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Abstract
This paper applies a panel data stochastic frontier approach to investigate the impacts of different business models in
operating efficiencies in the global semiconductor industry. The efficiency scores are linked with the financial ratios
and specified by cumulative probit distribution function, cumulative logit distribution function, and the Gumbel
function respectively after disentangling the heterogeneity by the within transformation. The estimates by the nonlinear
least squares technique indicate that the asset-light fabless companies have relatively higher efficiency scores among
the different operating models in the global semiconductor industry.
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1 Introduction
Semiconductors, also referred to as integrated circuits (ICs) or chips, are crucial el-
ements in the manufacturing of electronics over the last 70 years since the invention
of transistors at Bell laboratories in 1947. The semiconductor industry is a driving
force in the digital economy and is closely linked to many cutting-edge technologies
such as advanced wireless networks, artiicial intelligence, and quantum computing.
During the early years of the semiconductor industry, it almost entirely involves the
integrated device manufacturer (IDM) business model, that one company handles all of
the production stages in-house, including research and design (R&D), front-end wafer
fabrication, and back-end assembly and test (A&T). A well-known IDM is the mi-
croprocessor manufacturer Intel, which nowadays has six wafer fabrication sites, three
A&T manufacturing locations, and more than one hundred thousand employees world-
wide. Due to the steadily increasing complexity of the leading-edge ICs characterized
by Moore’s law (e.g., see Flamm 2017), the enormous capital expenditure (CAPEX)
accompanying with proportionally increasing R&D and labor costs imposes a heavy
burden even for the largest IDMs, which underlays the birth of the fabless-foundry
business model in the semiconductor industry in the 1980s.

In the fabless-foundry business model, the fabless irms focus on the design and
sales of chips and partner with pure-play foundries for front-end wafer fabrication as
well as a third group of companies for back-end outsourced semiconductor assembly
and test (OSAT). Vertical disintegration by the fabless-foundry model drastically re-
duces the burden of CAPEX in the semiconductor industry and brings up the prosper
and lourish of the asset-light fabless irms with diversiied products for various appli-
cations (e.g., see Sarma and Sun 2017). The fabless companies, such as Qualcomm
and Nvidia, direct all their resources in designing state-of-the-art chips and contract
out both front-end wafer fabrication and back-end A&T so that they are risk-free in
the setting up, maintaining, and upgrading of the profoundly expensive fabrication
facilities. In contrast, the IDMs derive eiciency from vertical integration. In the
development of bleeding-edge ICs which requires close coordination between product
design and process veriication, IDMs achieve performance advantages when technolog-
ical developments involve complex problems and gain eiciency by the internalization
of transaction costs (e.g., see Dibiaggio 2007, and Kapoor and Adner 2012). Hence
whether the vertical integrated IDM model or the vertical specialized fabless-foundry
model operates more eiciently is an empirical question in the global semiconductor
industry.

Strategic management approach suggests that intra-industry performance difer-
ences can be attributed to sustainable competitive advantage (e.g., see Barney 1991,
and Mahoney 1995). The resource-based view of competitive advantage speciies that
resources are important antecedents to a irm’s overall performance as well as sources
of sustained competitive heterogeneity among irms (e.g., see Barney 2001). Liou et al.
(2008) and Tang and Liou (2010) suggest extending the causal relationship between
competitive advantage and superior performance to a strategy-coniguration perfor-
mance causal series. They apply this theoretical framework to the global semiconduc-
tor industry and argue that the presence of competitive advantage of the asset-light
business model can be relected in the causal relationship between resource conigura-



tion, dynamic capability, and observable inancial performance. However, though the
terms competitive advantage and performance are often used interchangeably, the two
constructs are acknowledged to be conceptually distinct (e.g., see Powell 2001, and
Newbert 2008). Furthermore, the debate on a conceptually clear and unambiguous
deinition of competitive advantage is far from over (e.g., see O’Shannassy 2008, and
Sigalas et al. 2013).

