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Abstract

The semi parametric Gini regression is more robust than ordinary least squares (OLS) regression when the underlying
assumptions of the OLS fail and therefore has been used by many researchers. Several measures for goodness of fit of
Gini regression were suggested in the literature. However, to the best of our knowledge, these were not compared. We
examine the effect of one outlier on several goodness of fit measures in the case of a simple linear regression model
via simulation. We base our comparison on the sensitivity curve. As expected, all measures under study are less
sensitive to the outlier as the sample size increases. Results indicate that the least sensitive measure to an outlier is Gini
correlation between the predictor Y _hat, based on Gini regression, and the observed value Y.
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1. Introduction

Gini regression was first introduced in Olkin and Yitzhaki (1992). They proposed two Gini
regressions: a parametric regression, based on the minimization of the Gini's Mean Difference
(GMD) of the error term, and a semi parametric regression, which mimics the ordinary least
squares (OLS). These regressions are based on using GMD as the measure of dispersion. There
are more than a dozen ways to spell Gini (Yitzhaki, 1998). The relevant presentation for our paper
is

G(X) =4COV(X,F(X)), where F(X) is the cumulative distribution function of X (Lerman &
Yitzhaki, 1984).

As mentioned in Olkin and Yitzhaki (1992), Gini regression is more robust to outliers than OLS
and allows for relaxing some of the traditional assumptions such as the linearity of the model and
the normality of the residuals. Several authors investigated the advantages of Gini regression over
OLS, focusing on the parameter estimates, on the effects of outliers and on the case of
heteroscedasticity. For example, Charpentier et al. (2019) examine the robustness of the semi-
parametric Gini regression to outliers and heteroscedasticity and use Pearson R? to examine
goodness of fit. Mussard and Souissi-Benrejab (2019) suggest two Gini-PLS regressions that
improve the quality of the coefficient estimates in the presence of outliers and excessive
correlations between the regressors.

The issue of goodness of fit of the fitted regression model was mentioned in several papers:
Olkin and Yitzhaki (1992) suggest a measure denoted by GR, based on the GMD of the error term,
e, and of the dependent variable, Y (see Olkin and Yitzhaki, 1992 and Yitzhaki and Schechtman,
2013). Yitzhaki and Schechtman (2013) denote the measure by GR? and show that under some
restrictive assumptions, this measure is equal to the ratio between the square of GMD of the
predicted value ¥ and the square of Gini of Y. Hence it is similar in structure to Pearson’s R?, which
is the commonly used measure in OLS (R? is the ratio between the sum of squared deviations
between Y and the mean of Y, SSR, to the total sum of squares, TSS). Yitzhaki and Schechtman
(2013) further suggest a version under less restrictive assumptions. This version includes Gini
correlations between Y and ¥ (the predicted variable according to Gini semi-parametric regression)
and between Y and e. In addition, they suggest two measures that are based on the covariance
between (a function of) Y and (a function of) Y. They note that when using OLS, the four measures
are equivalent. Mussard and Ndiaye (2018) suggest a measure which is based on the Gini
covariance between the error, e, and Y. Charpentier et al. (2019) use the well-known Pearson R?
where the predicted values are obtained from their Aitken-Gini estimators of the Gini regression.

Although several goodness of fit measures appear in the literature, their properties were not
discussed and to the best of our knowledge there is no consensus as to which measure to use. The
objective of this note is to study (via simulation) the sensitivities of the above-mentioned measures
to different underlying distributions of the independent variable and the error term and to the
presence of outliers. In addition, we add our own suggestions. We focus on the semi parametric
simple Gini regression (i.e., one independent variable). Because the measures are on different
scales (some are in terms of squares and some are not, as will be seen below), a reasonable way to
compare them is by looking at the behavior of the sensitivity curve which is a translated and
rescaled version of the empirical influence function (Hampel et al., 2011; Tukey, 1970). The



influence function was used by Croux and Dehon (2010) to show that Spearman and Kendal’s
correlation measures are bounded when adding one outlier.

