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Abstract
This paper introduces a new generalized autoregressive conditional heteroskedasticity (GARCH) structure, which

models the daily return of an asset and the price range simultaneously to describe the time-varying volatility of an asset

return. New equations that link the price range to volatility are added to the GARCH and related models based on the

density of the range. An algorithm for the Bayesian estimation of the parameters and one-step-ahead forecasting is

provided by using the adaptive Markov chain Monte Carlo. The approach is applied to stock index data in Japan and

the United Kingdom. The estimation results reveal that the proposed models capture the stylized features of an asset

return, such as volatility clustering and asymmetry of the volatility to the return (leverage effect). The downward bias

of the range, due to non-trading hours and the market microstructure, is suggested in the estimation. Model

comparisons are conducted based on the predictive ability for the volatility, which shows that the new GARCH-type

models perform equal to or better than the competing models for the return and the corresponding realized measure of

the volatility.
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1 Introduction
In recent decades, researchers in financial econometrics have investigated the unob-

served variance (volatility) of the return of an asset because it is of critical significance
to option pricing or risk management. A vast amount of empirical literature has sug-
gested the occurrence of periods of high and low volatility for each asset; that is,
volatility clusters emerge (e.g., Bauwens, Hafner, and Laurent (2012)).

The realized generalized autoregressive conditional heteroskedasticity (GARCH)
model introduced by Hansen, Huang, and Shek (2012) proposes the joint modeling of
the return of an asset and the corresponding realized measure of the volatility. The
realized measure is a proxy for a latent variable that is computed using high-frequency
financial data (e.g., Andersen and Bollerslev (1998)). Although such proxies may be
biased due to non-trading hours and market microstructure noise (e.g., Hansen and
Lunde (2006)) in the real market, they are far more informative and attractive to the
researchers who investigate assets’ latent volatility. The realized GARCH (1, 1) model
with a log-linear specification is given by the following equations:

yt = σtzt, zt ∼ N(0, 1), t = 1, . . . , n, (1)

log σ2
t = ω + β log σ2

t−1 + αxt−1, t = 2, . . . , n, (2)

xt = ξ + ϕ log σ2
t + τ(zt) + ut, ut ∼ N(0, σ2

u), t = 1, . . . , n, (3)

where xt is the logarithm of a realized measure for the volatility and τ is a function
with the expectation of 0. N(m, s2) denotes the normal distribution with mean m
and variance s2. Hansen and Huang (2016), Gerlach and Wang (2016), Wang, Chen,
and Gerlach (2019), and Chen, Watanabe, and Linc (2021) investigated the further
extension of the model. Takahashi, Omori, and Watanabe (2009) and Dobrev and
Szerszen (2010) proposed the simultaneous modeling of the return of an asset and the
corresponding realized measure of the volatility in line with the stochastic volatility
model .

Although the realized GARCH and related models succeed in the estimation of
the unobserved volatility of financial time series (e.g., Watanabe (2012)), the models’
accuracy relies heavily on the realized measure used for the estimation. Degiannakis
and Livada (2013) contended that the realized volatility on a day is less accurate than
an estimator computed only from the transaction price range (i.e., the difference of the
logarithms of the highest and the lowest transaction prices) on the day if the sampling
frequency of the intraday returns is not sufficiently high. Volatility estimations based
on the price range have been discussed by, e.g., Parkinson (1980), Garman and Klass
(1980), Rogers and Satchell (1991), Kunitomo (1992), and Yang and Zhang (2000)
because the dataset can be easily obtained and computed.

