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Abstract
This note provides a characterization of strategy-proofness in discrete resource allocation problems. Based on it, we

establish a theorem that has the following two corollaries: (i) the student-proposing deferred-acceptance (DA) rule for

college admission problems is strategy-proof for students and (ii) the top-trading cycles (TTC) rule for housing

markets is strategy-proof.
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1 Introduction

In this paper, we provide a necessary and sufficient condition for a rule in discrete resource

allocation problems to be strategy-proof for a fixed group of the market participants. The

condition is a combination of three invariance properties under preference transformation.

The characterization enable us to provide an elementary and transparent proof for strategy-

proofness of one-sided optimal core rules for a class of generalized indivisible goods allocation

problems (Sönmez, 1999). Since our model includes both college admission problems and

housing markets, the theorem implies both (i) strategy-proofness for students of the student-

proposing deferred-acceptance (DA) rule and (ii) strategy-proofness of the top-trading cycles

(TTC) rule.1 Moreover, the proof technique also works to prove strategy-proofness of the

cumulative-offer process rule for matching with contracts under weakened substitutes con-

ditions (Hatfield and Kojima, 2010).

2 Model and a characterization of strategy-proofness

We describe a version of the model in Sönmez (1999).2 A generalized indivisible goods

allocation problem (GIGAP) is a 4-tuple (N , ω,Af , R): N = {1, . . . , n} denotes the set of

agents. For each i ∈ N , let ω(i) be the object initially owned by i. For each S ⊆ N ,

let ω(S) := {ω(i)|i ∈ S}. An allocation is a function from N to 2ω(N ). Throughout the

paper, fix a non-empty subset of agents N ⊆ N such that each member of N is necessarily

unit-demand.3 Let A := {a : N → 2ω(N ) | ∀i ∈ N, |a(i)| = 1}. For each a ∈ A, we call

a(i) the assignment of i ∈ N at a. We abuse the notation a(i) for i ∈ N to denote both a

singleton and the object contained in it, interchangably. The set of feasible allocations, Af ,

is a subset of A. We assume that Af contains an allocation such that each i ∈ N receives

her endowment ω(i). For each i ∈ N , letting Xi := {a(i) | a ∈ Af}, let Ri be the set

of complete, transitive and anti-symmetric binary relations on Xi.
4 Let Di ⊆ Ri be the

1Dubins and Freedman (1981) and Roth (1982a) first show that the men-proposing (resp. women-
proposing) DA rule is strategy-proof for men (resp. women). Gale and Sotomayor (1985) and Hatfield
and Milgrom (2005) provide an alternative proof for this result. The corresponding result for the TTC rule
in housing market is first proved by Roth (1982b).

2The difference is summarized as follows. First, our model excludes externality and indifference in agents’
preferences. Thus, our setup is a special case of Sönmez’s model in this line. On the other hand, our model
admits that some agents consume multiple units of objects while the Sönmez’s setup focuses on the one-to-
one cases. The main target of our model is college admission problems and housing markets described in
Remark 1.

3In concrete problems, an interpretation is given to N . For example, N denotes the set of students in
college admission problems. In housing markets, N(= N ) denotes the set of all agents in the economy.

4A binary relation Ri on Xi is complete if for each {x, y} ⊆ Xi, x Ri y or y Ri x. A binary relation Ri

on Xi is transitive if for each {x, y, z} ⊆ Xi, [x Ri y and y Ri z] ⇒ x Ri z. A binary relation Ri on Xi is



Figure 1: Four types of preference transformation

Note: In each box, R′

i denotes the (a) transformed preference of Ri at x0. The type of transformation is
indicated on the upper left corner of the box.

set of feasible preference relations of i. We assume that Di = Ri for each i ∈ N . Letting

D :=
∏

i∈N Di, the symbol R denotes a preference profile belonging to D. For notational

simplicity, given R = (R1, . . . , Rn) ∈ D and i ∈ N , it is convenient to use the notation R−i

to represent the (n− 1)-fold preference profile obtained by deleting Ri from R. Without any

confusion, we use the notation (Ri, R−i) to denote R even when i ̸= 1. For each i ∈ N , each

x ∈ Xi, and each Ri ∈ Di, let UC(Ri, x) := {y ∈ Xi|y Ri x}, SUC(Ri, x) := UC(Ri, x)\{x}

and rRi
(x) := |UC(Ri, x)|.

