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Abstract

The one-parameter family of S-Gini indices is the most representative of generalized Gini indices. This paper proposes
a variant of the S-Gini index, called the level-adjusted S-Gini index (abbreviated as the aS-Gini index), together with its
complementary one-parameter index, called the complementary level-adjusted S-Gini index (caS-Gini index). The
relation of the new indices to the original index corresponds to that of the generalized entropy (GE) index to the
Atkinson index, in a sense. The complementary index is introduced to overcome an issue arising from the failure of the
aS-Gini index to satisfy some properties exhibited by the GE index. The combination of the aS-Gini and caS-Gini
indices enables us to measure the extent of inequality in size distributions containing small portions of negative values,
such as net wealth distributions, by different levels of sensitivity to higher values than to lower values. The caS-Gini
index, as well as the S-Gini and aS-Gini indices, is also a generalization of the standard Gini index because the index is
geometrically expressed as the area of a figure enclosed by a transformed egalitarian curve and a transformed Lorenz
curve with a constant multiplier. For a specific parameter value, its expression coincides with the well-known
geometrical expression of the standard Gini index.

Citation: Masato Okamoto, (2022) "Level-adjusted S-Gini index and its complementary index as a pair of sensitivity-adjustable inequality
measures", Economics Bulletin, Volume 42 Issue 1 pages 1-16.

Contact: Masato Okamoto - m okamoto@mbfnifty.com

Submiitted: January 06, 2022. Published: February 20, 2022.



1. Desirable properties of sensitivity-adjustable relative inequality
indices

The S-Gini index proposed by Kakwani (1980), Donaldson and Weymark (1980, 1983) and

Yitzhaki (1983) is, like the Atkinson index, able to measure the extent of inequality under

different inequality aversions by tuning a parameter value. However, there is also a need for

measuring inequality with a different sensitivity to higher values than to lower values, i.e., a

need for sensitivity-adjustable inequality indices, depending on users’ interests in inequality in

higher and lower classes; c.f., Subramanian (2010, 2015, 2019). The generalized entropy (GE)
index is used for this reason, despite its order equivalency to the Atkinson index. As the GE
index is inapplicable to distributions containing negative values, it would be useful to
investigate sensitivity-adjustable relative inequality indices for such distributions.

I consider that the following properties are desirable for a one-parameter family of relative
inequality indices as a family of sensitivity-adjustable indices:

A: For a distribution with a heavier left/right tail relative to the right/left tail, the index value
monotonically decreases/increases as the parameter value goes in a certain direction.

B: When the left/right tail becomes heavier, (the index exhibits an increase, and) the marginal
increase rate monotonically falls/rises as the parameter value goes in the same direction as
that in A, irrespective of the heaviness of both tails.

The fulfilment of A and B can be interpreted as that the relative sensitivity to higher/lower

values weaken/strengthen as the parameter goes in the direction in A. The family of GE indices

practically satisfies both properties at least for a certain class of distributions such as the Pareto
and reciprocal Pareto distribution (or, equivalently, the power-function distribution); in contrast,
the family of S-Gini indices fails to satisfy both properties, as shown in subsequent sections.

To overcome this failure, this paper proposes alternative properties for a pair of one-parameter

families of relative inequality indices with a common parameter: one (the main index) is

sensitive to higher values, and the other (the complementary index) is sensitive to lower values.

C: For the base parameter value, both indices coincide.

D: For a distribution with a heavier left/right tail relative to the right/left tail, 1) the main index
is smaller/larger than the complementary index except for the base parameter value, and ii)
the ratio of the main index to the complementary index monotonically decreases/increases
as the parameter value moves far from the base parameter value.

E: When the left/right tail becomes heavier, (both indices exhibit increases,) 1) the marginal



increase rate of the former is lower/higher than that of the latter except for the base
parameter value, and i1) the marginal increase rate of the former relative to that of the latter
monotonically falls/rises as the parameter moves far from the base value, irrespective of the
heaviness of both tails.
The fulfilment of D and E can be interpreted as that the sensitivity of the main index to
lower/higher values weaken/strengthen relative to that of the complementary index as the
parameter value moves far from the base value. Considering analytical tractability, this paper
employs the Pareto/reciprocal Pareto distributions as the ‘reference’ distributions for A - E with
heavier right/left tails relative to left/right tails to address issues in the domain of positive
distributions and employs the reciprocal Pareto-negative uniform distribution instead of the
reciprocal Pareto distribution for distributions containing small portions of negative values to
show that the newly introduced pair of a variant of the S-Gini index and its complementary

index practically satisfy properties C, D and E.