In this paper, I propose new GARCH-type simultaneous modeling of the return and
the associated transaction price range. I add a new equation to integrate the observed
price range and the unobserved volatility into the GARCH model with a log-linear
specification represented in Equations (1) and (2). Referencing Feller (1951), Kurose
(2021), and Hansen, Huang, and Shek (2012), the equation is designed to be exactly
consistent with the probability distribution of the range. Chou (2005), Brandt and
Jones (2006), Chen, Gerlach, and Lin (2008), and Molnár (2016) investigated GARCH-
type models using the approximated density of the range. Asymmetry (leverage effect)
is also incorporated in the proposed model, and is a stylized feature in the stock
market, i.e., a negative shock is followed by larger conditional volatility than a positive
one. I construct a simple Bayesian estimation and forecasting algorithm to implement
empirical studies using real-world data.

The remainder of this article is organized into three sections. Section 2 introduces
the proposed new GARCH-type modeling for an asset return and the range-based



volatility proxy. I adopt a Bayesian approach to investigate an estimation method for
the proposed model to obtain the posterior density of the model parameters. Section 3
applies the proposed model to daily returns and the price range data for a stock index
in Japan and the United Kingdom. Section 4 concludes.

2 GARCH-type models and volatility proxy based
on range

2.1 The models

Assume that p(s), the log-price of an asset at time s, is subject to a continuous
stochastic process, i.e.,

dp(s) = σ(s)dB(s), (4)

where B(s) denotes a standard Brownian motion. Define Rt = logHt − logLt as the
price range in day t, where Ht is the highest price and Lt is the lowest price of the day
t, respectively.

The probability density function of Rt is given in two forms as

frange(Rt|σ2
t ) =
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(See Feller (1951) and Kurose (2021).)
Parkinson (1980) revealed the daily returns’ p-th moment and the second moment

as
E(R2

t ) = (4 log 2)σ2
t . (6)

Parkinson’s estimator R2
t /(4 log 2) has been used as the proxy for the variance of the

asset return on day t. While Parkinson’s estimator is consistent with the theory of
stochastic process and is easy to compute, many researchers have suggested that it
tends to be (negatively) biased due to discretization errors of the price or non-trading
hours.

In this paper, I introduce a GARCH model for return and range (GARCH-RG),
written as follows:

yt = σtzt, zt ∼ N(0, 1), t = 1, . . . , n, (7)

log σ2
t = ω + β log σ2

t−1 + α log{R2
t−1/(4 log 2)}, t = 2, . . . , n, (8)

Rt ∼ frange(Rt|σ̃2
t ), log σ̃2

t = ξ + ϕ log σ2
t + τ(zt), t = 1, . . . , n. (9)

τ(zt) is the leverage function, which describes the leverage effect, the (negative)
correlation between the return and the one-step-ahead volatility. Based on Hermite
polynomials, τ(zt) is set as δ1zt+ δ2(z

2
t −1) (Hansen, Huang, and Shek (2012)). Notice

that the expectation of τ(zt) takes the value of 0.
ξ is a bias correction term for the range. If ξ takes the negative value, Rt’s have

downward bias because E(τ(zt)) = 0 as stated above. Garman and Klass (1980) and
Rogers and Satchell (1991) suggested that the daily price range of an asset may have
a negative bias due to non-trading hours or market microstructure noise, e.g., price
discretization error.

Note that the one-step-ahead forecast of the volatility is obtained as

σ2
n+1 = exp[ω + β log σ2

n + α log{R2
n/(4 log 2)}]. (10)



I extend the GARCH-RG model described above to the exponential GARCH model
for return and range (EGARCH-RG) written as follows:

yt = σtzt, zt ∼ N(0, 1), t = 1, . . . , n, (11)

log σ2
t = ω + β log σ2

t−1 + ρ1zt−1 + ρ2(z
2
t−1 − 1) + γ log(R2

t−1/σ̃
2
t−1), t = 2, . . . , n, (12)

Rt ∼ frange(Rt|σ̃2
t ), log σ̃2

t = ξ + ϕ log σ2
t + τ(zt), t = 1, . . . , n. (13)

τ(zt) is the same as the GARCH-RG model. This is an extension of the exponential
GARCH (EGARCH) model introduced by Nelson (1991)1.