Production frontier is another econometric approach for performance evaluation.
There are rich records of eiciency estimation by production frontier in the semicon-
ductor industry, most of which follow the data envelopment analysis (DEA) method.
For example, Chu et al. (2008) use the DEA technique to measure the relative perfor-
mance for global leading fabless irms, while Lu et al. (2013) and Lin et al. (2019) use
the DEA model to study the semiconductor industry in the US and Taiwan respec-
tively. Despite its lexible functional form, a main drawback of the DEA approach is
the ignoring of statistical noise and accounting for all deviations from the frontier to
ineiciency. In contrast, the stochastic frontier analysis (SFA) approach has the at-
traction of naturally including an error term in the econometric regression framework,
but it also has the disadvantage of requiring ex-ante functional form for both the fron-
tier and the ineiciency term. For instance, Kumbhakar et al. (2012) apply the SFA
framework to investigate the impact of R&D activities on irm performance, but their
approach mixes up irms from diferent industries, which hardly seems to correspond
to the assumption of a consistent production function.

This paper plans to merge the advantages of both the strategic management ap-
proach and the SFA approach to investigate the impact of business model on irm-level
operating eiciency in the global semiconductor industry. The panel data SFA model
by Paul and Shankar (2018, 2020) is chosen for the following reasons. First, this model
speciies the eficiency efects by a cumulative distribution function which eschews both
the restriction of a one-sided ineiciency term and the transformation to limit the inef-
iciency scores in a unit interval. Hence eiciency efects can be measured by inancial
ratios as suggested by Tang and Liou (2010). Second, the unobserved heterogeneities
are within-transformed so that it is able to estimate the irm level eiciency scores un-
der the production frontier for the highly globalized semiconductor industry. Third, it
is a one-step approach that the frontier function and the eiciency efects are estimated
simultaneously, keeping away from the measurement errors by a two-step procedure
(e.g., see Schmidt 2011).

The paper is organized as follows. Section 2 introduces the methodology for this
study. Section 3 describes the data and deines the variables used for the estimation.
Section 4 presents the empirical results of the impact of business model on performance
assessment in the semiconductor industry. The last section concludes.

2 The methodology
Eiciency and productivity are core concepts of economics. The SFA approach intro-
duced by Aigner et al. (1977), Battese and Corra (1977), and Meeusen and Broeck
(1977) has an appealing feature of allowing for both a one-sided ineiciency term and a
two-sided statistical noise term. Schmidt and Sickles (1984), Battese and Coelli (1988),
etc., extend the SFA framework to panel data with a time-invariant ineiciency term.



Cornwell et al. (1990), Battese and Coelli (1992), etc., introduce models with a time-
varying ineiciency term in panel data. Greene (2005) argues that these approaches
treat unobserved heterogeneity as a measure of ineiciency and proposes a true ixed
efects model which distinguishes between time-invariant unit-speciic heterogeneity
and time-varying ineiciency. However, Greene (2005) uses dummy variables to repre-
sent heterogeneity which encounters the incidental parameters problem. Wang and Ho
(2010), Chen et al. (2014), Belotti and Ilardi (2018), etc., apply various maximum like-
lihood approaches to estimate Greene’s model, all of which need extra transformation
to restrict the ineiciency scores in a unit interval.

Some studies have used a two-step approach, where eficiency scores are estimated
in the irst step, and the estimates of the eficiency scores are regressed against a set
of exogenous variables which are hypothesized to inluence a irm’s ineiciency in the
second step. It is known that the inconsistent assumptions of the ineiciency term
between the two steps generates biased estimation in such a two-step approach so that
the mainstream of SFA proposes to estimate the eiciency scores and eiciency efects
by a one-step procedure (e.g., see Kumbhakar et al. 1991). Battese and Coelli (1995),
Kumbhakar and Wang (2005), Alvarez et al. (2006), etc., adopt diferent techniques
to extend the one-step procedure to panel data. Recently, Parmeter et al. (2017)
propose a nonparametric approach to estimate the distribution free ineiciency efects
which needs additional constraints, such as the method of Du et al. (2013), to get
nonnegative estimates of the ineiciency term. Paul and Shankar (2018, 2020) propose
a distribution-free eiciency efect model which uses a cumulative distribution function
to specify the eiciency efects and eschews the assumption of one-sided ineiciency
term.