2. Level-adjusted S-Gini index

This paper assumes that the size distribution of a numerical variable X such as wealth has the
positive finite mean p, the probability density function (pdf) f(x) except for a point mass at
zero, the cumulative distribution function (cdf) F(x), the (possibly negative) finite infimum
a =infX (= infF~1), and the (possibly infinite) supremum b = supX (= sup F~1). We
frequently identify a distribution with its cdf. The S-Gini index with parameter v(> 1)
proposed by Kakwani (1980), Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) is
S¢,(F)=1—-v(v—1) fol(l —p)' 2Lp(p)dp (Kakwani 1980)

=v(v—1) J, A=) ?[p - Lr(p)]dp (1)

=v [y (1= L:@)" = (1 = p) | dLr(p) @)

=1-v [, 2F@) " f)dx = [, [F(x) — F(x)")dx (Yitzhaki 1983)  (3)
where Lr(p) = 3 [ P xdF (X) p=1(p) = inf(F (x) > p}, and F(x) = 1~ F(x). In (1),
(2) and Kakwani’s formula, SG, (F) is expressed using only the Lorenz curve of F.SG,(F)
coincides with the standard Gini index Gini(F). As mentioned by Donaldson and Weymark
(1980, 1983) and Yitzhaki (1983), v specifies the degree of inequality aversion, ranging from
indifference to inequality (SG, (F) =0 as v — 1) to the relative maxmin rule (SG,(F) - 1 —
a/u as v — o). In this regard, the S-Gini index resembles the Atkinson index (Atkinson 1970).

Here, we numerically compare the S-Gini and Atkinson indices using the Pareto distribution



P, o, which has the pdf ac*x~%~! and Lorenz curve Lp,,(p)=1-(1- p)@ /e c<x<
o, @ > 1; and the reciprocal Pareto distribution RP; g, which has the pdf BxP~1/cB and
Lorenz curve Lrp,,(p) = p(ﬁﬂ)/ﬁ ,0<x<c,B>0.RP.p is generated by a random
variable c2X71 X ~P. . As this paper addresses relative (or equivalently scale-invariant)
indices, P, and RP,g are abbreviated as P, and RPg, respectively, hereafter. The S-Gini

indices for P, and RPg are expressed as
v—1

SG,(Py) = (Donaldson and Weymark 1983) and

B+1 B+1 .
SG, (RPB) =1—v TB (V. T)’ where B(p, q), p, q > 0, denotes the beta function.

The S-Gini and Atkinson indices for P,, P; 5, RP; and RP, 5 are listed in Tables I and II. The

av—1

formulas of the Atkinson index A, with parameter ¢ for P, and RPj are listed in Appendix 1.
When v —» 1 and € — 0, i.e., inequality aversion approaches inequality-neutrality, the
indices decrease, and simultaneously, their sensitivity to higher values becomes stronger. The
higher sensitivity (partly) causes higher ratios SG, (P;5)/SG, (P,) and A.(P;5)/A:(P,) for
smaller v and €. The generalized entropy (GE) index GEs with parameter §, order-equivalent
to the Atkinson index A;_g, more clearly exhibits sensitivity to higher values because when &
becomes higher (¢ becomes lower), the index value GEs(P,), @ = 2 and 2.5 (see Appendix 2)
and the ratio GE5(P;5)/GEs(P,) become higher in line with A and B. Furthermore, by

extension to § > 1, GE5 encompasses higher sensitivity to higher values than A,.

Table L. S- and aS-Gini indices for the Pareto and reciprocal Pareto distributions.

ingex  Distribution Parameter v
model 0.8 1 1.2 15 1.8 2 3 4
Py n.a. n.a. 0100 0.182 0229 0250 0.308 0.333
P, n.a. n.a. 0143  0.250 0.308 0.333 0400 0.429
g _Pa/Pas n.a. n.a. 1.43 1.38 1.35 1.33 1.30 1.29
2 RP, 5 n.a. n.a. 0.066 0147 0213 0250 0.386  0.474
RP, n.a. n.a. 0.091 0.2000 0286 0.333 0.500 0.600
RP;/RPy 5 n.a. n.a. 1.38 1.36 1.34 1.33 1.29 1.27
Pys 1.000 0667 0500 0.364 0.286 0250 0.154  0.111
P, 1667 1.000 0714 0500 0.385 0.333 0200 0.143
5 P2 /Ps 1.67 1.50 1.43 1.38 1.35 1.33 1.30 1.29
E RP 5 0394 0343 0330 0294 0266 0250 0193  0.158
RP, 0.556 0.480 0455 0400 0357 0.333 0250  0.200

RP, /RPy 5 1.41 1.40 1.38 1.36 1.34 1.33 1.29 1.27




Table II. Atkinson and GE indices for the Pareto and reciprocal Pareto distributions.

Parameter 6§ for the GE Index

o Distribution 0.4 0 0.2 0.5 0.8 1 1.4
model Parameter ¢ for the Atkinson Index
1.4 1 0.8 0.5 0.2

Py 0.130 0.105 0.090 0.063 0.028 n.a. n.a.

P, 0.211 0.176 0.153 0.111 0.053 n.a. n.a.

< P2/Ps 1.62 1.67 1.71 1.78 1.88 n.a. n.a.

