3.59 1.46 1.38
Australia S&P/ASX 200 5245 4.33 1.69 0.86
Austria Vienna Stock Exchange Austrian Traded Index 5138 4.3 1.7 1.27
Bahrain Bahrain Bourse All Share Index 2509 3.78 1.42 1.60
Belgium BEL 20 Index 5265 4.46 1.63 1.41
Brazil Ibovespa Brasil Sao Paulo Stock Exchange Index 5129 3.9 1.61 1.02
Bulgaria SOFIX Index 3447 3.04 1.36 2.80
Canada S&P/TSX Composite Index 5262 3.59 1.7 1.36
Chile Santiago Stock Exchange IGPA Index 5176 3.61 1.74 0.85
China Shanghai Stock Exchange Composite Index 5038 3.76 1.46 1.72
Colombia MSCI Equity Index Emerging Mrkts in Local Curr Colombia 5405 4.2 1.49 2.03
Croatia Croatia Zagreb Stock Exchange Crobex Index 3008 3.85 1.45 3.46
Cyprus FTSE/Cyprus Stock Exchange 20 Index 3437 3.88 1.45 2.14
Czech Republic Prague Stock Exchange Index 5046 4.39 1.59 2.05
Denmark OMX Copenhagen 20 Index 5192 4.29 1.69 1.04
Egypt Egyptian Financial Group Hermes Stock Market Index 4706 5.53 1.47 44.18
Finland OMX Helsinki Index 5198 3.47 1.47 2.84
France CAC 40 Index 5267 5.28 1.67 1.47
Germany Deutsche Boerse AG German Stock Index DAX 5255 5.23 1.61 0.90
Greece Athens Stock Exchange General Index 5180 3.42 1.55 14.08
Hong Kong Hong Kong Hang Seng Index 5166 4.58 1.47 1.44
Hungary Budapest Stock Exchange Budapest Stock Index 5178 3.88 1.66 1.38
Iceland Iceland Stock Exchange ICEX Main Index 4067 4.07 1.44 1.03
India National Stock Exchange CNX Nifty Index 5142 4.69 1.57 1.79
Indonesia Jakarta Stock Exchange Composite Index 5054 4.25 1.48 0.96
Ireland Irish Stock Exchange Overall Index 5223 3.99 1.61 1.59
Israel Tel Aviv 25 Index 5085 3.67 1.59 1.65
Italy FTSE Italia MIB Storico Index EUR 5251 4.48 1.52 1.03
Ivory Coast BRVM Comp Share Index 3614 4.02 1.27 1.08
Jamaica Jamaica Stock Exchange Market Index 4846 3.25 1.3 2.73
Japan Tokyo Stock Exchange Tokyo Price Index TOPIX 5099 4.62 1.64 0.67
Kazakhstan Kazakhstan Stock Exchange Index KASE 3476 4.32 1.12 5.39
Kenya Nairobi Securities Exchange Ltd 20 Index 5038 3.14 1.46 1.92
Korea, South Korea Stock Exchange KOSPI Index 5358 8.89 1.44 1.75
Kuwait Kuwait Stock Exchange Weighted Index 1914 2.92 1.47 2.09
Latvia OMX Vilnius Index 3660 3.79 1.46 1.89
Malaysia FTSE Bursa Malaysia KLCI Index - Kuala Lumpur Composite Index 5108 3.68 1.39 2.31
Malta Malta Stock Exchange 3203 3.38 1.26 2.84
Mauritius Mauritius Stock Exchange SEMDEX Index 4747 2.85 1.35 2.85
Mexico Mexican Bolsa Index 5211 4.12 1.53 1.25
Mongolia Mongolia Stock Exchange Top 20 Index 3767 2.23 1.07 7.08
Morocco Morocco Casablanca Stock Exchange CFG 25 5024 4.66 1.42 2.27
Namibia FTSE JSE Namibia Overall Index 2670 3.56 1.71 1.13
Netherlands AEX-Index 5286 3.31 1.56 1.42
New Zealand MSCI New Zealand Index 5305 4.35 1.69 0.72
Nigeria Nigerian Stock Exchange All Share Index 3993 4.37 1.39 2.14
Norway Oslo Stock Exchange OBX Price Index 5205 4.06 1.67 1.22
Oman Muscat Securities MSM 30 Index 4798 2.89 1.2 3.20
Pakistan Karachi Stock Exchange KSE100 Index 4986 5.14 1.38 1.93
Palestine Palestine Stock Exchange Al Quds Index 2370 4.05 1.17 4.07
Peru Bolsa de Valores de Lima General Sector Index 5169 3.24 1.53 1.60
Philippines Philippines Stock Exchange PSEi Index 5124 4.14 1.61 1.12
Poland Warsaw Stock Exchange WIG Total Return Index 5104 3.69 1.46 1.57
Portugal PSI All-Share Index Gross Return 5198 5.11 1.58 1.68
Qatar Qatar Exchange Index 4050 2.81 1.17 4.52
Romania Bucharest Stock Exchange Trading Index 4191 3.43 1.46 1.88
Russia Russian Trading System Cash Index 4726 4.16 1.45 1.62
Saudi Arabia Tadawul All Share TASI Index 5754 2.61 1.33 3.49
Singapore Straits Times Index STI 3789 5.39 1.57 1.28
Slovenia Ljubljana Stock Exchange Composite Index 4129 3.15 1.42 2.00
South Africa FTSE/JSE Africa All Share Index 4808 4.08 1.64 0.98
Spain IBEX 35 Index 5237 4.51 1.66 1.02
Sri Lanka Sri Lanka Colombo Stock Exchange All Share Index 4946 4.2 1.42 2.01
Sweden OMX Stockholm 30 Index 5205 4.08 1.61 1.06
Switzerland Swiss Market Index 5214 4.68 1.63 1.06
Taiwan Taiwan Stock Exchange Weighted Index 5352 6.14 1.51 1.39
Thailand Stock Exchange of Thailand SET Index 5078 3.92 1.46 1.14
Tunisia Tunisia Stock Exchange TUNINDEX 3471 3.42 1.61 1.32
Turkey Borsa Istanbul 100 Index 5172 4.49 1.47 1.32
Ukraine Ukraine PFTS Index 4100 3.03 1.35 2.54
United Arab Emirates Dubai Financial Market General Index 2681 3.35 1.47 1.90
United Kingdom FTSE All-Share Index 5237 3.94 1.7 1.31
United States S&P 500 Index 5220 4.19 1.55 1.50
Vietnam Vietnam Ho Chi Minh Stock Index / VN-Index 3345 23.21 1.46 1.98




