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1. Introduction

The best-known and most widely investigated generalization of the Gini coefficient of
income inequality, involving a single-parameter extension of the measure, is due to
Donaldson and Weymark (1980), and related studies by—among others—Kakwani (1980),
Yitzhaki (1983) and Chakravarty (1988). As is well-known, the Gini coefficient is derived
from a weighting of incomes based on the Borda rank-order system, and the generalization of
Gini just referred to essentially relies on raising the income-weights to higher powers: the
power index is the single parameter by means of which the Gini coefficient is generalized to a
class of measures whose ‘distribution-sensitivity’ is an increasing function of the chosen
value for the parameter.

In the present note, we shall consider an alternative generalization of the Gini coefficient
which is based on a parametric variation of the Borda weighting system that relies on the
transformation of rank-orders into corresponding Fibonacci-like sequences of different
orders. The resulting class of extended Ginis is found to consist of inequality measures which
are functions of the various ‘metallic ratios’ of number theory—the universal constants
known as the ‘golden ratio’ ¢, the ‘silver ratio’ ¢, and a succession of other ‘metallic

ratios’. These statements are admittedly cryptic, but should become clearer as we proceed.

2. The Gini Coefficient

In everything that follows, we shall derive inequality indices in terms of the ‘Atkinson-Kolm-
Sen’ (Atkinson, 1970; Kolm, 1969; Sen, 1973) approach involving the use of an ‘equally
distributed equivalent (ede)’ income. But first, some preliminary formalities. The basic unit
of consideration is an income distribution, which is a non-decreasingly ordered n-vector of
individual incomes x = (x,,...x;,...,x, ) in which x; is the income of the i th poorest individual

in a community of n individuals, and x(x) = (1/ ”)Z x, is the mean income. A social welfare
i=1
function W(x)is taken to be a weighted sum of individual incomes in the vector x, with the

weights supposed to reflect the evaluator’s assessment of the social worth of the incomes in
the given distribution. We shall confine attention to weakly egalitarian social welfare
functions, namely those for which the income-weights employed are non-increasing:

W =Y wa,. (1)

where w; is the weight placed on the ith poorest person’s income, and, for all j,k, w; >w,
whenever x; <x, . A system of weights which corresponds to this requirement is the Borda
rank-order system, in which w, = (n+1-i)Vi =1,...,n. The social welfare function with this

weighting system will be called W ¢ :
Wex) => (n+1-i)x,. 2)
im1

Let i° be the equally distributed equivalent income (ede), namely, that level of income

which, when equally distributed, yields the same welfare level as the actual distribution under
review. In the Atkinson-Kolm-Sen welfare-based approach to inequality measurement, an



inequality measure / can be written as the proportionate deviation of the ede income from the
mean income: I =1— 4/ u. Given (2), it can be easily verified that for the welfare function

WO, C ZZ(n+1—i)xi/Z(n+1—i):{ : 2 1)}Z(n+1—i)xi . The inequality index
i=1 i=1 n(n+1) 'S

corresponding to the welfare function W can then be written as

1° =1—[#}i(n+l—i)xi. 3)

n(n+u |75
But then /¢ in Equation (3) is, precisely, the familiar Gini inequality coefficient G .
Notice that, in deriving the Gini index, we have employed a particular transformation of the
elements of the set M, ={L...,i,...,n}: the transformation employed is the rank-order

transformation r, where, for all ie M : r(i) =n+1—i. The question immediately arises: are

there alternative transformations one can consider, which lead to sequences different from the
rank-order sequence? Can such sequences be parametrically varied in some straightforward
way, thus facilitating the possibility of a parametric extension of the Gini coefficient of
inequality? This question is addressed in the subsequent sections of the paper.

3. Metallic Sequences

Given the set of the first n natural numbers M, ={l....,i,...,n}, consider, for all £ =0,1,2,...,
the mapping ¥ on M, such that Fr@ =1, F2)=max[ f*Q),kf*(1)],and for all
ieM,—{1,2}: f*(i)=kf*(i—1)+ f*(i—2). For illustrative purposes, pegging n at 5, Table

1 details the values of the function f “(i) for i=1,2,3,4,5, and for four specified values of
k:k=0,1209.