Hereafter, we fix N , ω and Af . Thus a GIGAP, or a problem for short, is identified with

a preference profile R ∈ D.

Remark 1. A college admission problem is a special case of GIGAPs. Let S and C be

disjoint sets of students and colleges. Namely, the set of agents in this problem is S∪C. Let

ω(i) := i for each i ∈ S ∪C. Assume that a capacity vector (qc)c∈C ∈ Z
C
++ is given. Assume

also that for each c ∈ C, the set of feasible preferences of college c consists of responsive

preferences on 2S (Roth and Sotomayor, 1990). Let Af := {a ∈ A|∀(s, c) ∈ S × C, a(s) ∈

C ∪ {s} and a(c) ∈ 2S with |a(c)| ≤ qc and a(s) = c ⇔ a(c) ∋ s}. Obviously, any college

admission problem can be represented by the above specification along with a preference

profile. A housing market is also a special case of GIGAPs. Letting ω(i) := i for each

i ∈ N , assume that N = N . Let Af = A. Obviously, any housing market can be represented

by the above specification along with a preference profile. ♢

A rule is a function from D to Af . Our generic notation for a rule is ϕ. Strategy-

proofness for N requires that no agent in N can profitably manipulate a rule by misreporting

her preferences. Formally, a rule ϕ is strategy-proof for N if for each i ∈ N , each

(Ri, R−i) ∈ D, and each R′
i ∈ Di, ϕi(Ri, R−i) Ri ϕi(R

′
i, R−i). To provide a characterization

anti-symmetric if for each {x, y} ⊆ Xi, [x Ri y and y Ri x] ⇒ x = y.
Given i ∈ N and a preference relation Ri, the anti-symmetric part of Ri is denoted as Pi.



Figure 2: Proof of Remark 2.

of this property, we define four types of preference transformation. Let i ∈ N,Ri ∈ Di and

x0 ∈ Xi.

• Assume that rRi
(x0) ≥ 2. Let x1 ∈ Xi be such that rRi

(x1) = rRi
(x0) − 1. The

preference R′
i ∈ Di satisfying the following condition is called the single-upgrade

(SU) of Ri at x0: For each x ∈ Xi, rR′

i
(x) = rRi

(x) − 1 if x = x0, rR′

i
(x) =

rRi
(x) + 1 if x = x1, and rR′

i
(x) = rRi

(x) if x ̸∈ {x0, x1}.

• Assume that rRi
(x0) ≥ 3. Let x1 ∈ Xi and x2 ∈ Xi be such that rRi

(x1) = rRi
(x0)− 1

and rRi
(x2) = rRi

(x0) − 2. The preference R′
i ∈ Di satisfying the following condition

is called the upper-transposition (UT) of Ri at x0: For each x ∈ Xi, rR′

i
(x) =

rRi
(x)−1 if x = x1, rR′

i
(x) = rRi

(x)+1 if x = x2, and rR′

i
(x) = rRi

(x) if x ̸∈ {x1, x2}.

• Assume that rRi
(x0) ≥ 3. Let x1 ∈ Xi and x2 ∈ Xi be such that rRi

(x1) = rRi
(x0)− 1

and rRi
(x2) = rRi

(x0)− 2. The preference R′
i ∈ Di satisfying the following condition is

called the pairwise-upgrade (PU) of Ri at x0: For each x ∈ Xi, rR′

i
(x) = rRi

(x)−

1 if x ∈ {x0, x1}, rR′

i
(x) = rRi

(x)+2 if x = x2, and rR′

i
(x) = rRi

(x) if x ̸∈ {x0, x1, x2}.

• A preference R′
i ∈ Di is called a lower-shuffle (LS) of Ri at x0 if for each x ∈

UC(Ri, x0), rR′

i
(x) = rRi

(x).