RPy 5 0.232 0.144 0.109 0.063 0.023 n.a. n.a.

RP, 0.442 0.264 0.196 0.111 0.041 n.a. n.a.

RP, /RPy 5 1.90 1.83 1.81 1.78 1.76 n.a. n.a.
Py 0.103 0.111 0.116 0.127 0.142 0.156 0.199
P, 0.178 0.193 0.205 0.229 0.267 0.307 0.470
& Py/Pas 1.73 1.74 1.76 1.80 1.88 1.97 2.36
© RP, 5 0.199 0.156 0.142 0.127 0.116 0.111 0.103
RP, 0.470 0.307 0.267 0.229 0.205 0.193 0.178
RP;/RPy 5 2.36 1.97 1.88 1.80 1.76 1.74 1.73

We define the level-adjusted S-Gini (aS-Gini) index as aSG, (F) = SG,,(F)/(v — 1); then,
the smaller v becomes, the higher aSG,, (P,) becomes (see Table I). Furthermore, by extension
to 0 <v <1 asin(4)and (5), aSG, encompasses higher sensitivity to higher values than SG,,.
aSG, is equivalent to 1/|v — 1| times the Extended S-Gini index (Gisbert et al. 2010) except

for v = 1. The lower limit of v depends on the heaviness of the upper tail; e.g., v > a ! for P,.

056, (F) = |7 SGv(F) = v [ =)' [0 — Le@)ldp, 0 <v #1 @)
fol%ip)dp:—iffﬁ(x)logﬁ(x)dx, v=1 - (5)

3. Complementary level-adjusted S-Gini index for positive
distributions

However, Table I shows that the smaller v becomes, the higher aSG, becomes for RPg as well
as for P, and the higher its marginal increase rate becomes for a change of RPg to a heavier
left tail as well as for a change of P, to a heavier right tail; hence, aSG, violates A and B. In
contrast, Table II indicates that GE5 is in line with A and B. In fact, GE5, 0 < § < 1, satisfies
A and B except for particularly heavy-tailed distributions. For such heavy-tailed P,
and RPg, GEs possibly violates both properties near § = 0 and near § = 1, respectively;
e.g.,0 <6 <0.08forP;5,and 0.92 < § < 1 for RP, 5. Nevertheless, GEs can be regarded as
practically satisfying A and B. This fact relates to the following property of GEs:



Consider Lorenz curves Lp and L of positive distributions F and G, respectively; L and
L are mutually symmetric with respect to a diagonal other than the equality diagonal, as
illustrated in Figure 1. Hereafter, I call this symmetric relation between F and G 'L-symmetry'.
This symmetry is equivalent to the fulfillment of the simultaneous equations (eqgs.) in (6).
GE§ exhibits property (7) regarding L-symmetry (see the appendix of Okamoto 2021):

Lp(p) =1-—q and p =1 - Lg(q). (6)
F and G are mutually L-symmetric = GEs(F) = GE;_5(G). (7)
From (7), for§ > 6" > 0.5, if GE5(F) > GEg5/(F) > GE,_5/(F) > GE;_s(F) andgij—gﬁ >

GEg1(F,)  GE,_g(F)  GE1-5(F,) . .. .
CEs (Fy) > CE,-5'(Fy) > GE.- SR then, the inequalities hold in reverse order for G, G, and G,.

As P, and RP,_; have L-symmetry, property (7) relates to GE’s fulfilment of A and B
regarding both left and right tails.

Unlike GEg, aSG,, does not satisfy (7). Then, to complement aSG, ’s failure to satisfy A and
B, we create an index in the domain of positive distributions using an L-symmetric counterpart:

€aSG, (F) == aSG,(G). (8)

Define the curve L(q) implicitly for a given positive distribution F using egs. (6) (after
replacement of L;(q) with L(q)). As L(q) is strictly convex and strictly monotonically
increasing in addition to fulfilling conditions L(0) = 0 and L(1) = 1, an underlying positive
distribution G for L(q) exists uniquely except for scale-transformation (Thompson 1976).
Hence, the relative index “aSG, (F) is uniquely determined. Note that G also has its pdf (see
Appendix 4). From the definition, the sensitivity of “aSG, to the right/left tail is regarded as
equivalent to that of aSG,, to the left/right tail if we assume equivalence of the heaviness of the

right tail of P, to that of the left tail of RP,_;. From (2) and (6), aSG, (F) is expressed as
v (Ir,v-1 -1
1 1
Jylogp —logLp(p)ldp = -1 — [/ logLg(p)dp, v=1 -  (10)
The lower limit of v depends on the heaviness of the left tail of the distribution; e.g., v >

B+ 1)t for RPg. €aSG,, is qualified as a relative inequality measure from (9) and (10).
Clearly, “aSG,(F) = aSG,(F) = SG,(F) = Gini(F).