The Paul and Shankar (2020) model is an extension of Paul and Shankar (2018)
which accounts for time-invariant unobserved heterogeneity and can be expressed as

Yit = exp

(
αi + xitβ + vit +

1

µ
ln[H(zitγ)]uit

)
, (2.1)

where i = 1, ..., N denotes each of the individual irms, t = 1, ..., Ti denotes the observed
time period of each i, αi is the irm-speciic ixed efect, vit represents the random
noise, and 1

µ
ln[H(zitγ)uit] is a one-sided ineiciency term with the restriction that

0 ≤ H(zitγ) ≤ 1, and µ = E(uit). The equation (2.1) can be written in a logarithmic
form as

yit = αi + xitβ + ln[H(zitγ)] + εit, (2.2)
where yit = ln(Yit), and εit = vit+

1
µ
ln[H(zitγ)](uit−µ). After the within transformation

to eliminate the unobserved inluence of αi, we can simplify (2.2) as

ỹit = x̃itβ + ln


 H(zitγ)
(∏Ti

p=1 H(zipγ)
) 1

Ti


+ ε̃it (2.3)

where w̃it = wit −
1
Ti

∑Ti

p=1 wip for w ∈ {y, x, ε}. Equation (2.3) can be estimated by



the nonlinear least squares (NLS) estimator which minimizes the sum of squared errors

arg min
β,γ

N∑

i=1

Ti∑

t=1


ỹit − x̃itβ − ln


 H(zitγ)
(∏Ti

p=1 H(zipγ)
) 1

Ti







2

(2.4)

with respect to parameters β and γ. Paul and Shankar (2020) prove the consistency of
the NLS estimator in (2.4) and propose to estimate the variance of the random noise
vit by

σ̂v
2 =

1

L−K

N∑

i=1

Ti∑

t=1

(
ε̂it

2 −
[ln(H(zit)γ̂)]

2

µ̂δ

)
(2.5)

where µ̂δ =

√
2
∑N

i=1

∑Ti
t=1

[ln(H(zitγ̂))]6∑N
i=1

∑Ti
t=1

[ε̂itln(H(zitγ̂))]3
, L =

∑N

i=1 Ti, and K is the total number of
parameters β and γ.

Once the coeicient vectors β and γ are estimated, the individual ixed efects αi

can be retrieved as

α̂i =
1

Ti

Ti∑

t=1

(
yit − xitβ̂ − ln(H(zitγ̂))

)
(2.6)

and the mean technical eiciency can be derived directly as

T̂Eit = exp (ln[H(zitγ̂)]) = H(zitγ̂), (2.7)

which avoids the transformation to calculate the eiciency scores. The selection of the
function H(zitγ) is lexible, with the only restriction that H(zit) is in a unit interval.
A cumulative distribution function such as Φ(zitγ) or any function constrained to lie
between 0 and 1, such as the Gumbel function of the form G(zitγ) = e−e−zitγ , would
be suitable for H(zit). Another feature of using H(zitγ) to represent the technical
eiciency is that it eschews the widely used assumption of a one-sided distribution of
the ineiciency term in almost all the existing SFA models. Hence, it is convenient to
bridge the eiciency measure H(zit) to the operating performance, such as the inancial
ratios in Liou et al. (2008) and Tang and Liou (2010).

3 Data and Variable Speciication
The data are collected from the sub-industry of semiconductors in Compustat database
over the period of 20 years 1999–2018. Since the semiconductor industry is highly
globalized, I combine data from both the Compustat North America database and
the Compustat Global database to cover companies in the whole industry. I exclude
photovoltaic producers, liquid crystal display manufacturers, and light-emitting diode
manufacturers from the dataset, limiting the sample to only IC manufactures. Under
such restriction, the sample includes 5136 observations from 470 unique companies in
1999–2018. Table 1 breaks down the sample by four kinds of business models, including
fabless, IDM, foundry, and OSAT, which can naturally be grouped into three categories
by the intensity of labor and capital. The irst category contains fabless companies that



are asset-light but labor-intensive for chip design. Over half of the companies in the
semiconductor industry are in the fabless model since the barriers to entry are much
lower for the asset-light fabless companies than for the asset-heavy manufacturers. The
second category contains foundries and OSATs, both of which focus on fabrication and
depend heavily on CAPEX for the capital-intensive facility construction and equipment
maintenance. The third category contains IDMs which are both labor-intensive and
capital-intensive because IDMs carry out all stages of production in-house.