We say that a rule ϕ satisfies the single-upgrade invariance (SUI) (resp. upper-

transposition invariance (UTI), pairwise-upgrade invariance (PUI), lower-shuffle

invariance (LSI)) on N if for each i ∈ N and each (Ri, R−i) ∈ D, the assignment of i

does not change when she changes her reporting to the SU (resp. the UT, the PU, a LS)

of Ri at ϕi(Ri, R−i). Note that SU, UT, PU and LS are special cases of Maskin monotonic

transformation (Maskin, 1999). Thus, so-called Maskin monotonicity implies SUI, UTI,

PUI and LSI. However, the converse is not true in general because our properties require

invariance of the individual assignment while Maskin monotonicity does the allocation.

Note that the PU at the selected object is obtained by the combination of the UT and

SU at the same object (Figure 2).



Figure 3: Proof of Theorem 1.

Note: Fixing other agents’ reporting R−i, the assignment for i is indicated by the circled object. In step
1, successive applications of SU to Ri leads to R′

i. Then, in step 2, successive applications of PU to R′

i

leads to R′′

i . In step 3, successive applications of SU to Ri leads to R
′′

i . Since R′′

i is a LS of R
′′

i at y,

ϕi(R
′′

i , R−i) = ϕi(R
′′

i , R−i), a contradiction.

Remark 2. Suppose that a rule ϕ satisfies SUI and UTI on N . Then, ϕ satisfies PUI on N .

Theorem 1. A rule ϕ is strategy-proof for N if and only if ϕ satisfies SUI, UTI and LSI

on N .

Proof. We only show the sufficiency part. Suppose to the contrary that there are i ∈ N ,

(Ri, R−i) ∈ D and Ri ∈ Di such that ϕi(Ri, R−i) Pi ϕi(Ri, R−i). Let x := ϕi(Ri, R−i) and

y := ϕi(Ri, R−i). Notice that x ̸= y.

Step 1. If rRi
(y) = rRi

(x)−1, let R′
i := Ri. Otherwise, apply SU to Ri at x succesively

until x becomes the immediate successor of y. Then, define R′
i as the preference found

at the very last step. Since ϕ satisfies SUI on N , ϕi(R
′
i, R−i) = x.

Step 2. If rR′

i
(y) = 1, let R′′

i := R′
i. Otherwise, apply PU to R′

i at x succesively until y

becomes the most preferred object. Then, define R′′
i as the preference found at the very

last step. Since ϕ satisfies PUI on N (∵ Remark 2), ϕi(R
′′
i , R−i) = x.

Step 3. If rRi
(y) = 1, let R

′′

i := Ri. Otherwise, apply SU to Ri at y succesively until y

becomes the most preferred object. Then, define R
′′

i as the preference found at the very

last step. Since ϕ satisfies SUI on N , ϕi(R
′′

i , R−i) = y.

Note that R′′
i is a LS of R

′′

i at y. Since ϕ satisfies LSI on N , x = ϕi(R
′′
i , R−i) = ϕi(R

′′

i , R−i) =

y, a contradiction.

To demonstrate the usefulness of Theorem 1, let us consider a rule in housing markets

which is a variant of the so-called “priority rule”. By utilizing the characterization, we show

that the rule is strategy-proof.



Example 1. Suppose that n ≥ 3. For each R ∈ D, the rule ϕ selects the allocation

obtained by the following procedure with n steps. In the first step, let ϕ1(R) := ω(1). For

t ∈ {2, . . . , n}, let

ϕt(R) := max
Rt

ω(N)\{ϕ1(R), ϕ2(R), . . . , ϕt−1(R)} if ω(2) P1 ω(n), and

ϕn−t+2(R) := max
Rn−t+2

ω(N)\{ϕ1(R), ϕn(R), . . . , ϕn−t+3(R)} if ω(n) P1 ω(2).

In words, the rule always assigns ω(1) to agent 1 in the first step. Agent 1’s preference for

{ω(2), ω(n)} plays the switch role in the later steps. If ω(2) P1 ω(n), agents 2, . . . , n choose

their assignments one by one from the remaining objects in this order. On the other hand,

if ω(n) P1 ω(2), agents 2, . . . , n choose their assignments one by one from the remaining

objects in the reverse order.

To prove the strategy-proofness of ϕ, we need to show that ϕ satisfies SUI, UTI and LSI.