Theorem 1: For a positive distribution F and its L-symmetric counterpart G, assume that Ly
and L cross each other only once at their common Kolkata index pg (Chatterjee et al. 2017),
defined as pg s.t. px + Ly(pg) = 1 for H = F, G (see Figure 1), and Lz (p) § L;(p),p § Pk

i.e., Lp / L; exhibits imbalance toward the lower/higher classes. ! Then, aSG,(F) é

I Relations of a L-symmetric pair of distributions with the Kolkata, Gini (and some other symmetric) indices have been



€aSG,(F),v < 2. (The proof is given in Appendix 5.)

As a pair RP,_; and P, satisfy the prerequisites in Theorem 1 (see Appendix 6), Theorem 1
indicates that a pair aSG, and “aSG, satisfy D-(i) for v < 2 and forv > 2 (if their roles are
mutually interchange). As the index values of aSG, in the rows for RP; 5 and RP; in Table I
coincide with those of “aSG, for P,s and P,, respectively, the table can be regarded as
illustrating the order relations between aSG, and “aSG, in Theorem 1. However, the table also
shows that the ratio aSG, (P,)/aSG,(P,s) is higher than €aSG,(P,)/ aSG,(P,5) even
if v > 2, indicating that the pair fails to satisfy E for v > 2. Hence, we should be cautious about
the uses of the pair with v > 2 as a pair of sensitivity-adjustable measures. Numerical analysis
shows that a pair aSG, and “aSG,, satisfy D-(ii) for v < 2. This pair also satisfies E except for
particularly heavy-tailed P, with @ < 1.67 and RPg with f < 0.67 for v <2. In such
exceptional cases, the pair can violate E near v=2; eg., 1.81 <v <2 for P,s and

RP, 5 (see Figure 2). Nevertheless, the pair can be regarded as practically satisfying D and E. 2
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Fig. 1. Mutually symmetric Fig. 2. Increase rate of aSG, relative to that of
Lorenz curves. €aSG, when P, ,, changesto P,
a=1.5 or 3, Aa = 0.01.
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Note. The relative increase rate is calculated as < s¢ 7.)/ %asé, (Poran)-

4. Extension to distributions containing nonpositive values

The S- and aS-Gini indices are naturally extended to distributions containing negative values.

If the infimums are finite, the Atkinson and GE indices also become applicable by adding an

essentially mentioned or illustrated in the literature frequently although most of them did not particularly pay attention to the
Kolkata index. Banerjee ef al. (2020) exceptionally focused on properties of this characteristic point of the Lorenz curve.

2 The double-Pareto distribution dPa,g (Reed 2003), or, equivalently, log-asymmetric Laplace distribution can also be used as
the reference distribution instead of a pair P and RPg. dPa,p is generated by a product of two mutually independent random
variables following P» and RPg. dPq.p and dPg+1.¢—1 have L-symmetry, and the pair satisfies the prerequisites in Theorem 1.
The same conclusion is drawn for aSG, and “aSG, from the use of dPyg as the reference distribution.



appropriate constant value to the variables; however, it is practically difficult to employ this
simple method if the infimums vary depending on the distributions or a suitable common
constant value is not definite. Here, we extend the “aS-Gini index for v > 1 to distributions
containing negative values as in (11). The rates of change of “aSG,(F) in (11) by an increase
in the constant value ¢ depend on the distributions even if the means are the same; in
contrast, aSG, (F) is reduced by ¢/(u + ¢) X 100% for any distribution.

“aSG,(F) = w5 Jy [P = sgnLe (@) - 1L~ @)]dp. v > 1,7 (11)
where sgnq := 1 forq > 0, 0 forq = 0, and —1 for g < 0. Extension (11) retains the index
properties required as a relative inequality measure and the equality “aSG,(F) = aSG,(F) =
SG,(F) = Gini(F) . Note that, from (11), ‘aSG,(F) can be geometrically expressed as
v/(v — 1) times the area of a figure enclosed by the transformed egalitarian curve p¥~! and
transformed Lorenz curve sgnLp(p) - |Lg|""2(p). The expression for v = 2 coincides with
the well-known geometric expression of Gini(F). “aSG,(F) » 0asv - «. “aSG,(F) -
o as v—1 if F has a point mass at zero or negative values. (v — 1) - aSG,(F) -
L71(0) if F is nonnegative and — 2L7'(0) otherwise as v — 1, where Lz (0) =
mﬁx{LF(P) < 0}. Hence, if both F and G contain negative values, ‘aSG,(F)/ ¢aSG,(G) -
Lz1(0)/Lz*(0) asv — 1. The limiting cases indicate that 'zero' has a particular meaning as a

threshold value for (v — 1) - “aSG,, if v is close to 1. The following theorem holds:

Theorem 2: Assume that F contains nonpositive values, Ly satisfies 1 —p = —Lg(p), 0 <
p<1, and Lg+(p) = max{0,Lz(p)} crosses its L-symmetric counterpart only once;
then, aSG,(F) ; €aSG, (F) for v é 2. Furthermore, if F contains negative values, then
|aS G,(F)— “aSG,(F )| > |aS G,(F*) — “aSG,(F +)|, where F7 is an underlying distribution
of Lp+;i.e., F*(x) := F(x) for x = 0 and 0 otherwise. (The proof is given in Appendix 7.)