Table 1: Number of observations by business model

Year All Fabless IDM Foundry OSAT
1999 125 68 38 10 9
2000 149 81 43 10 15
2001 155 83 46 10 16
2002 213 121 48 17 27
2003 241 143 49 19 30
2004 264 159 54 21 30
2005 260 162 54 17 27
2006 267 161 56 20 30
2007 269 163 52 21 33
2008 278 172 51 20 35
2009 290 180 53 21 36
2010 300 180 59 23 38
2011 298 177 60 22 39
2012 301 180 61 22 38
2013 313 183 65 24 41
2014 302 172 62 25 43
2015 288 163 59 24 42
2016 283 162 54 23 44
2017 275 156 51 23 45
2018 265 151 48 22 44

TOTAL 5,136 3,017 1,063 394 662
No. Unique Firms 470 288 83 36 63

Identifying the inputs and outputs has always been a subject of controversy in the
estimation of production frontier, without exception in the semiconductor industry.
Hence I sort the most commonly used variables in the empirical papers which apply
the production frontier approach for performance evaluation in the semiconductor in-
dustry and specify one output (revenue (Y )) and three inputs (labor, measured by the
number of employees (X1); cost of goods sold (X2); and capital investment, measured
by property, plant, and equipment (PP&E) (X3)) for the production function. For the
eiciency term, I follow the theory of competitive advantage, especially in case of the
asset-light business model (e.g., see Liou et al., 2008 and Tang and Liou, 2010), to spec-
ify two inancial ratio variables (ixed asset turnover ratio, measured by the revenue
of a company divided by the value of its ixed assets (Z1); and R&D expense to rev-
enue ratio, measured by the percentage of sales that is allocated to R&D expenditures



(Z2)). As there are more than one hundred inancial ratios in common use, Liou et
al. (2008) and Tang and Liou (2010) apply a principal component analysis to identify
three key factors and ind that the ixed asset turnover ratio Z1 is a key indicator of
the capital management ability of a company while the R&D expense to revenue ratio
Z2 is a dedicated indicator of the knowledge management in the semiconductor indus-
try. The other inancial indicators, either overlapped or duplicated with Z1 or Z2, or
related to the customer and supplier relationship factor, are not selected as eiciency
variables in this paper. Another advantage of using the inancial ratios Z1 and Z2 is
the scale-invariant feature which matches well with the dimensionless eiciency scores.
Table 2 gives summary statistics of the variables in 1999–2018 pooled data split by
the business models. The values of X1–X3 and Y in Table 2 are in the form before
the log transformation and adjusted to the 2018 US dollar by GDP delator to set up
a criterion for comparing data across diferent years. The distributions of Z1 and Z2

are skewed to the right extremely for the fabless irms, which are consistent with the
asset-light feature of the fabless model in the semiconductor industry.

Table 2: Descriptive statistics
Min Q1 Median Mean Q3 Max

Fabless
X1 1 113 248 803 590 35,400
X2 1 15,465 52,182 218,222 147,582 10,210,237
X3 5 2,748 9,412 69,806 29,689 5,627,962
Y 3 32,198 100,203 460,156 280,885 28,365,696
Z1 0.009 4.772 9.951 27.039 21.186 1473.976
Z2 0.000 0.118 0.191 1.084 0.305 663.200

IDM
X1 28 780 2,900 8,525 8,400 107,600
X2 49 108,201 363,525 1,230,517 1,102,348 18,226,000
X3 298 53,482 222,571 1,524,168 917,191 48,976,000
Y 2,679 184,205 741,897 2,932,830 2,250,155 70,848,000
Z1 0.084 1.704 2.629 5.018 4.120 203.801
Z2 0.000 0.058 0.120 0.132 0.181 1.663