Note that the one-step-ahead forecast of the volatility is obtained as

σ2
n+1 = exp[ω + β log σ2

n + ρ1zn + ρ2(z
2
n − 1) + γ log(R2

n/σ̃
2
n)]. (17)

2.2 Estimation and forecasting

Priors. Let denote ϑ
GARCH−RG and ϑ

EGARCH−RG as (ω, β, α, ξ, ϕ, δ1, δ2, log σ
2
1)

′ in the
GARCH-RG model and (ω, β, ρ1, ρ2, ξ, ϕ, δ1, δ2, log σ

2
1)

′ in the EGARCH-RG model,
respectively. I assume that the priors ϑ

GARCH−RG ∼ N(mϑGARCH−RG0, SϑGARCH−RG0),
ϑ

EGARCH−RG ∼ N(mϑEGARCH−RG0, SϑEGARCH−RG0).

Bayesian estimation and forecasting. I propose an adaptive Markov chain Monte Carlo
(MCMC) algorithm for the GARCH-RG (EGARCH-RG) model described as follows:

1. Initialize ϑ
GARCH−RG (ϑEGARCH−RG).

2. Generate ϑGARCH−RG (ϑEGARCH−RG) using the adaptive random walk Metropolis
algorithm (Haario, Saksman, and Tamminen (2001), Andrieu and Thoms (2008)).

3. Compute log σ2
n+1.

4. Go to 2.

Using the algorithm described above, I obtain adaptive MCMC samples of {σ2
t }nt=1,

ϑ
GARCH−RG (ϑEGARCH−RG), and σ2

n+1. In the following, I use the estimated posterior

mean σ2
n+1 as the one-day volatility forecast.

Evaluation of volatility forecasts. To evaluate the volatility forecasts obtained from the
proposed models and competing models, I use the following loss functions,

LMSE(σ̂
2
t , ht) =

(ht − σ̂2
t )

2

2
, (18)

1Hansen and Huang (2016) proposed the realized EGARCH framework that uses an asset return
and the realized measure of the volatility of the return. The simplest model among the realized
GARCH class is given by the following equations:

yt = σtzt, zt ∼ N(0, 1), t = 1, . . . , n, (14)

log σ2

t
= ω + β log σ2

t−1
+ ρ1zt−1 + ρ2(z

2

t−1
− 1) + γut−1, t = 2, . . . , n, (15)

xt = ξ + ϕ log σ2

t
+ τ(zt) + ut, ut ∼ N(0, σ2

u
), t = 1, . . . , n, (16)

where xt is the realized measure of the volatility.



LQLIKE(σ̂
2
t , ht) =

σ̂2
t

ht

− log
σ̂2
t

ht

− 1, (19)

where LMSE(·, ·) denotes the minimum squared error (MSE) loss, LQLIKE(·, ·) denotes
the quasi-likelihood (QLIKE) loss, ht is a forecast of the volatility on day t, and σ̂2

t

is a volatility proxy. Since no researchers in the financial market can observe the true
volatility of an asset return, volatility proxies are inevitably used in the loss functions.
Volatility proxies may be contaminated with noise and the ranking between the two
volatility forecasts based on those loss functions seems to be inconsistent with the one
using true volatility. Patton (2011) demonstrated that a certain class of loss functions,
including the two stated above, preserves the ranking between the two forecasts of the
volatility if the unbiased volatility proxy is substituted by the true volatility.

3 Empirical study

3.1 Data

This section presents an empirical analysis of the time-varying volatility of asset
returns in the stock market. I use the daily asset return series of Nikkei 225 index and
FTSE 100 index from January 3, 2012, to December 31, 2020. The data for Nikkei 225
and for FTSE 100 include 2,194 and 2,274 returns, respectively. The daily return of an
asset is calculated as yt = (log pt − log pt−1)× 100, where pt is the closing price of the
asset on day t. The daily price range data of the asset is used in the proposed model
and is calculated as Rt = (logHt − logLt)× 100, where Ht and Lt are the highest and
the lowest prices of the asset on day t.
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Figure 1: Transition of yt and Rt.