The paper is organized as follows: In section 2 we present the indices that appear in the literature
and propose our own indices. Section 3 is devoted to an extensive simulation study that compares
the sensitivity of the above-mentioned measures to a single outlier. Section 4 concludes.

2. Measures of goodness of fit

2.1 The existing measures
We focus on a simple linear model:

Y = By + B1X + €, where Y is the dependent variable, X is the explanatory variable and ¢ is the
error term.

The semi parametric Gini regression estimator of 5; is

,é __ cov(Y,R(X))
17 covx,R(X))
is estimated by

where R(X) is the (relative) rank of X (Olkin & Yitzhaki, 1992). The intercept 3,

Bo =Y — X (so that the predicted line will pass through the means of the variables), and the
error termis e =Y — ¥ = Y—ﬁo—ﬁlX.

The commonly used goodness of fit measure in regression analysis is Pearson’s R?, which is
the percent of variability in the dependent variable that is explained by the regression model. In
Gini regression, the literature mentions several goodness of fit measures, but to the best of our
knowledge their properties were not studied and there is no consensus as to which one to use.

Olkin and Yitzhaki (1992) introduced Gini regression and suggested the following measure of
goodness of fit:

GR = 1 — (LoMeR))” (M

cov(Y,R(Y))

where R(e) is the (relative) rank of e = Y — Y. The intuitive reason for this suggestion lies in the
fact that in OLS, the total sum of squares (7SS) can be decomposed into the sum of two sums of
the squares: Sum of squares due to regression (SSR) and error sum of squares (SSE), where

TSS = %, (Y; = V)2,
SSR = Z?=1(?[ - Y)Z’
SSE = Z?:l(ei)z’
TSS = SSR + SSE,

and Pearson’s R?

R2=%=1—%. 2)



Note that equations (1) and the right-hand side of (2) are similar in structure. However, as will
be explained below, the equivalent of the middle term in (2) does not apply to (1) in general,
because in the Gini regression, an equivalent (in structure) decomposition does not hold. As
mentioned in Yitzhaki and Schechtman (2013), equation 7.41, the decomposition

G2(Y) = G*(?) + G?(e) 3)

(which is the motivation for the similarity in structure of equations (1) and (2)) holds true only

under some restrictive assumptions on Gini correlations and on the model. Recall that Gini
. . . cov (X, . .

correlation between X and Y is defined as I'yy = % (Schechtman & Yitzhaki, 1987) and

that the two Gini correlations I'yy and [yy are not necessarily equal. The restrictive assumptions

for (3) to hold are:

1. The two Gini correlations between e and ¥ are zero (I,; = I5, = 0), i.e., the model specification

is correct.

2. The two Gini correlations between Y and ¥ are equal (Iyy = [yy),

and

3. The two Gini correlations between Y and e are equal (I'y, = [,,).
(See Yitzhaki and Schechtman (2013) for details).

We note in passing that if the distribution of (¥, e) is bivariate normal, then their sum, Y, is
normally distributed, implying that Y and ¥ are exchangeable up to a linear transformation. In this
case, assumptions 2 and 3 above are met.

Under the three assumptions above, Yitzhaki and Schechtman (2013) define an R%-equivalent
by

2 _ (SN _ 4 _ (6@)?
GR” = (G(Y)) =1 (G(Y))
(Yitzhaki and Schechtman, 2013, equation 7.42).

Note that GR? is the same as GR in Olkin and Yitzhaki (1992), except for the middle equation,
which is not mentioned in Olkin and Yitzhaki (1992). Olkin and Yitzhaki (1992) claim that the
range of GR is [0,1], but as will be shown later by an example, GR is not bounded from below.
Therefore, denoting it as a square is a bit misleading.