Foundry & OSAT
X1 19 439 1,577 4,114 3,931 93,891
X2 1,123 44,567 143,472 449,317 419,758 8,841,157
X3 88 44,868 167,886 961,037 615,005 36,542,569
Y 1,840 71,401 226,760 908,505 671,050 33,696,798
Z1 0.039 0.794 1.218 6.792 1.924 1,789.268
Z2 0.000 0.018 0.036 0.053 0.062 0.985

NOTE. The unit of X1 is the number of employees.
The units of X2, X3 and Y are thousands US$.
All the values of X2, X3 and Y are adjusted to the 2018 US$ by GDP delator.



4 Estimation Results
Estimation of the model in (2.2) is straightforward by NLS after removing the individ-
ual ixed efects by the within transformation in (2.3). Table 3 presents the estimates
of the parameters in (2.4) with three kinds of diferent functions for H(zitγ), including
the probit cumulative distribution function, the logit cumulative distribution function,
and the Gumbel function, to compare the impact of the functional form for the ei-
ciency term H(zitγ). The estimates of output elasticities, which are represented by
the coeicients of inputs in the translog production function, are positive and statis-
tically signiicant and do not vary much among the three models with diferent forms
of H(zitγ). In terms of the magnitude of elasticity, capital investment which is rep-
resented by PP&E turns out to be a more important factor of production than labor.
It is consistent with the fact that the semiconductor industry is capital-intensive more
than labor-intensive by and large. In terms of the eiciency term H(zitγ), the positive
sign of γ1 implies that the higher the asset turnover ratio, the more eicient a company
is at generating revenue from its assets. Similarly, the negative sign of γ2 indicates that
the eiciency of a irm decreases with the level up of R&D expenditure, implying that
the severe competition and the continuous iteration of technology in the semiconductor
industry make the heavily R&D spending a risky investment. Both the positive sign
of γ1 and the negative sign of γ2 are consistent with the works of Liou (2011), Tsai et
al. (2017), etc.

Table 3: Estimated stochastic frontiers and technical eiciency efects

Eiciency Term Eiciency Term Eiciency Term
— Logit — — Probit — — Gumbel —
Coef SD Coef SD Coef SD

Frontier Function
β1 0.155∗∗∗ 0.009 0.150∗∗∗ 0.009 0.136∗∗∗ 0.008
β2 0.404∗∗∗ 0.007 0.391∗∗∗ 0.007 0.348∗∗∗ 0.007
β3 0.398∗∗∗ 0.008 0.418∗∗∗ 0.008 0.482∗∗∗ 0.008
Eiciency efects
γ0 −1.469∗∗∗ 0.035 −0.961∗∗∗ 0.021 −0.785∗∗∗ 0.016
γ1 0.147∗∗∗ 0.003 0.090∗∗∗ 0.002 0.087∗∗∗ 0.002
γ2 −0.006∗∗∗ 0.000 −0.002∗∗∗ 0.000 −0.001∗∗∗ 0.000

Wald stat. 3, 509∗∗∗ 4, 396∗∗∗ 6, 494∗∗∗

σ̂v
2 0.403 0.426 0.600

N 5,135 5,135 5,135
NOTE. The null hypothesis in the Wald test is γ0 = γ1 = γ2 = 0.

Figure 1 plots the distribution of individual ixed efects derived by (2.6). The
heterogeneities among the business models are distinct and consistent in each form of
H(zitγ). Figure 2 shows the distribution of the eiciency scores calculated by (2.7).
The eiciency scores of the asset-light fabless companies have a relatively smoother
distribution, while the eiciency scores of the capital intensive IDMs, foundries, and
OSATs have sharp-peaked distributions. Table 4 (in Appendix) provides the pairwise
Kolmogorov–Smirnov test results and Mann-Whitney test results of the distributions of



Figure 1: Distribution of ixed efects by business model
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the eiciency scores shown in Figure 2, both of which indicate that the distributions of
the eiciency scores are diferent in all the pairwise comparisons by the business model.
Furthermore, the means and standard deviations of the eiciency scores by business
model over the 20 years are shown in Table 5 (in Appendix) and visualized in Figure 3.
The curve of annual mean eiciency scores of the fabless irms is conspicuously above
the curves of the other business models. A plausible explanation for these results is that
although investing in R&D is risky in the semiconductor industry, the fabless business
model still has the attraction of lifting the heavy CAPEX burden of the small and
medium enterprises’ shoulders.