Regarding distributions containing small portions of negative values such as household net
wealth distributions, there exist neither standard models for size distributions nor established
definitions of the heaviness of the left tails. Here, we adopt the three-parameter reciprocal
Pareto-negative uniform distribution RPNUg, . , as a reference distribution with an

adjustable heaviness of the left tail, in addition to the Pareto distribution P,, as one with an

3 Some researchers have proposed transformations of net wealth to ease difficulties in processing data for statistical and
analytical purposes such as graphical representations and measurements of inequality. The variant of the log-transformation of
Biewen ef al. (2021) has a form resembling that of the transformation of the Lorenz curve in (11). The concave log-like
transformation of Ravallion (2017) is for inequality measurements. Unlike those transformations, ‘aSG, employs a power
function to transform the Lorenz curve (instead of the original variable) for inequality measurements.



adjustable heaviness of the right tail. RPNUg,, . is defined as a distribution that has the
pdf £(x) = po/|xo| for xo < x <0 and (1 — py)BxF~ for 0 <x <1, where § >0,0<
Po < 0.2, and —0.1 < x, < 0. We regard the changes RPNUpp, . = RPNUpyp, , and
RPNUg poxo = RPNUg kp, k'xy, 1 < k' < k, as changes to heavier left tails. The formulas
of aSG, and “aSG, for RPNUp,, . —are given in Appendix 3. Table III presents numerical
examples. Regarding the right-tail, a pair aSG, and €aSG,, v < 2, practically satisfy
properties D and E, as explained in the previous section. The Lorenz curve of RPNUg,, . is
proven to satisfy the conditions in Theorem 2 in a similar manner as that of RPg. Hence, a
pair aSG, and “aSG,,, v < 2, satisfy D-(i). Numerical calculation shows that the pair also
satisfies D-(ii), as does E, if the condition L™1(0) < 0.5 is imposed, unless positive values are
intensively concentrated near zero as with § < 0.4 for E-(i) and unless v < 1.2 for E-(ii); e.g.,
the relative marginal increase rate of aSG, (RPN Uﬁ,po,xo) for v < 1.1 obtained by a change
to a heavier left tail is possibly slightly lower than the corresponding rate forv = 1.2 if § >
4.8 and p, is relatively large (near 0.2) (see Figure 3). Still, the indices are considered to
practically satisfy D and E although further elaboration may be desirable for the relevant

reference distributions.

Table III. aS- and “aS-Gini indices for the reciprocal Pareto-negative uniform distribution.

Parameter v

Index Distribution
model 1 1.2 15 1.8 2 3 4

RPNU, 01,01 0623 0.566  0.498 0445 0415  0.311 0.249

. RPNUig; 04 0766 0693 0607 0539 0501 0369  0.291
% _RPNUiyp o 0810 0736 0646 0576 0537 0401  0.319
RPNU, o2,-01/RPNU; 51,01 1.23 1.22 1.22 1.21 1.21 1.19 117

RPNU, 45, -0.2/RPNU; 61,04 1.30 1.30 1.30 1.29 1.29 1.29 1.28
RPNU; 1,01 n.a. 1.798 0.743 0.498 0.415 0.234 0.164

& RPNUiop o, n.a. 2.761 1.000 0619  0.501 0.268  0.185
B _RPNUiop-0z na. 3244 1139 0677 0537 0276  0.190
RPNU, g5,01/RPNU; 51,01 1.68* 1.54 1.35 1.24 1.21 1.15 1.13
RPNU,2,-02/RPNU o1 o1 1.94* 1.80 1.53 1.36 1.29 1.18 1.16

# Ratios of L71(0) for RPNU, 4, o4 and RPNU, o, 5 to that for RPNU; o4 1.

5. Empirical example

As an empirical application, I apply the aS- and “aS-Gini indices to measure inequalities in the
1995-2016 US per-adult net wealth distributions obtained from public-use microdata of the

triennial Survey of Consumer Finances. The net wealth owned by a two-parent family is



equally divided between the parents for the calculations. The index formulas for the sample
survey data are given in Appendix 8. The estimates for 1995 and 2016 are listed in Table IV.
The Lorenz curve for 2016 is lower than that for 1995 except for the lowest 0.1%; hence, the
distribution in 1995 'almost' Lorenz dominates that in 2016.