Table 1: f*(i) for i =1,2,3,4,5, for four specified values of & : k =0,1,2,9.

i 1 2 3 4 5
£03) 1 1 1 1 1
1) 1 1 2 3 5
£23) 1 2 5 12 29
£23) 1 9 82 747 6805

Notice from Table 1 that the set of numbers {f'(i)} is just the well-known Fibonacci
sequence of numbers, the first two of which are 1 and 1 respectively, and any subsequent
number is the sum of the preceding two Fibonacci numbers. The set of numbers { (i)} is

just the well-known Pell sequence of numbers, the first two of which are 1 and 2 respectively,
and any subsequent number is the sum of twice the preceding number and the one preceding
that;..., and so on, down the line. As n goes to infinity, the nth Fibonacci number converges
on a number which is proportional to the nth power of the so-called golden ratio

p=[1+ \/g]/ 2 ~1.618; the nth Pell number converges on a number which is proportional to
the nth power of the so-called silver ratio 6 = 1++/2 ~2.4142 ; and for other sequences we




have corresponding asymptotic convergences on other ‘metallic’ ratios, which are
distinguished irrational mathematical constants. Hence the reference to the f* functions as

generating a class of ‘metallic’ sequences, in each sequence of which numbers are derived
from their immediately preceding numbers by the sort of recursive relations earlier defined.

To proceed further, it helps to reverse the order of the sequences portrayed in Table 1, as is
done in Table 2.

Table 2: f*(n+1—-1i) for i =1,2,3,4,5, for four specified values of & : k =0,1,2,9.

i 1 2 3 4 5
fo(n+1-i) 1 1 1 1 1
fln+1-i) 5 3 2 1 1
frn+1-i) 29 12 5 2 1
fPn+1-i) 6805 747 82 9 1

n+l—i n

Next, for all k and i, let us define the quantities S* (i) = ka (n+1-j),and S* = ZS" ).
j=1 i=1

For the moment, let us just concentrate on k =0. Then it is easy to see, using Table 2 as a

spot reference, that S°1)=5,5°(2)=4,5°3)=3,54)=2,5°(5) =1, and

S =1+2+3+4+5; or, in general, S°Gy=n+1-i,Vi=1,...,n, and

S0 = Z(n +1-i)=n(n+1)/2. Now, given an ordered n-vector of incomes
i=1

X = (x,..X;,....X, ) , let us define a social welfare function W* of order k (k=0,1,2,...) such

that it is a weighted sum of income levels, with the weight wik on the ith poorest person’s

n+l—i
income being NOE ka(n +1-j) Vi=1,...,n. Returning to k=0, and noting that

j=1
S°(i)=n+1-i,Vi=1,...,n, it is immediate that the social welfare function W° is identical to
the social welfare function W defined in Equation (2). Consequently, the Atkinson-Kolm-

Sen inequality measure associated with the welfare function W°, call it 7°, must be identical
to the the inequality measure—which is just the Gini coefficient—associated with the welfare

function W “ . That is to say,
1°=G. )

How does the weighting function change as we move to higher orders of k in the sequence of
welfare functions W*? To see what is involved, consider, for each k =0,12,..., the

normalized set of weights wik =S* @)/ ZS ( J),Vi=1,..,n. For purposes of illustration,
j=1
these weights are derived from Table 2 in Table 3.




In Figures 1(a)-1(d), we plot the normalized weights @ for k =0,1,2,9 . Figure 1(a) suggests

that the normalized weighting function is linear for k =0: the welfare function W°, as we
have seen, leads to the Gini coefficient of inequality. Figures 1(b)-1(d) indicate that for k >1,
the normalized weighting function is strictly convex; and as k increases, the weighting curve
becomes more and more convex. As can be seen from Figure 1(d), drawn for k =9, the curve
already converges on the classical Rawlsian L-shaped curve, that is, on a weighting structure
of (1,0,0,...,0), where all the weight is on the lowest income.