Let R ∈ D and i ∈ N be arbitrary. Let R′
i ∈ R be one of the SU, UT or LS of Ri at ϕi(R).

First, suppose that i ∈ N\{1}. Since the preference change of agent i does not affect the

objects i can choose, it is clear that the best object under R′
i, which is one of the SU, UT

or LS of Ri, remains the same. Thus, ϕi(R
′
i, R−i) = ϕi(R). Finally, suppose that i = 1.

Since i = 1 always receives ω(1), the SU, UT and LS of R1 at ϕ1(R) do not change agent

1’s assignment (although UT and LS may change other agents’ assignments). ♢

Note that Theorem 1 is also useful when we show a rule is not strategy-proof. For

example, the Boston mechanism in school choice problem (Abdulkadiroğlu and Sönmez,

2003) is not strategy-proof because it does not satisfy UTI. Moreover, the Japanese deceased-

donor lung allocation rule (Anno and Kurino, 2017) is not strategy-proof because it does not

satisfy LSI.

3 Strategy-proofness for students of the student-proposing

DA rule and strategy-proofness of the TTC rule

As an application of Theorem 1, we prove that N -optimal core rules for GIGAPs are strategy-

proof for N . This result implies both (i) strategy-proofness for students of the student-

proposing DA rule and (ii) strategy-proofness of the TTC rule. Let R ∈ D. An allocation

a ∈ Af is blocked at R by a coalition S ∈ 2N\{∅} via an allocation b ∈ Af if (i) b(S) ⊆

ω(S), (ii) b(i) Ri a(i) for each i ∈ S, and (iii) b(i) Pi a(i) for some i ∈ S. An allocation

a ∈ Af belongs to the core at R, written as a ∈ C(R), if it is not blocked at R by any

coalition via any allocation. Letting RN ∈
∏

i∈N Di, the common preference of N -agents,



Figure 4: For the last part of the proof of Claim 2 in Lemma 1.

written as ≥RN
, is defined as follows: For each {a, a′} ⊆ Af , a ≥RN

a′ if and only if

a(i) Ri a
′(i) for all i ∈ N . Note that ≥RN

is a reflexive, anti-symmetric and transitive,5 but

not necessarily complete binary relation on Af .

Assumption 1. [Existence of N-optimal core allocations] ∀R = (RN , R−N) ∈ D, ∃a ∈

C(R) s.t. ∀a′ ∈ C(R), a ≥RN
a′.

Note that every N -optimal core allocation gives the same assignment for N -agents.6 We

call a rule that assigns an N -optimal core allocation for each R ∈ D an N-optimal core

(NOC) rule.

Assumption 2. [A version of rural hospital theorem] ∀R ∈ D, ∀{a, a′} ⊆ C(R), ∀i ∈

N, [a(i) = ω(i) ⇔ a′(i) = ω(i)].

Under Assumption 1 and 2, we show the following theorem.7 A proof is given after we

prove two lemmas.

Theorem 2. Every NOC rule is strategy-proof for N .

Lemma 1. Every NOC rule satisfies SUI and LSI on N .

Proof. Let ϕ be an NOC rule. Let i ∈ N , R = (Ri, R−i) ∈ D and a := ϕ(R). Let R′
i ∈ Di be

the SU or a LS of Ri at a(i). Let R′ := (R′
i, R−i) and a′ := ϕ(R′). Suppose to the contrary

that a′(i) ̸= a(i).
5This is a direct consequence of our setting where each agent in N has a complete, transitive and anti-

symmetric preference.
6This is because ≥RN

is anti-symmetric. Note that N -optimal core allocation is unique if Af consists of
allocations that exclude a match between (N\N)-agents. College admission problems and housing markets
are included in this class.

7A closely related paper by Takamiya (2003) establishes that any selection from the core is coalition
strategy-proof under an assumption, called essentially single-valuedness (ESV) of the core, that requires
that all core allocations be indifferent for all agents. Note that, in our setting with strict preferences, ESV
of the core combined with the existence of a selection from the core implies Assumption 1 and 2. Since
Takamiya’s setting includes indifference and externalities in agents’ preferences, his theorem and ours do not
imply each other.



Figure 5: The construction of Rw and R
′

w in the proof of Lemma 2.