The per-adult net wealth distributions in years after the 2007-2008 financial crisis satisfy the
conditions in Theorem 2, whereas the earlier distributions fail to satisfy the conditions.
Nevertheless, the order relation aSG,, é €aSG, forv § 2 holds even before 2008. Although a
substantial expansion of the share of the wealthiest 5% of adults draws attention (see Table V),
the higher increase rate of ©aSG, relative to that of aSG, for v < 2 indicates that the
distributional change on the lower tail contributed to the inequality rise more than that on the
higher tail. Figure 4 illustrates the increases in aSG; s and “aSG; s and the standard Gini index
from 1995 for each survey year. A drastic increase in adults holding excess debt caused a surge
in “aSG,s after the outbreak of the financial crisis (see also Table VI), whereas
neither aSG; s nor the standard Gini index shows the corresponding clearly visible indication.*
Figure 4 also implies that we should care about differences in the level of sensitivity to

distributional changes between the pair aSG, and “aSG, and the standard Gini index.

Table IV. aS- and “aS-Gini indices for US per-adult net wealth distributions.

Parameter v
Index Year
1 1.2 1.5 1.8 2 3 4

N 1995 2.847 1.900 1.239 0.913 0.777 0.445 0.313

% 2016 3.217 2.127 1.373 1.002 0.846 0.473 0.327
2016/1995 1.13 1.12 1.11 1.10 1.09 1.06 1.05

& 1995 n.a. 2.625 1.288 0.917 0.777 0.445 0.311
:@ 2016 n.a. 3.445 1.502 1.018 0.846 0.464 0.319

2016/1995 1.53*  1.31 1.17 1.11 1.09 1.04 1.02
# Ratio of L~1(0) for 2016 to that for 1995.

Table V. Share of net wealth by rank-group of per-adult net wealth in the US.

Year Bottom10% 10-50% 50-90% 90-95% Top5%
1995 -0.003 0.045 0.296 0.114 0.547
2016 -0.005 0.021 0.233 0.120 0.631
2016-1995 -0.002 -0.024 -0.064 0.006 0.084
2016/1995 1.68 0.46 0.79 1.05 1.15

4 The Zanardi index, a skewness measure for the Lorenz curve studied by Clementi et al. (2019a, 2019b), decreased from
+0.003 for 1995 to -0.011 for 2016. This recent inclination to imbalance toward the lower classes also indicates that a drastic
increase in adults holding excess debts contributed to the rising inequality in the US net wealth distribution more than a
substantial expansion of the wealthiest’ share. However, this example appears to contradict the views of Clementi ef al. on the
inequality measurement.



Table VI. Summary statistics for adults holding zero or negative net wealth in the US.

Z\zg;l?ﬁ t Negative net wealth (excess debt)
Y L71(0
ear Population*  Population* Ratio to* Ratio to** ©
share Share ave.income ave. wealth
1995 0.019 0.062 -0.230 -0.048 0.228
2016 0.004 0.100 -0.340 -0.050 0.350

* Population shares in all adults. # Ratio of the average excess debt to the average disposable
income of all adults. ** Ratio of the average excess debt to the average net wealth of all adults.
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Fig. 3. Increase rate of “aSG, relative to

that

of aSG, when RPNUgg; o4

changesto RPNUg g, 1, B =2 or 10.

Note. The relative increase rate is calculated

€aSG,(RPNUpg 2 -01)/ “aSGy(RPNUgo.1,-0.1)
asGy(RPNUg.2,-01)/aSGy(RPNUgo1,—1)

Fig. 4. Inequality in US per-adult net wealth
distributions, 1995-2016 (1995 = 1.0).

* The o-Gini index (Chameni 2006) with o=1.3. This index
is sensitive to distributional changes at low- and upper-

ends.
** The GEj-like index of Ravallion (2017) with the scale-

adjustment para. set to a reciprocal of 10 times the
average net wealth. This scale-dependent index is
particularly sensitive to the existence of large negative
values.

Note. Changes of the E-Gini index (Chakravrty 1988) with
para.< 4 are close to the Gini index.

6. Concluding remarks

As mentioned above, for applications of a pair of the aS- and “aS-Gini indices as sensitivity-
adjustable indices, it would be better to set v < 2.° The empirical example illustrates a notable

difference between the two indices when applied to distributions containing negative values.
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Appendices
Appendix 1. Atkinson indices for the Pareto and reciprocal Pareto distributions:
—qf/—e)— a1 O<e#1
A (P) = 1—ashime (a-1+£)1/(1=9)
e\ 41

1-— a_leE, e=1
a s
1—pe/-a___ B+l pg<ex1

Ac(RP) = (B+1-2)1/(-9)’

1
+1 —
—ﬁ—eﬁ e=1

)

Appendix 2. GE indices for the Pareto and reciprocal Pareto distributions:

L (e ), 50,1

5(6-1 -6
GE5(P(1) (1 ) l;
—=+log—, =0
a a-—1 ,
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( 1 (31—5(3+1)5 _ 1),5 +0,1

5(5 1) B+6
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Appendix 3. aS- and “aS-Gini indices for the reciprocal Pareto-negative uniform distribution