Figure 2: Distribution of eiciency scores by business model
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Figure 3: Trends of mean eiciency scores
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5 Summary and Conclusions
Comparing the operating eiciency between the vertical integrated IDM model and
the specialized fabless-foundry model in the semiconductor industry where diversiied
companies are producing various products is a vexing problem. This paper applies
a panel data stochastic frontier approach which has the advantage of disentangling



the irm-level heterogeneity by the within transformation and estimate the eiciency
scores by cumulative distribution functions. The nonlinear least squares technique in
this approach eschews a priori knowledge of a one-sided ineiciency term present in
almost all the existing ineiciency efects models and provides the lexibility to link
the eiciency terms with the inancial ratios of a irm. The estimation results indicate
that the asset-light fabless companies are operating more eiciently than the irms in
other operating models in the semiconductor industry. Though the vertical integrated
IDMs dominate the semiconductor industry since its early days, the heavy burden of
CAPEX and the law of diminishing marginal returns induce more and more companies
to embrace the fabless-foundry model. Facing the high uncertainty of commercial
success due to technology iteration twisting to the ups and downs in the global economic
cycle, the small and medium-sized fabless companies are more lexible and adaptable
to market changes in the semiconductor industry.

However, the distinction between the IDM model and the fabless-foundry model
is fading away. The vertical specialized fabless-foundry model has the attraction of
risk sharing and achieving high capacity utilization so that IDMs also start to contract
with other companies to manufacture some of their chips while performing all other
remaining tasks internally. The complementarity and integration of the IDMs and the
fabless-foundry irms can further expand the range of potential end-user applications
for ICs and enable the entire semiconductor industry to thrive and prosper. This
developing trend may lead to new business models in the semiconductor industry with
higher operating eiciencies in the near future.
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Appendix

Table 4: Tests of diference of the distributions of eiciency scores by business model

— Logit — — Probit — — Gumbel —
Statistic p-value Statistic p-value Statistic p-value

Kolmogorov–Smirnov test

Fabless VS. IDM 0.557∗∗∗ 0.000 0.557∗∗∗ 0.000 0.557∗∗∗ 0.000

Fabless VS. Foundry 0.767∗∗∗ 0.000 0.768∗∗∗ 0.000 0.768∗∗∗ 0.000
&OSAT

IDM VS. Foundry 0.455∗∗∗ 0.000 0.455∗∗∗ 0.000 0.455∗∗∗ 0.000
&OSAT

Mann-Whitney test

Fabless VS. IDM 2, 663, 969∗∗∗ 0.000 2, 664, 607∗∗∗ 0.000 2, 665, 456∗∗∗ 0.000

Fabless VS. Foundry 2, 953, 105∗∗∗ 0.000 2, 954, 469∗∗∗ 0.000 2, 955, 333∗∗∗ 0.000
&OSAT

IDM VS. Foundry 247, 099∗∗∗ 0.000 246, 849∗∗∗ 0.000 246, 711∗∗∗ 0.000
&OSAT

NOTE. H0 in the Kolmogorov–Smirnov test is that the two distributions are equal.
H0 in the Mann-Whitney test is that the two distributions are equal.