If one only assumes that the specification of the model is correct (assumption 1), then additional
terms appear in the decomposition of the square of GMD of Y:

G2(Y) = (DyyG(®@) + Dy, G())G(Y) + G2(¥) + G?(e)
(Yitzhaki and Schechtman, 2013, equation 7.40)

and the general form of GR? is

2 _ (6GM\? _ 1 (6@)? _ DypG(")+Dy.G()
GR _(G(Y)) =1 (G(Y)) G(Y) ’ )

where Dxy represents the difference between two Gini correlations of two variables, X and Y,
namely: Dyy = I'yy — [y,

(Yitzhaki and Schechtman, 2013, equation 7.43).



Note that the third term on the right-hand side of (4) can be positive or negative. This fact can
cause the measure to be negative, as will be shown in the example below. Obviously, there is an
advantage to have a measure with a bounded range, but because the criterion for a good model is
the closeness of the measure to 1, we are less concerned about negative numbers.

Yitzhaki and Schechtman (2013) suggest two additional measures:

cov(Y,F(?) cov(?,F(Y))

l",\—— F" = (5)

Y™ covv,F()Y Y T cov(t,F (D))
(Yitzhaki and Schechtman, 2013, equation 7.44)

We note in passing that in OLS, R? (equation (2)) and the squares of the two Pearson correlations
corr(Y,?) and corr (7,Y) (the equivalents of (5)) are all equal to the square of the correlation
between X and Y.

Mussard and Ndiaye (2018) deal with the multiple regression case and suggest a similar
measure of goodness of fit.

Using Y = ? + e, they start with

__ cov(T.R(M) cov(eR(Y))
T cov(Y,R(Y) | cov(Y,R(Y))

Hence, their suggested measure is

2 _q _ (covlerm)
GRyy =1 (cov(Y,R(Y)))’ :

which is the slope of the regression of ¥ on Y.

Note that this measure is similar to the one in the right-hand side of (5), suggested by Yitzhaki and
Schechtman (2013). The difference is that Mussard and Ndiaye (2018) use GMD of Y in the
denominator, while Yitzhaki and Schechtman (2013) use GMD of Y. Charpentier et al. (2019) deal
with the multiple regression case. They propose a Gini-White test and use Pearson R? in their
Monte Carlo simulations, where the predicted value is obtained by Gini regression. They make
some comparisons between the generalized least squares and the Gini regression and show that a
better power is obtained by Gini-White test compared with the usual White test when outlying
observations contaminate the data.

2.2 Our suggestion

In this section we describe two intuitive suggestions. Unfortunately, our preliminary simulation
study showed that they are not competitive with the existing measures. Moreover, one of them is
not bounded from above by 1. Therefore, their performances are not shown in the extensive
simulation section below (except for an example where the measure exceeds 1 which appears in
Appendix B). However, we think that it is worth mentioning them, as they seem to be natural
competitors.

Intuitively, a natural way to evaluate the goodness of fit is to base it on the difference between
the predicted value (based on the model and the estimation procedure) and the mean of Y. The
rational is: without any information from X, the natural prediction is the mean of Y. The difference
reflects the advantage we get from using X and fitting the model.



In OLS, the partitioning of the sum of squares of Y is well known:

TSS=Y",(Y; = Y)2 =31, (P, - V)2 + ¥ ,(e)?, where ¥, and e, are the predicted values and
residuals obtained by OLS regression, respectively.

That is, the cross term is equal to 0.
Hence, the natural measure of goodness of fit is the ratio

_ 2{;1(?1-—?)2

2
R = o

The first intuitive measure in the case of Gini regression would be to use R?, where ¥ is
calculated by Gini regression. Unfortunately, this measure is not bounded from above by 1, hence
it cannot serve as a good measure. See an example in the simulation section. The next step is to try
to imitate the decomposition of TSS. Unfortunately, when using Gini regression, the partitioning
is not so straight forward.

TSSG = Z?:l(yl - 7)2 = Z?=1(?i - 7)2 + Z?=1(ei)2 + 22?:1(?i - 7)31"
where e; = Y; — ¥; and ¥ is calculated by Gini regression.