The transitions of yt and Rt for Nikkei 225 and FTSE 100 data are presented in
the four panels of Figure 1.

To illustrate the validity of the models considered, I conduct a model comparison
using the realized volatility (five-minute sub-sampled) associated with the returns,
which is retrieved from the “realized library” provided by Heber, Lunde, Shephard,
and Sheppard (2009).

3.2 Estimation results

The priors in the models are assumed as ϑGARCH−RG ∼ N(08, 100I8), and
ϑ

EGARCH−RG ∼ N(09, 100I9), where 0p denotes a p-dimensional zero vector and Ip
denotes a p-dimensional unit matrix.

I use 20,000 adaptive MCMC samples after discarding 10,000 samples as burn-in.
Table 1 presents the estimated posterior means, 0.95 probability credible intervals

and inefficiency factors (IF) for ϑ
GARCH−RG (ϑEGARCH−RG). The inefficiency factor

is calculated as 1 + 2
∑

∞

j=1 ρ(j), where ρ(j) is the sample autocorrelation at lag j.

It is used to perform convergence diagnostics (see Chib (2001)). For Nikkei 225 and
FTSE 100 data, the acceptance rates of ϑGARCH−RG (ϑEGARCH−RG) of the GARCH-
RG (EGARCH-RG) model in the adaptive Metropolis algorithm are 0.231 (0.215) and
0.259 (0.253), respectively. It indicates that the proposed estimation algorithm for the
model functions effectively and adaptive MCMC samples are obtained efficiently.
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Figure 2: Evolution of the estimated posterior means of σt’s for GARCH-RG and
EGARH-RG models.

Figure 2 depicts the evolution of the estimated posterior means of σt, indicating a
high persistence of volatility and volatility clustering, as demonstrated in past empirical
studies (e.g., Bauwens, Hafner, and Laurent (2012)). In fact, for Nikke 225 data,



Table 1: Bayesian estimation results of the models.

Parameter Mean 95% interval IF
Nikkei225, GARCH-RG model
ω 0.365 (0.323, 0.408) 19.4
β 0.682 (0.648, 0.714) 25.1
α 0.244 (0.217, 0.271) 14.3
ξ -1.290 (-1.354, -1.230) 21.8
ϕ 1.086 (1.023, 1.151) 30.9
δ1 -0.101 (-0.124, -0.077) 25.7
δ2 0.198 (0.183, 0.215) 18.8
log σ2

1 -0.751 (-1.483, -0.051) 24.4
Nikkei225, EGARCH-RG model
ω 0.020 (0.013, 0.028) 26.1
β 0.968 (0.961, 0.975) 27.2
ρ1 -0.028 (-0.036, -0.022) 36.4
ρ2 0.068 (0.059, 0.078) 43.4
γ 0.011 (0.007, 0.015) 52.0
ξ -1.319 (-1.388, -1.251) 39.2
ϕ 1.116 (1.044, 1.193) 25.1
δ1 -0.087 (-0.112, -0.063) 34.8
δ2 0.193 (0.178, 0.210) 27.2
log σ2

1 -0.569 (-1.168, -0.063) 46.2
FSTE100, GARCH-RG model
ω 0.118 (0.100, 0.136) 16.9
β 0.766 (0.742, 0.789) 24.5
α 0.207 (0.189, 0.228) 20.0
ξ -0.491 (-0.542, -0.442) 15.2
ϕ 0.962 (0.923, 1.003) 48.4
δ1 0.007 (-0.018, 0.033) 27.3
δ2 0.271 (0.252, 0.291) 24.0
log σ2