Claim 1. a ∈ C(R′). Suppose not. Then, there is S ⊆ N that blocks a at R′ via b ∈ Af .

Since the only difference between R and R′ is i’s preference, i must be a member of S who

exibits b(i) P ′
i a(i). Since SUC(R′

i, a(i)) ⊆ SUC(Ri, a(i)), b(i) Pi a(i). This implies that S

blocks a at R via b, i.e., a ̸∈ C(R), a contradiction. This completes the proof of Claim 1.

By Claim 1, {a, a′} ⊆ C(R′). Since ϕ is an NOC rule, a′(i) R′
i a(i). Thus a′(i) P ′

i a(i).

Claim 2. a′ ∈ C(R). Suppose not. Then, there is S ⊆ N that blocks a′ at R via b ∈ Af .

Similar to Claim 1, i exibits b(i) Pi a
′(i). Since R′

i is either the SU or a LS of Ri at a(i),

the preference between b(i) and a′(i) is preserved, i.e., b(i) P ′
i a

′(i) (See Figure 4).8 Thus, S

blocks a′ at R′ via b, i.e., a′ ̸∈ C(R′), a contradiction. This completes the proof of Claim 2.

By Claim 2, {a, a′} ⊆ C(R). Since ϕ is an NOC rule, a(i) Ri a′(i). On the other

hand, a′(i) P ′
i a(i) and SUC(R′

i, a(i)) ⊆ SUC(Ri, a(i)) together imply that a′(i) Pi a(i), a

contradiction.

Lemma 2. Let ϕ be an NOC rule. Let i ∈ N,R = (Ri, R−i) ∈ D and a := ϕ(R). Let

x ∈ Xi be such that rRi
(x) = rRi

(a(i)) + 1. Then, for the SU of Ri at x, denoted as R′
i,

ϕi(R
′
i, R−i) ∈ {a(i), x}.

Proof. Let R′ := (R′
i, R−i) and a′ := ϕ(R′). Suppose to the contrary that a′(i) ̸∈ {a(i), x}.

First note that a(i) P ′
i a′(i).9 Thus we have x Pi a

′(i) Ri ω(i) and a(i) P ′
i a′(i) R′

i ω(i).

Define Ri (resp. R
′

i) by upgrading ω(i) to be the immediate successor of x (resp. a(i))

at Ri (resp. R′
i) without affecting the preferences between other objects (Figure 5). Let

R := (Ri, R−i), R
′
:= (R

′

i, R−i) and a′ := ϕ(R
′
).

Claim 1.ϕi(R) = a(i).Since Ri is a LS of Ri at a(i), ϕi(R) = ϕi(R) by Lemma 1.This com-

pletes the proof of Claim 1.

Claim 2. a′(i) = ω(i). Suppose to the contrary that a′(i) P
′

i ω(i).10 Note that a′(i) P
′

i

8Since a′(i) P ′

i a(i), a
′(i) Pi a(i). Thus, b(i) and a′(i) do not move at the transformation from Ri to R′

i.
9If this is not true, a′(i) P ′

i x. However, in this case, Ri is a LS of R′

i at a′(i). Thus, a(i) = a′(i) by
Lemma 1, a contradiction.

10Since ϕ is an NOC rule, a′ ∈ C(R
′

i, R−i). Thus, a′(i) R
′

i ω(i).



Figure 6: The preference relations Ri and R′
i in the proof of Theorem 2.

ω(i) R
′

i a
′(i).11 This implies that a′(i) P ′

i a
′(i) since the only difference between R′

i and R
′

i is

the position of ω(i). On the other hand, a′ ∈ C(R′). This contradicts that a′ is an N -optimal

core allocation at R′. This completes the proof of Claim 2.

Claim 3. a′ ∈ C(R). Suppose to the contrary that a′ ̸∈ C(Ri). Then, there is S ⊆ N that

blocks a′ at R via b ∈ Af . Since the only difference between R and R
′
is i’s preference,

i ∈ S exibits b(i) P i a
′(i). By Claim 2, a′(i) = ω(i). As SUC(Ri, ω(i)) ⊆ SUC(R

′

i, ω(i)),

b(i) P
′

i ω(i) = a′(i). This implies a′ ̸∈ C(R
′
), a contradiction. This completes the proof of

Claim 3.