Table 3: The normalized sets of weights @/ =S"(i)/) S*(j),Vi=1,..n, for four
j=l1

specified values of k£ :k =0,1,2,9.

i 1 2 3 4
So(i)EZn:fo(n+1—j) 4 3 2 1 SozziSO(i):
@) ]:SO(,')/SO .3333 2667 2000 | .1333 0667 Zi zlv?) -1
so=3rea-p | LT R EeRse
@! 1:51(1')/51 4615 2692 1539 .0769 .0385 zi @ =1
so=3raa-p| = | P | ° 3 1 52:%152@:
o :52(1‘)/52 .6049 2469 .0988 .0370 0124 zi @’ =1
Sg(i)zif"(nJrl—j) 7644 | 839 92 10 =380 =
@, j:S9 i)/S° .8903 .0977 .0107 .0012 | .00012 Zi:?: 1

It is clear that as k increases, the inequality measure /° becomes more and more distribution-
sensitive. In particular, and as we shall see later, the Gini coefficient—this is a well known
feature of the measure—is not transfer-sensitive: it does not distinguish between transfers at
the lower and upper ends of a distribution. Such sensitivity—on an increasing scale—is a
feature of the class of inequality indices 7° for values of k exceeding 0. As in the case of the
Donaldson-Weymark (1980) generalization of Gini, so too in the present generalization, it is
the distribution-sensitivity of the inequality measure that is being parameterized by the
relevant extensions.




Figure 1: The Graphs of the Normalized Weighting functions @" (i) [k =0,1,2,9]

corresponding to the Numbers in Table 3

Figure 1(a): @’ (i)
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Note: The figures have been generated employing the ChartGo software: https://www.chartgo.com/modify.do .

In what follows, we consider in slightly greater detail the inequality measure /' which, for
obvious reasons, will be called the Fibonacci measure of inequality.

4. The Fibonacci Inequality Coefficient

A preliminary remark: in what follows, we shall be employing certain basic and well-known
facts about the Fibonacci and Pell number sequences. The reader unfamiliar with this
literature is referred to the very helpful text by Koshy (2001).

Given an ordered n-vector of incomes X = (x,,...x;,...,X, ) , the welfare function W'() can be

written as:


https://www.chartgo.com/modify.do

n n+l—i

W0 =38 0x =3 3 f 1 )x,. 5)

=l j=1

Note that f'(n+1—j) is the (n+1-j)h Fibonacci number F(n+1-j), so
n+l—i

Z f'(n+1—j)is the sum of the first (n+1-i) Fibonacci numbers:
j=1

F)+FQ2)+...+ F(n+1—i), which is just F(n+3—1i)—1, a consequence that follows from
the well known fact that the sum of the first p Fibonacci numbers (F(1)+...+ F(p))is
F(p+2)—1. Equation (5) can therefore be written as

Wl(x):i[F(n+3—i)—l]xi:iF(n+3—i)xi—ny. (6)

i=1 i=1

The equally distributed equivalent income—call it 2" --is given by:

i :[iF(n+3—i)x,. —nu]/[iF(n+3—i)—n]- Q)

i=1

But noting that

Zn:F(n+3—i) =FQ3)+..+Fn+2)=(FO)+F2)+..+ F(n+2)—(F()+ FQ2))=F(n+4)-3,
vlv_e can re-write Equation (7) as:

ot = [Z F(n+3—-i)x, —nul]/[F(n+4)—(n+3)]. The inequality index corresponding to the

i=1

welfare function W' is now given by

I'X)=Fx)=1-a"/u =1—[Zn:F(n+3—i)x[ —nul/[F(n+4)—(n+3)]u (8)

i=1

Yet another well-known fact about the Fibonacci sequence is that the ratio of two consecutive
Fibonacci numbers F(i) and F(i—1) converges asymptotically on the ‘golden ratio’
p=[1+ \/g]/ 2, which is the positive root of the quadratic equation x> —x—1=0, and can be
approximated by 1.618; further, in what is known as Binet’s Formula, the ith term of the
Fibonacci sequence, F(i), can be shown to be equal to the quantity [ —(1—¢)']/ J5

which, for ‘large’ values of i can be approximated to @'/ V5. Employing this

approximation, and making the appropriate substitutions in Equation (8) yields the following
asymptotic expression for the Fibonacci inequality measure:

Z¢n+3—ixi . \/gn,u
F~1-H2 .
[p"* —J5(n+3)lu

)

The expression for F in (9) is yet another example of the ubiquitous presence of the golden
ratio in the affairs of the world!