Figure 2: Scatter plot between the tail index estimates and extreme risk measure.

This scatter plot shows the relationship between the tail risk index and extreme risk measures estimated from 74 country

stock indexes. The kurtosis measure is plotted on a natural log scale.
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Figure 3: Boxplot of Spearman rank correlation coefficient for the bootstrapped stock return distributions

This set of graphs presents the boxplots of the Spearman rank correlation coefficient calculated between the tail indexes

and extreme risk measures for the bootstrapped stock index return distributions. The bootstrap samples are replicated

from 51 country stock index returns, with a block size of 6 days to account for time series dependencies. The number of

replication is set to 500 in this study.
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still shows a much better performance in tracking the different types of extreme risk measures observed
in the different country’s stock market returns. The McCulloch estimator is between 30% and 50% more
precise than the Hill estimator for the tail risk measures and 170% more precise for the kurtosis.

4.4 Superior Predictive Ability Test for the Tail Index Estimators

To verify that the McCulloch estimation method produces the best comprehensive tail risk index, we use
the superior predictive ability (SPA) test proposed by White (2000) and (Hansen 2005) to compare the
three methods. The objective of the SPA test is to compare multiple models with a benchmark model,
and determine if the alternative models outperform the benchmark model.

In our case, we set the benchmark model to be the McCulloch estimation method. As explained in the
section 4, we use the Spearman’s correlation coefficient p; ; calculated between the estimated tail index
7 and the extreme risk measures k to evaluate the performance of the tail index in reflecting the ranking
of the extreme risk measure. If the tail index reflects perfectly the ranking of extreme risk measure, then
pj.. will be equal to 1. We proceed to define the loss function of the tail index estimation methods as
Li=(1- \,oj|)27 where j = (McCulloch, GM M, Hill).

Following White (2000), we define our null hypothesis that the benchmark estimation method is not
inferior to any alternative estimation methods. Defining the vector of relative loss functions as d = Ly—L,
where Lg is the loss function of the benchmark McCulloch method, and L = [Lgara, Laiu) is the loss
function of the alternative estimation methods (GMM and the Hill estimator respectively), we formulate
the null hypothesis as

Hy:E) <0 (9)

As the distribution of the vector of relative loss function d is unknown to us, it is not possible to
deduce a critical value for the test statistic for the null hypothesis (Equation 9). To overcome this
problem, we use the bootstrap methodology in section 4.3 to generate an extensive bootstrap sample of
pj.b where b is the bootstrap sample, and use it to simulate the distribution of d. This distribution is
subsequently used to compute the significance (p-value) of our test statistic d* which is a studentised
value of d.*

We run the SPA test with 500 bootstraps to compare the performance of the estimated tail indexes
in tracking the actual kurtosis measured in the empirical data, with the McCulloch method as the
benchmark. We also repeat the same tests on the tail indexes in tracking the left and right tails of the
empirical data. The results are reported in Table 6 below:

Table 6: P-values of the superior predictive ability tests with McCulloch method as the benchmark
method.

Kurtosis  Left tail 10% Right tail 10%
p-Value 0.82 0.52 0.54

The results in Table 6 is coherent with Figure 3. Irrespective of the extreme risk measures, we cannot
reject the null hypothesis that the tail index estimated using the McCulloch method is not inferior to the
tail index estimated through the GMM method nor the Hill estimator. We can see that the McCulloch
estimated tail index outperforms the alternative estimators for the kurtosis with a p-value of 0.82. Even
for tracking one-sided extreme risk measures, the McCulloch also outperforms the alternative methods
with a p-value of 0.52 - 0.54.

5 Conclusion

The existing methods for measuring the absolute tail risk have not been conclusive in their findings. As
an alternative, this paper proposes to estimate the relative tail risk by focusing only on the ranking of
extreme risk measures. We compare the Hill, the McCulloch and the GMM tail estimators. We judge
their performance only on their precision, independently of their possible bias. We apply this analysis to
a data set of 74 international stock market returns. Of the three methods, we find that the McCulloch
estimation method produces the most precise relative tail risk estimate, which tracks comprehensively
the kurtosis, the left and the right tail measures of the stock market returns.

4Detail steps and description of the superior predictive ability test are presented in the Appendix.



Our finding is consistent across both the simulation study and the empirical study based on the
bootstrap analysis of the 74 country stock index. In addition, the Hansen (2005) and White (2000)
test for superior predictive ability establishes that the McCulloch estimator clearly outperforms the two
other tail indexes. Given the results shown in this study, we propose to use the McCulloch estimator as
a comprehensive measure for assessing relative country tail risks, in addition to common risk measures
such as kurtosis and volatility (see Acemoglu et al. (2017)).
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