1 0.41 (-0.423, 1.227) 19.9
FSTE100, EGARCH-RG model
ω -0.173 (-0.202, -0.146) 16.1
β 0.965 (0.956, 0.975) 46.3
ρ1 -0.136 (-0.154, -0.121) 21.6
ρ2 0.027 (0.019, 0.036) 35.0
γ 0.183 (0.153, 0.213) 13.9
ξ -0.439 (-0.490, -0.385) 38.9
ϕ 0.987 (0.942, 1.031) 26.6
δ1 -0.007 (-0.034, 0.020) 33.7
δ2 0.281 (0.262, 0.301) 42.4
log σ2

1 0.493 (-0.269, 1.305) 40.5



the sample autocorrelations of log σ2
t for the GARCH-RG (EGARCH-RG) model at

lags 1 and 2 are 0.942 (0.967) and 0.884 (0.935), respectively. For FTSE 100 data,
they are 0.969 (0.961) and 0.938 (0.921). As expected from Figure 1, the estimated
volatility increased in March 2020 due to the market turmoil induced by the COVID-19
pandemic. An increase in August 2015 and in 2016 resulting from the turbulence in
the global stock market is also apparent. The estimated volatilities of Nikkei 225 are
high in 2013, corresponding to the massive rise of the index.

The posterior probabilities of negative bias ξ for the GARCH-RG (EGARCH-RG)
model are over 0.975, which implies that the measured range tends to have a downward
bias owing to non-trading hours or market microstructure noise as highlighted by
previous literature (e.g., Garman and Klass (1980)).

Note that the 95% credible intervals of ϕ for the GARCH-RG and EGARCH-RG
models do not necessarily include the value of 1, while the posterior means are close
to 1; thus, there is a possibility of overfitting. I adopt the models with ϕ = 1 as well
as those without this restriction for ϕ in the model comparison presented in the next
subsection.

News impact curve. To investigate the asymmetric effect of daily price shock on the
volatility, I use the news impact function defined as ν(z) = E(log σ2

t+1|zt = z) −
E(log σ2

t+1) (Engle and Ng (1993)), which is interpreted as an unexpected shock for the
one-day-ahead forecast of the logarithm of the volatility. Note that ν(z) = ατ(z) for
the GARCH-RG model and ν(z) = τ(z) for the EGARCH-RG model.
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Figure 3: News impact curves for GARCH-RG and EGARH-RG models; the posterior
means (black lines) and the upper and lower bounds of the 95% interval (gray lines).

Figure 3 illustrates the news impact curves associated with the news impact func-
tion for the GARCH-RG (EGARCH-RG) model, revealing that the estimated news



impact functions are not symmetric about 0, and indicating the existence of asymme-
try (except for the case of the GARCH-RG model and FTSE 100 data).

3.3 Model comparison based on forecasting

In this subsection, I focus on the predictive ability of the proposed GARCH-type
models and conduct a model comparison examining forecasting performance.

I divide the full sample period into two parts: Period (I), from January 3, 2012, to
December 31, 2018, and Period (II), from January 3, 2019, to December 31, 2020. For
Nikkei 225 (FTSE 100), the former and the latter contain 1,717 (1,769) and 477 (505)
business days, respectively. I regard Period (II) as a prediction period, adopt a rolling
window approach with a fixed size window, and conduct a forecast of one-day-ahead
volatility as stated in Section 2.2.

In this study, I use Parkinson’s range-based estimator (RG) and the realized volatil-
ity (RV) as unbiased volatility proxies for evaluating the forecasts’ performance. Be-
cause some authors contended that Parkinson’s estimator and the realized measure for
the volatility of an asset return tend to have a downward bias due to the overnight
effect or market microstructure, I scale these proxies as follows:

Proxyscalet = cscaleProxyt, cscale =

∑n

s=1(yt − n−1
∑n

s′=1 ys′)
2

∑n

s=1 Proxyt
. (20)

(See Hansen and Lunde (2006).)
The realized GARCH (1,1) model given by Equations (1)–(3) and the realized

EGARCH model given by Equations (14)–(16) are used for the comparison. Addi-
tionally, I consider the two realized GARCH-type models with the realized measure
replaced by the Parkinson’s volatility estimator R2

t /(4 log 2) (Realized GARCH-RG
and Realized EGARCH-RG). I use the sample mean of Parkinson’s estimator for the
last 25 days as a one-step-ahead forecast.