In other words, it contains the sum of squares of the residuals, plus two terms that add up to the
contribution of the regression. Therefore, our second suggested measure is

R — 2?:1(?1'_}7)2"'2 Z?:]_(?i_?)ei
g 2?:1(}11'_}7)2

(7

It is easy to see that this measure is bounded from above by 1. We note that the measure can be
negative (as are the measures in (1) and (4)), but as mentioned above, the criterion for a good
model is the closeness (from below) of the measure to 1. Therefore, we are less concerned about
negative numbers. Our preliminary simulation study shows that R, is not a good candidate.
Therefore, it is not included in the simulation section below.

3. Simulation study

An extensive simulation study was conducted in order to study the sensitivity of the above-
mentioned measures to outliers. The measures that are included are: Pearson’s R?, where ¥ is
calculated by OLS, Olkin and Yitzhaki’s GR, GR%y, Iy and T;y. Pearson’s R2, where ¥ is
calculated by Gini regression is not bounded from above by 1, hence it is not included in the study.
The data was generated from a simple linear regression model Y = a + bX + &, where both X and
¢ have normal distributions. In order to study the effect of an outlier, we investigated 6 cases: An
outlier was added at the upper (lower) end of the range of X and around the middle of the range.
In each location, the outlier was added above or below the regression line. For each case we
repeated the generating process K=1000 times and calculated the above-mentioned measures for
each replication. Because the measures are on different scales (some are presented in terms of
squares and some are not, some are in a bounded range and some are not), we chose the criterion
for comparison to be the sensitivity curve, based on K replications. We used Tukey’s sensitivity
curve (Hampel et al., 2011; Tukey, 1970) as follows: Suppose we have an estimator {T;,;n > 1}
and a sample (xq,...,X,—1) of n — 1 observations. Then the sensitivity curve (SC), which is a
translated and rescaled version of the empirical influence function, is defined as



SCr(x) =n[T,(xq, o Xp—1,%X) = T (X1, ooy Xn—1)]s (8)
where x is the outlier. See Hampel et al. (2011), equation 2.1.21 for details.

We now turn to a detailed description of the simulation. In the first step of the simulation we
generated n values (n=20, 50, 100, and 200) of X from a Normal(0, 1) distribution and n values of &
from a Normal(0,0.22) and Normal(0,0.62) distribution. Then, we calculated the dependent
variable according to a linear model: Y = 2 + 3X + €. These n pairs of (X,Y) are used to calculate
the second term of the right-hand side of Equation (8). In the second step we added outliers, one
at a time, to calculate the first term of the right-hand side of Equation (8). We looked at 6 scenarios:
an outlier is added at the left-side of the range of X (two cases: the outlier lies above or below the
line), right side (two cases) and near the middle (two cases). More specifically, since X is
Normal(0,1), we chose 3 values of X: (-2, 0, and 2) which represent the left, middle and right sides
of the range of X, respectively. In order to create a SC for each location, we generated 31 new
values, starting at the point on the line (that is, calculate Y by Y = 2 + 3X, for X = —2,0,2) and
adding (or subtracting) 0,1, 2, ..., 30 to the result. Notice that the first value of each of the resulting
SCs (in which 0 is added or subtracted) represents the case without contamination. For example,
for the bottom left (x=-2) when the outlier is added below the regression line, the outliers for the
SC were {-4 (on the line, to represent the case without contamination), -5, -6, ..., -34}. For each
case we calculated the 5 measures: Pearson’s R?, where ¥ is calculated by OLS, Olkin and
Yitzhaki’s GR, GR%y, Tyy and Ty,. The first and second steps were repeated K=1000 times. Each
point on the SC represents an average of 1000 runs.

Results for sigma=0.2 and sigma=0.6 are similar, hence we will focus on sigma=0.2 from now
on.