By way of an addendum to this section, I state, without deriving, an expression for the

inequality index corresponding to the welfare function W* for k =2 , which I shall call the
‘Pell Index’, P. [A derivation of this result is available on request.]

| 265 +D3 6" x —dnu
T B+ 1)S" —1) —4nlu

(10)

5. The Lorenz Curve and the Fibonacci Curve

The Lorenz curve is typically defined as the curve obtained by plotting, for each cumulated
share p of the population arranged from poorest to richest, the corresponding income share
q(p) of the poorest pth fraction of the population. However, it can also be defined in terms

of a simple transformation, as the curve obtained by plotting p—¢g(p) against p for all
p €[0,1]. Given an ordered income n-vector X = (x,,...x;,...,x,) with mean u, the typical
ordinate of the Lorenz curve is given by:

L,(x;i/n)= (i/n)—(ij Inu),¥i=0l1,....,n,and £,(x;0)=0. (11)

Jj=1

Letting F (i) stand for the ith Fibonacci number, we now define the Fibonacci curve as one
whose typical ordinate is given by:

F(x;i/n)=Fn+1-i)L,(x;i/n),Vi=0,,....,n. (12)

The coordinates of the Fibonacci curve are then the set of points
{0,0;A/n, F(n)L,);...;(A/n, F(n+1-=i)L;;...;(1,0) }.

By way of a simple numerical example, consider a situation in which n=35 and
x = (10,20,30,40,50) . The Lorenz curve for this distribution is defined by the points (0,0);
(.2,.133); (.4,.2); (.6,.4), (.8,.133); (1,0). From (11), (12) and the coordinates of the Lorenz
curve for the distribution x = (10,20,30,40,50), and noting that
FO)=F2)=1,F3)=2,F(4)=3 and F(5) =5, the Fibonacci curve for the distribution x
in our example can be seen to be given by the points (0,0); (.2,.6667); (.4,.6); (.6,.4);
(.8,.133); (1,0). A typical Fibonacci curve would be an inverted U-curve, commencing at
(0,0), initially rising, peaking, then declining, and terminating at (1,0). The Fibonacci curve
for the distribution x =(10,20,30,40,50) can be drawn as a step function or as a piece-wise

linear function, and the latter representation is provided in Figure 2. Notice that the area
under the Fibonacci curve is just the value of the Fibonacci index of inequality F.

Finally, for all distributions x,y, x will be said to Lorenz-dominate y, written X >, y, if and

only if the Lorenz curve for x lies somewhere below the Lorenz curve for y, and nowhere
above it. Similarly, for all distributions x,y, x will be said to Fibonacci-dominate y, written

X >, Yy, if and only if the Fibonacci curve for x lies somewhere below the Fibonacci curve

for y, and nowhere above it. Since any point on a Fibonacci curve is just a positive multiple
of the corresponding point on the Lorenz curve, it follows that for all distributions x.y,



X >, y will hold if and only if x>, y holds. Whenever these dominance relations hold for
any X vis-a-vis any y, we can assert that there is unambiguously less inequality in X than in y.

Figure 2: A ‘piece-wise’ linear Fibonacci curve for the S-distribution (10,20,30,40,50)
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Note: The graph has been generated employing the GoChart software: https://www.chartgo.com/modify.do .

6. Some Properties of the Fibonacci Index

The commonly invoked axioms for inequality measures are well-enough known not to
require elaborate treatment. The basic axioms are those of symmetry (the requirement that the
measure does not depend on the personal identities of income-recipients); scale-invariance
(the requirement that the measure be mean-independent); replication-invariance (the
requirement that the measure be invariant with respect to population replications); and, most
fundamentally, the Pigou-Dalton transfer axiom (the requirement that, other things equal, a
rank-preserving progressive transfer of income should cause inequality to decline). The Gini
coefficient of inequality satisfies all four of these axioms as does the Fibonacci index.

To see that F satisfies the symmetry axiom, note that it is constructed from an ordered
income distribution; since the ordering according to income levels is independent of the
personal identities of the income-recipients, the resulting index is also invariant with respect
to any permutation of incomes across individuals.

If all incomes in a distribution x are uniformly scaled up or down by any positive scalar p,

> 0" "x, —Snulp
then one can see from Equation (9) that F(px) ~1-—=" " = F(x), that is,
[p"* =~/5(n+3)lpu

F satisfies scale-invariance.

Further, as noted in the preceding section, a typical ordinate of the Fibonacci curve is a
positive multiple of the corresponding ordinate of the Lorenz curve:


https://www.chartgo.com/modify.do

F(xsi/n)y=Fm+1-i)L,(x;i/n),Vi=0,1,...,n. It is well known that the Lorenz curve
remains unchanged with any k-fold replication of the underlying income distribution, and
therefore this must be true for the Fibonacci curve as well; and since the Fibonacci index is
just the area under the Fibonacci curve, F is a replication-invariant inequality measure.