Table 2 presents the averages of the loss function in the MSE and QLIKE forms
using the RV and RG as unbiased volatility proxies. The EGARCH-RG models out-
perform the other competing models except for the case of FTSE 100 and the RG
volatility proxy. The restriction ϕ = 1 does not necessarily improve the forecasting
performance of the GARCH-RG and EGARCH-RG models.

I also conduct a test of the predictive ability provided by Giacomini and White
(2006). Although the ranking obtained from the loss functions in Equations (18) and
(19) are consistent and reliable, it is unclear whether the difference of the loss between
the two forecasts is statistically significant or not. I choose a constant and the lagged
difference of the losses as the test function, and measure the significance of the loss
difference between the two volatility forecasts using the Giacomini-White test. The
MSE loss differences between the models are not necessarily significant at the 0.01
level. The QLIKE loss differences between the EGARCH-RG models and the other
competing models are not necessarily significant for the case of the Nikkei 225 data,
whereas they are significant for the case of FTSE 100 data and the RV proxy. The
QLIKE loss differences between the realized GARCH models and the other models are
not necessarily significant when FTSE 100 data and RG proxy are used. Overall, the
proposed models perform equivalently (or better) than the other competing models.



Table 2: Average loss of forecasts.

RV RG
Model MSE QLIKE MSE QLIKE

Nikkei225
GARCH-RG 18.059 2.406 11.969 4.259
GARCH-RG(ϕ = 1) 17.399 2.388 11.748 4.255
EGARCH-RG 16.286 2.260 10.634 4.047

EGARCH-RG(ϕ = 1) 15.914 2.261 10.522 4.054
Realized GARCH 17.602 2.494 11.766 4.299
Realized EGARCH 21.983 3.272 14.528 5.061
Realized GARCH-RG 18.163 2.414 12.051 4.269
Realized EGARCH-RG 21.528 3.291 14.154 5.123
Parkinson’s Est. 27.418 10.459 19.342 11.926

FTSE100
GARCH-RG 15.830 2.623 14.705 4.068
GARCH-RG(ϕ = 1) 15.985 2.605 14.863 4.063
EGARCH-RG 15.013 2.449 14.304 3.930
EGARCH-RG(ϕ = 1) 15.120 2.434 14.395 3.925
Realized GARCH 15.383 2.617 14.126 3.897

Realized EGARCH 18.645 3.284 17.410 4.536
Realized GARCH-RG 15.501 2.563 14.406 4.021
Realized EGARCH-RG 18.994 3.484 17.965 4.790
Parkinson’s Est. 20.621 4.136 19.674 5.657

Bold figures indicate the minimum of the column. Losses for QLIKE are multiplied by 10.

4 Conclusion

This paper extends the univariate GARCH-type models for a daily asset return
to models incorporating the daily return and the associated price range. The simple
and efficient Bayesian estimation and forecasting algorithm using the adaptive MCMC
method is proposed to accurately obtain the posterior density of the model parameters
and the predictive density of the one-step-ahead latent volatility. Moreover, I present
an application of the GARCH-type models with return and price range to Nikkei
225 index and FTSE 100 index data. My analysis indicates that the volatility is
subject to a persistent process, and estimated news impact curves support the existence
of asymmetry or leverage effect. The model is demonstrated to function effectively
regarding prediction performance in comparison to the competing models known as the
realized GARCH-type models for the daily return and the associated realized measure
of volatility, which is much more informative than the range.
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