RPNUg o 2, B> 0,0 < py < 1, -2 222 5B1 < x < 0:
L(1‘|'I1‘|'12), v#1

_ -1
oSG, (RPVUpn) = ([T, gy

—(1- v —(1— v+1
)1 (1vp0) +2(1 )1 (1 Po) _1 (1 pO) :I’

v v+1

where I; =v(v—1) ;—% [(ZPO -
I, =vso(1 - Po)v_1 —v(1+sp)(1— Po)v l_lB (V; 1+ %),
= [ 145701~ ZPO)] log(1 —po) + 73, ( %Po) ~ Po;
J2 = 501 =po). Js = (1+50) ¥(2+7) - p@ —1+po):
So = —Po > / ('po >+ (1 —po) ﬁ+1) i.e., the absolute share of negative values;
Y(x) =T'(x)/T'(x), i.e., the digamma function,

1
CaSGV(RPNUﬁ:pOJxO) = E (1 + Kl + KZ - K3)’

~ ~ B/(B+1) p B
where Ky = v22 sy poBy V) Ko = v —po)sy ! () gl (7 v);
1-po B (1/(B+1)); 1 . 1ty _rtr 1
K; =vigs; 1+So B+1 Zl =0 T (T+50)1 B(v,i+1), (ﬁ+1)l ~ B+1 (ﬁ'+1 + 1) (ﬁ+1 +

1—1) for i=1,2,-- or 1 for i = 0.

Appendix 4. Proof that if the positive distribution G is mutually L-symmetric with the positive
distribution F that has pdf f, then G also has its pdf:

Proof: From (6), Lp(F(x)) =1 - G(»); F(x) = 1 — Ls(G(»));
Mip dF (x) = —dG(y); dF (x) = — %G dG(y); and hence, y = ppppc/x,
dG(y) = — = f(x)dx = L26  (L22) gy,
Thus, G has pdf g(y) = ppuz/v? - f (uppg/y), identical to Taguchi’s formula (1968). O
Appendix 5. Proof of Theorem 1:

Apply Theorem A1 (with a slight modification as explained below the theorem) to a pair F and
G . Note that aSG,(G) = “aSG,(F) and aSG,(F) = “aSG,(F) = Gini(F), the Kolkata

indices for F and G are identical, and Ly crosses L at least at the Kolkata index. O

Theorem A1l (Yitzhaki 1983): Assume that Ly crosses L; once at 0 < p, < 1, Lg(p) é
L;(p) forp S py, and Av s.t. SG,, (F) = SG,, (G) then, SG,(F) £ SG,(G) forv < v,.



Theorem A1 can be applied to aSG,,, v > 0, with a slight modification of the proof.
Appendix 6. Proofthat a pair RP,_; and P,, « > 1 satisfy the prerequisite of Theorem 1:

First, we introduce the following lemma:

Lemma A2: Let the cdfs of positive distributions F and G with equal means be continuous and
strictly increasing. If F and G (or equivalently, F~! and G™1) intersect twice and the sign
sequence of F(x) — G(x) is +, —, + (that of F~1(p) — G~1(p) is —,+,—), then L crosses
L once at some pg, and Lg(p) é L;(p) forp é Do. ©

Proof: Let F~1(p) and G 1(p) cross at a and b, 0 <a < b < 1; then, Lp(p) — L(p)

decreases for 0 < p <a and b <p <1 and increases for a <p < b in the strict sense.

As Lp(p) — L;(p) = 0 atp = 0,1, the lemma must hold. 0

Let F and G denote the cdfs of RP,_; and P, normalized to have means of one; then,
F1(p) = %pﬁ and G 1(p) = aT_l(l - p)_é . Consider the ratio R(p)=
Fi(p)/G 1(p) = Kpﬁ(l - p)é, K= (%)2 R(p) has an inverted U-shape in the sense
that R(p) attains its maximum at p,,, = a/(2a —1); R(0),R(1) = 0; and R(p) increases
for 0 < p < p,, and decreases for p,, < p < 1in the strict sense. As R(p) ranges from zero
to a maximum larger than unity, it coincides with unity at two points. This means
that F~1 and G™! cross twice with the sign sequence —,+,— . Thus, from Lemma
A2, L crosses L, once (at the Kolkata index common to RP,_; and F,).

A pair of double-Pareto distributions dP, g and dPg 141, @ > B + 1, B > 0 (see footnote

2) are also proved to satisfy the prerequisite in Theorem 1 in a similar manner. O

Appendix 7. Proof of Theorem 2:

First, assume that F is a nonnegative distribution with a point mass at zero and, at the same
time, F satisfies the conditions in the theorem. In this case, —Ly(p) <0< 1—pfor0 <p <
1,and F* = F, Lp+ = Lg. Let L and pg denote the curve symmetric to L with respect to a
diagonal other than the equality diagonal and the Kolkata index for F, respectively. Define a