The effect of the location of the outlier. As expected, the bottom (below the line) left and
upper (above the line) right locations give similar (mirrored) results due to the symmetry.
Similarly, the upper left and bottom right give similar results. Also, bottom and upper middle are
similar. Hence we will concentrate only on three cases: (a) bottom left, (b) upper left and (c) bottom
middle. Figure 1 illustrates the sensitivity curves for the 5 measures for these cases ((a)-(c)) by
sample size (in order to illustrate the symmetry between the cases, all 6 cases are reported in
appendix A for n=50). The horizontal axis of each plot depicts the value of the outlier ({-4, -5, ...,
-34} in the example above) and the vertical axis depicts the sensitivity as defined in (8), averaged
over 1000 runs. (We ignore the multiplication by # in (8), since it is irrelevant for our comparison
which is based on the same » in each SC).

In general, as can be seen, in all cases Pearson OLS (R?) increases with the size of the outlier
(in absolute value), but the values of the sensitivity curve decrease as n gets larger. (Note the
decreasing (with n) scale on the vertical axes). This is not surprising. Devlin et al. (1975) showed
that the influence function of the classical Pearson correlation is unbounded, proving the lack of
robustness of this measure. Also, as expected, all measures are less sensitive to an outlier as the
sample size increases, because the percent of affected observations decreases. One outlier out of
20 is different from one out of 200.

In case (a) - bottom left, outliers below the regression line, Olkin and Yitzhaki’s GR is affected
by the outliers for n=20, and the effect decreases as n gets larger. The other three measures are
(almost) not affected by the size of the outliers, even for n=20.
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Figure 1. Sensitivity curves for the three cases (on columns (a) bottom left, (b) upper left and

(c) bottom middle), by sample size (n=20, 50, 100, 200)



To summarize, based on our simulations we recommend the use of [j,. One possible
explanation for its superiority is that in this measure Y is taken in its ranks, which in turn diminishes
the effect of the outlier.

For completeness, we list two examples in Appendix B. In example 1, R?, where Y is calculated
by Gini regression (introduced in Section 2.2) is equal to 1.01, and in example 2, GR = —0.13,
GR%y = —0.06 and I'yy, = —0.37. Obviously, it is preferred to have a measure which is bounded
between 0 and 1. Exceeding 1 is not acceptable. However, negative values do not interfere because
we are mainly interested in a good fit, that is, the closer to 1 — the better.

4. Conclusions

Gini regression was first introduced in 1992 by Olkin and Yitzhaki (Olkin and Yitzhaki, 1992).
Since then it has been used by many researchers. The advantage of Gini regression over ordinary
least squares was studied extensively, but to the best of our knowledge, there is no consensus as to
how to evaluate its goodness of fit. There are several suggestions in the literature, but no
comparison between those measures has been published.

In this paper we study (via simulation) the effect of one outlier on the goodness of fit measures
(suggested in Olkin and Yitzhaki’s (1992), Mussard and Ndiaye (2018), and Yitzhaki and
Schechtman (2013)). We start with a simple linear regression model and add outliers, one at a
time, at three locations: left end of the X-range, right end and the middle of the range. At each
location we look at outliers above the line and below it. All together we look at 6 cases. Due to
symmetry, three cases are discussed in detail. In addition, we look at the effect of the sample size
on the results. We start with a small sample (n=20), and increase to n=50, 100 and 200. The
criterion for comparison is the sensitivity curve (Hampel et al., 2011; Tukey, 1970).

As expected, as the sample size gets bigger, the effect of an outlier becomes smaller (because
one outlier out of 20 observations has more effect than one out of 200). It turns out that [, (the
Gini correlation between the Gini regression predictor (¥) and the observed value, Y) is less
sensitive to an outlier than the rest. One possible explanation is that only in this measure, Y appears
only via F(Y) (its cumulative distribution function). Therefore, the outlier appears in this measure
only via its rank, which makes it robust to outliers. We note in passing that the measures suggested
in Olkin and Yitzhaki’s (1992), Mussard and Ndiaye (2018), and the second Gini correlation
suggested in Yitzhaki and Schechtman (2013) can obtain negative values. Obviously, a bounded
measure would be preferred, but because we are mainly interested in finding a good fit (i.e., values
close to 1), negative values do not interfere.
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Appendices