That F satisfies the Pigou-Dalton transfer axiom is evident from the fact that the income-
weights in the underlying welfare function W'(.) unlike G, decline with income.

Finally, F,unlike G, is transfer-sensitive, that is, it satisfies the property that, other things
equal, the reduction in inequality following on a progressive rank-preserving transfer is
greater the lower down the income distribution the transfer occurs. There are two ways of
giving expression to this requirement, as discussed by Foster (1985), and captured in the
following two axioms.

Tansfer-Sensitivity-1 (TS-1) requires that, other things equal, the reduction in inequality from
a progressive transfer of a fixed amount of income between two persons a fixed number of
incomes apart should be greater the poorer the pair of individuals involved in the transfer.

Tansfer-Sensitivity-2 (TS-2) requires the same outcome for pairs of individuals a fixed income
apart.

For our purposes, I shall combine these two properties into a single property of Transfer-
Sensitivity which is weaker than either of TS-1 or TS-2:

Transfer-Sensitivity (TS) requires that, other things equal, the reduction in inequality from a
progressive transfer of a fixed amount of income between two persons who are both a fixed
number of incomes and a fixed income apart should be greater the poorer the pair of
individuals involved in the transfer.

That the Fibonacci index satisfies the TS axiom is evident from the fact that the income-
weighting function of the underlying welfare function W'(.) is not only declining but also

strictly convex. [A more elaborate demonstration of the transfer-sensitivity proposition is
available from the author on request.]

The class of ‘metallic’ inequality indices {/*} becomes more and more distributionally

sensitive as k increases; and in this regard, the {I"} series mimics the S-Gini series of
Donaldson and Weymark (1980). The principal point of departure of F from G is that the
former, unlike the latter, satisfies the property of Transfer-Sensitivity. It should be admitted
here that the Fibonacci index, and other higher-order ‘metallic’ indices, are not the only
‘rank-order-based’ inequality measures that satisfy transfer-sensitivity: this is true also of
measures such as the Bonferroni (1930) and De Vergottini (1940) indices. That is to say, a
measure such as the Fibonacci index has properties shared with other measures: it is an
addition to an existing stock, rather than a unique replacement of other extant measures.

7. Concluding Observations

This note has been concerned to provide an alternative extension to the by now standard
extension of the Gini coefficient in terms of the single-parameter ‘S-Ginis’ of Donaldson and
Weymark (1980), Kakwani (1980), Yitzhaki (1983), Chakravarty (1988) and others. (See
also Chameni, 2006, on the class of ‘@ — Ginis’.) The Gini coefficient is constructed from the
Borda rank-order weighting system in which the weight on the income of the ith poorest



person in an n-person non-decreasingly ordered income vector is given by r(i) = (n+1-1i).
While the S-Gini generalization relies on transforming Gini’s r(i) income-weights via a
power function, the route to generalization explored in the present note is via the ‘metallic’
number sequences of Fibonacci, Pell, and similar sequences generated by a generalized
recursive relationship between each number in the sequence and its two immediately
preceding numbers. In the specific case of the Fibonacci index, the Borda rank-order weight
r(i) is replaced by the Fibonacci number corresponding to r(i). The effect of the
generalization, as in the case of the S-Gini generalization, is to produce a family of inequality
indices of increasing levels of distribution-sensitivity, ranging from the Gini-coefficient,
which is not transfer-sensitive, to a Rawlsian measure which ranks distributions solely
according to the income share of the poorest individual. A special, transfer-sensitive member
of this family of indices, based on an income-weighting scheme inspired by the Fibonacci
sequence, has been derived, and called the Fibonacci index.

Finally, it is as well to clarify that no claim is advanced as to any special virtues that may be
possessed by the ‘metallic sequence generalization’ proposed in this note in relation to other
available generalizations. Indeed, it is even possible that the Fibonacci and other ‘higher-
order’ measures reflect degrees of inequality-aversion that may not appeal to all practitioners.
What has been proposed, as stated earlier, is in the spirit of introducing a new member to a
club, as eligible for entry, but by no means as deserving preferential treatment. In the end,
this note is of interest, perhaps, primarily in the way of a curiosum featuring the ‘golden
ratio’ (and other ‘metallic’ ratios) as playing a part in the measurement of inequality, as in so
many other aspects of the worlds of both nature and artefact.
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