Now we complete the proof of Lemma 2. By Claim 1, the assignment of i at ϕ(R) ∈ C(R)

is a(i) ̸= ω(i). On the other hand, by Claim 2 and 3, the assignment of i at a′ ∈ C(R) is

a′(i) = ω(i). This contradicts Assumption 2.

Proof of Theorem 2. Let ϕ be an NOC rule. We show that ϕ satisfies UTI on N . Let

i ∈ N and R = (Ri, R−i) ∈ D. Letting a := ϕ(R), let R′
i ∈ Di be the UT of Ri at a(i).

Let R′ := (R′
i, R−i) and a′ := ϕ(R′). Let x, y ∈ Xi be such that rRi

(x) = rRi
(a(i)) − 1

and rRi
(y) = rRi

(a(i)) − 2. Suppose to the contrary that a′(i) ̸= a(i). We first show that

a′(i) = x through the following three claims.

Claim 1. x R′
i a

′(i). If a′(i) P ′
i x, a′(i) = a(i) (∵ Ri is a LS of R′

i at a′(i)), a contradiction.

This completes the proof of Claim 1.

Claim 2. a′(i) ̸= y.If a′(i) = y, a′(i) = a(i) (∵ Ri is the SU of R′
i at a′(i)), a contradiction.

This completes the proof of Claim 2.

Claim 3. a′(i) R′
i a(i). Suppose to the contrary that a(i) P ′

i a′(i). Since a′ is an NOC al-

location at R′, a ̸∈ C(R′). Thus, there exists S ⊆ N that blocks a at R′ via b ∈ Af .

Since the only difference between R and R′ is i’s preference, i ∈ S and b(i) P ′
i a(i). Since

SUC(Ri, a(i)) = SUC(R′
i, a(i)), b(i) Pi a(i). Thus a ̸∈ C(R), a contradiction. This com-

pletes the proof of Claim 3.

11a(i) P ′

i a′(i) and the construction of R
′

i together imply a(i) P
′

i a
′(i). Note that ω(i) is the best object

at R
′

i among the objects worse than a(i). Thus, ω(i) R
′

i a
′(i).



Since a′(i) ̸= a(i), Claim 1,2 and 3 imply that the remaining possibility is a′(i) = x, i.e.,

ϕi(R
′
i, R−i) = x. Noting that Ri is the SU of R′

i at y, ϕi(Ri, R−i) ∈ {x, y} (∵ Lemma 2).

This contradicts that a(i) ̸∈ {x, y}.

Corollary 1. The student-proposing deferred-acceptance rule for college admission problems

is strategy-proof for students.

Proof. Theorem 2 in Gale and Shapley (1962) shows that the student-proposing DA al-

gorithm hits the student-optimal “stable” matching. Since the set of stable matchings in

college admission problems coincides with the core by Proposition 5.36 in Roth and So-

tomayor (1990), Assumption 1 is satisfied. Gale and Sotomayor (1985) provide a brief proof

of Assumption 2 in college admission problems.

Corollary 2. The top-trading cycles rule for housing markets is strategy-proof for N .

Proof. Roth and Postlewaite (1977) provide a brief proof for the uniqueness of the core

allocation in housing markets. This fact implies that Assumption 1 and 2 are satisfied in

housing markets. Note that Shapley and Scarf (1974) point out that Gale’s TTC rule hits

the unique core allocation for each housing market.

4 Conclusion

In this paper, we characterize strategy-proofness for unit-demand agents with three invari-

ance properties under preference transformation (Theorem 1). Utilizing it, we gave an el-

ementary and transparent proof for strategy-proofness for N of N -optimal core rules for

GIGAPs (Theorem 2). Consequently, both (i) strategy-proofness for students of the student-

proposing DA rule for college admission problems and (ii) strategy-proofness of the TTC rule

for housing markets are obtained. Before concluding the paper, we point out that the iden-

tical argument works to establish strategy-proofness of the worker-optimal stable rule, also

known as the cumulative-offer process rule, for matching with contracts under weakened

substitutes conditions. A detailed description for this topic is found in the working paper

version (Anno and Takahashi, 2020).
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