Lorenz curve L% as follows:
1
LU (p) = max {Le(p), 5 Le(@)}, k = 2,3,

Let F® denote L™ ’s underlying distribution. As L") (p) N Lp(p) when k — oo |

® If F and G intersect once, and the sign sequence of F(x) — G(x) is —, +, then L does not intersect with L, and Ly > Lg
(Theorem 3.A.44 of Shaked and Shanthikumar 2006).



aSG,(F®) 7 aSG,(F) and aSG,(F®) 7 €aSG,(F) when k — . From (4), for k < [,
asG,(F®) - asG,(F) = v f, (1 = p)*?[LO @) — LO@)]dp = (). (A3)
As1—p>L®(p)and LW (p) > LB (p)for p < px, L®(p) >LP(p) near p =0, and
L®(p) = LO(p) forp = pg, for1 <v < 2,
() < v fy LO@2[LO @) - LO@)]dp

A4)
1
< L[ LP@Y — LO®)dp = “as6,(FO) - asG,(F®).
The right-most equation is derived from (9). Analogously, for 2 < v,
1
) >v [y LO@)?[LP () - LY ®)]dp
(A5)

1
> %fo [L(k)(p)v—l _ L(l)(p)v—l]dp — CaSGv(F(l)) _ CaSGV(F(k)).
As a pair of F® and its L-symmetric counterpart G satisfy the conditions in Theorem 1,
aSG,(F®) < ©aSG,(F®) for 1 < v < 2. Hence, from (A4),
aSG,(F) = lim[aSG,(F®) - aSG,(F®)] + aSG,(F®)

. A6
< lim[ “aSG,(F®) = €asG,(F®)] + “aSG,(F®) = “aSG,(F). (A0)

Analogously, for v > 2, from (AY),
aSG,(F) > ©aSG, (F). (A7)

Next, assume that F is a distribution containing negative values; then, (A6) and (A7) hold
for F*, an underlying distribution of Lp+(p) := max{0,Lz(p)}. Then, we evaluate the
differences between the indices for F and F* in a similar way as (A3) - (A5), as follows:

aSG,(F) = aSG,(F*) = v [[(1 = p)**[Lp+(p) — Le(p)]dp = (+»). (A8)
From the assumption, Lz+(p) =0and 1 —p = |Lg(p)| for p s.t. Lg(p) < 0, and Lp+(p) =
Lg(p) forps.t. Lp(p) = 0. Hence, for1 < v < 2,

() <V [ ILe ()" 2[Lp+(0) — Lr(p)]dp

<55 L @)™ = sgnLe() - ILe(@)|""1dp = “aSG,(F) — aSG,(F*), )
and forv > 2,
(%) > v [ 1Le (@) [Lp+ () — L (p)]dp
o o [l () — g L () - I )1 = a6, (F) — “aSG,(F).
As aSG,(F*) < €aSG,(F*) for1 < v < 2 from (A6) (after replacing F with F*),
aSG, (F) — “aSG,(F) = [aSG,(F) — aSG,(F*)] + aSG, (F*) AT

—[ ¢aSG,(F) — €aSG,(FY)] — “aSG,(F*) < aSG,(F*) — “aSG,(F*) < 0.
Analogously, forv > 2,



aSG,(F) — ©aSG,(F) > aSG,(F*) — °aSG,(F*) > 0. (A12)
Note that condition —Lp(p) < 1 —p holds if both —infF~! < ur and L;(0.5) >0 are

F~(q)

satisfied because —Lp(p) = —fop i d4<p<1-pfor0<p<05. 0

Appendix 8. Formulas for aSG, and “aSG, for calculation from sample survey data.

Formulas (A13) - (A16) correspond to discretizations of (3), (5), (11) and (10), respectively,
and are applicable to weighted discrete data D = {x;, w;}, x;1 < -+ < X, wy, =+, w, > 0.
Before applying the formulas, we collapse records with an identical value into a single record
if duplicates exist in the array {x;};. For example, if x, < x3 = x, < x5, then we replace the

weight for the 3™ record w; with w; + w, and remove the 4" record.

1
aSG,(D) = v—il [1 — X1 — )" (- xi—l)]; (A13)
1
aSGy(D) = — 3 X2 (1 — ¢;-1) log(1 — ¢;-1) - (ty — x4-1); (A14)
1
aSG,(D) = — 1= Xidipi), A; = v sgn(l) - |GV for I,y = 1,
Il =1y ¥ (A15)

[V = L4V forl;_; < 0 < I;, and otherwise;

lilogli—1l;_;logl;_
CaSGl(D)=_Z?=1logl i-1108Li—1 .

li=li—1

i (A16)
where v # 1 in (A13) and (Al15); g =37, ijj/Z;-l:l Wi ¢ = Z§'=1Wj/27=1 wi, l; =

Z§-=1 W]-x]-/Z;-l=1 w;xj, and p; = wi/¥io wy, L= 1,2,-+,m; 1y = 05 [glogly = 0. (A13) with

li—=li—1

multiplication by v — 1 is equivalent to the formula of Chotikapanich and Griftiths (2001) for
the S-Gini index.