Appendix A - the sensitivity curve for a single outlier at the following 6 locations: (1) bottom
left, (2) upper left, (3) bottom middle, (4) upper middle, (5) bottom right, and (6) upper
right, for n=50

Figure A.1 illustrates the sensitivity curves for the 5 measures, with n=50, for outliers at 6
locations: (1) bottom left, (2) upper left, (3) bottom middle, (4) upper middle, (5) bottom right,
and (6) upper right
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Figure A.1. Sensitivity curves for 6 cases (n=50): (1) bottom left, (2) upper left (3) bottom
middle, (4) upper middle, (5) bottom right, and (6) upper right



Appendix B — Numerical examples
In Table A.1. we list two numerical examples. In example 1, the Pearson-based R? , where Yis

calculated by Gini regression, is equal to 1.01. In example 2, some of the measures are negative:
GR = —0.13, GR%y = —0.06 and Iy, = —0.37.

Table A.1. Two numerical examples

Example 1 Example 2
X y X y
1 -1.309 -3.299 I -0.393 -0.728
2 0815 6.822 2 1.271 5.948
3 -1.112 -3.225 3 0865 3.045
4 0910 5.301 4 -0.095 3.320
5 -0.849 -2.394 5 -0422  0.347
6 -0.243 2.379 6 0355 3418
7 -0.002 0.234 7 0.103  3.494
& -0.634 -0.613 & -0.600 1.349
9 -0.409 0.519 9 -1.084 9.191
10 1.223  7.296 10 0.765  4.550
11 -0.074 2.087 11 -1.221  2.648
12 -1.762 -1.444 120487  3.079
13 0547 5.204 13 0.829  4.545
14 0503 3.824 14 -2.209 -3.566
15 0.191 1.909 15 1242 5242
16 0481 2.204 16 0.717  3.808
17 -0.221 1.061 17 1523  6.976
18 -2.332 -4.416 18 0.110  2.479
19 -0.428 -0.026 19 0.233 -0.814
20 2945 9.150 20 -0.893  1.681

21 2.000 8.000 21 2.000 -22.000



References

Charpentier, A., Ka, N., Mussard, S., & Ndiaye, O. H. (2019). Gini Regressions and
Heteroskedasticity. Econometrics, 7(1), 4.

Croux, C., & Dehon, C. (2010). Influence functions of the Spearman and Kendall correlation
measures. Statistical Methods & Applications, 19(4), 497-515.

Devlin, S. J., Gnanadesikan, R., & Kettenring, J. R. (1975). Robust estimation and outlier detection
with correlation coefficients. Biometrika, 62(3), 531-545.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust statistics: the
approach based on influence functions. John Wiley & Sons.

Lerman, R. I., & Yitzhaki, S. (1984). A note on the calculation and interpretation of the Gini index.
Economics Letters, 15(3—4), 363-368. https://doi.org/10.1016/0165-1765(84)90126-5

Mussard, S., & Nadiaye, O. H. (2018). Vector autoregressive models: a Gini approach. Physica A:
Statistical Mechanics and Its Applications, 492, 1967-1979.

Mussard, S., & Souissi-Benrejab, F. (2019). Gini-PLS Regressions. Journal of Quantitative
Economics, 17(3), 477-512.

Olkin, 1., & Yitzhaki, S. (1992). Gini regression analysis. International Statistical Review, 60,
185-196.

Schechtman, E., & Yitzhaki, S. (1987). A measure of association based on Gini mean difference.
Communications in Statistics-Theory and Methods, 16(1), 207-231.

Tukey, J. W. (1970). Exploratory data analysis: Limited preliminary Ed. Addison-Wesley
Publishing Company.

Yitzhaki, S. (1998). More than a dozen alternative ways of spelling Gini. Research on Economic
Inequality, 8, 13-30.

Yitzhaki, S., & Schechtman, E. (2013). The Gini methodology. Springer.