Table 5: Mean and standard deviation of eiciency scores

Logit Normal Gumbel
Year Fabless Foundry IDM Fabless Foundry IDM Fabless Foundry IDM

&OSAT &OSAT &OSAT

1999 0.456 0.246 0.290 0.436 0.227 0.271 0.364 0.167 0.212
(0.217) (0.068) (0.153) (0.221) (0.067) (0.155) (0.210) (0.063) (0.158)

2000 0.450 0.257 0.290 0.432 0.238 0.268 0.362 0.177 0.209
(0.232) (0.106) (0.147) (0.235) (0.104) (0.149) (0.222) (0.096) (0.151)

2001 0.440 0.237 0.271 0.420 0.218 0.252 0.353 0.158 0.193
(0.228) (0.090) (0.135) (0.230) (0.088) (0.136) (0.226) (0.082) (0.141)

2002 0.487 0.227 0.272 0.469 0.208 0.254 0.402 0.150 0.195
(0.263) (0.073) (0.132) (0.269) (0.071) (0.133) (0.268) (0.067) (0.138)

2003 0.539 0.240 0.281 0.522 0.221 0.262 0.453 0.161 0.202
(0.274) (0.096) (0.133) (0.281) (0.094) (0.134) (0.283) (0.087) (0.138)

2004 0.601 0.239 0.282 0.585 0.219 0.262 0.512 0.160 0.203
(0.270) (0.094) (0.129) (0.278) (0.092) (0.130) (0.279) (0.085) (0.133)

2005 0.597 0.231 0.301 0.582 0.212 0.282 0.510 0.153 0.221
(0.276) (0.089) (0.162) (0.284) (0.088) (0.163) (0.283) (0.080) (0.159)

2006 0.599 0.239 0.315 0.583 0.221 0.296 0.510 0.162 0.233
(0.271) (0.112) (0.176) (0.278) (0.115) (0.177) (0.277) (0.110) (0.171)

2007 0.590 0.235 0.296 0.574 0.217 0.276 0.499 0.158 0.213
(0.263) (0.108) (0.129) (0.272) (0.112) (0.128) (0.268) (0.107) (0.117)

2008 0.625 0.247 0.304 0.610 0.229 0.285 0.536 0.171 0.221
(0.270) (0.146) (0.145) (0.279) (0.150) (0.145) (0.279) (0.151) (0.132)

2009 0.603 0.225 0.298 0.589 0.206 0.278 0.520 0.148 0.215
(0.287) (0.059) (0.138) (0.296) (0.058) (0.138) (0.298) (0.054) (0.126)

2010 0.629 0.258 0.311 0.614 0.240 0.291 0.544 0.181 0.228
(0.279) (0.147) (0.128) (0.288) (0.150) (0.127) (0.292) (0.148) (0.116)

2011 0.584 0.252 0.298 0.570 0.234 0.278 0.503 0.176 0.216
(0.284) (0.146) (0.120) (0.293) (0.150) (0.120) (0.298) (0.151) (0.112)

2012 0.576 0.252 0.293 0.561 0.234 0.273 0.495 0.175 0.211
(0.281) (0.145) (0.113) (0.290) (0.148) (0.114) (0.298) (0.147) (0.104)

2013 0.591 0.240 0.300 0.576 0.222 0.280 0.510 0.162 0.218
(0.283) (0.103) (0.112) (0.292) (0.104) (0.112) (0.298) (0.096) (0.103)

2014 0.560 0.244 0.311 0.543 0.225 0.291 0.474 0.166 0.229
(0.274) (0.102) (0.139) (0.282) (0.104) (0.140) (0.285) (0.100) (0.134)

2015 0.544 0.238 0.310 0.527 0.219 0.291 0.458 0.160 0.229
(0.275) (0.086) (0.143) (0.283) (0.088) (0.144) (0.282) (0.080) (0.137)

2016 0.552 0.242 0.303 0.535 0.223 0.284 0.465 0.164 0.222
(0.273) (0.084) (0.136) (0.280) (0.085) (0.138) (0.282) (0.078) (0.130)

2017 0.546 0.244 0.300 0.529 0.225 0.280 0.460 0.167 0.217
(0.271) (0.098) (0.123) (0.278) (0.100) (0.123) (0.280) (0.102) (0.112)

2018 0.552 0.247 0.306 0.536 0.228 0.287 0.466 0.170 0.224
(0.280) (0.104) (0.158) (0.288) (0.106) (0.160) (0.287) (0.109) (0.147)


