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Abstract
Dynamic optimization problems often involve continuous state variables. Casting such problems into dynamic discrete

choice models usually requires variable discretization. When there are multiple state variables, many discretized future

states will be visited with only very small probability conditional on current states. We investigate pruning these small

transition probabilities and applying the sparse matrix-vector multiplication method in value function iterations. We

assess our method in a numerical example inspired by Rust (1987) and Barwick and Pathak (2015). Our method

substantially improves computational performance and reduces memory requirements with little loss in accuracy.

Citation: Yu Wang and Yao Luo, (2022) ''SpMV approaches to dynamic discrete choice models with limited transition'', Economics

Bulletin, Volume 42, Issue 4, pages 2171-2183

Contact: Yu Wang - wangyu5@ryerson.ca, Yao Luo - yao.luo@utoronto.ca.

Submitted: August 31, 2022.   Published: December 30, 2022.

 

   



The dynamic discrete choice model is the workhorse for modeling forward-looking be-
haviors in structural economics and has been widely used in empirical IO, labor, and
macroeconomics. Yet, many forward-looking decisions are made based on continuous
state variables, such as mileage, assets, or technology shock. Formulating such opti-
mization problems into dynamic discrete choice models requires researchers to discretize
continuous state variables. When grids are fine or when there are multiple variables, the
full representation of the transition matrix can be very large due to the curse of dimen-
sionality, rendering standard solution methods such as value function iteration infeasible.

The full representation of the transition matrix is inefficient when there are multi-
ple state variables, and thus many future states may only be realized with very small
probability. We investigate approximating these small transition probabilities as zero,
representing the transition matrix in sparse format, and adopting sparse matrix-vector
multiplication (SpMV) in value function iteration. We assess the efficiency gain of two
sparse representations, Compressed Sparse Row (CSR) and Block Compressed Sparse
Row (BSR), from the perspectives of both computation and memory requirements. Our
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numerical context is a close analogue of Rust (1987) coupled with multiple continuous
exogenous state variables as in Barwick and Pathak (2015).

While a fair amount of work has investigated accelerating the computation of value
function iterations, much less attention has been given to incorporating SpMV. Arcidia-
cono et al. (2016) and Sargent and Stachurski (2022) are among the few papers and notes
that mention the potential speed gain of representing a given transition matrix in sparse
format.

Our approach is related to Gordon (2021), which proposes pruning low-probability
grids in discretizing a VAR process. We differ by assessing the pruning of low transition
probabilities, as well as applying SpMV techniques to these pruned transition matrices
when solving dynamic optimization problems.

2 Dynamic Discrete Choice Models

Similar to Rust (1987), an agent makes decision dt ∈ {0, 1} on whether to replace a bus
engine in each time period t. Denote dt = 1 for replacing the engine and dt = 0 otherwise.
The endogenous state variable, mileage x0,t, evolves as follows:

P
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∣

∣x0,t, dt
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
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0 otherwise

. (1)

Similar to Barwick and Pathak (2015), there are several exogenous state variables captur-
ing the aggregate market conditions. Assume there are three such variables, x1,t, x2,t, x3,t,
all independent from x0,t. The exogenous state variables evolve with a vector autoregres-
sive process,
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where et follows a multivariate normal distribution N(0,Σ).
Denote xt = {x0t, x1t, x2t, x3t}. The flow payoff in period t is u(xt, dt) + ǫt, consisting

of a reward function u(xt, dt) and a choice-specific preference shock ǫt. The flow payoff,
discounted at rate β ∈ (0, 1) intertemporally, is specified as follows:

u(xt, dt) =







α4x0,t exp(α1x1,t + α2x2,t + α3x3,t)

1 + exp(α1x1,t + α2x2,t + α3x3,t)
if dt = 0

α5 if dt = 1
.

The agent chooses dt to sequentially maximize the discounted sum of expected payoffs:

E

{

∞
∑

t=1

βt−1dt

[

u(xt, dt) + ǫt

]

}

,

where the expectation in period t is taken over the future values of state variables and
preference shocks.

Assuming the preference shock ǫt is realized in the beginning of each period t and



follows a Type-I Extremum Value distribution, the standard solution of the problem is
to discretize the continuous state variable vector x into S grids, Ω = {x1,x2, ...,xS}, and
to solve for the ex-ante value function V (x) of the Bellman equation for each x ∈ Ω,

V (x) = log

[

∑

d∈{0,1}

(

exp
(

u(x, d) + β
∑

x′∈Ω

V (x)Prob(x′|x, d)
)

)

]

.

The Bellman equation can be cast in matrix representation:

V = log

[

∑

d∈{0,1}

(

exp
(

u(d) + βQ(d)V
)

)

]

, (3)

with the i-th element of u being u(xi, d), and the (i, j)-th element of matrix Q(d) being
Prob(xj|xi, d). It can be proven that equation (3) consists of one unique fixed point.
The standard method to find this unique solution V is value function iteration, where

researchers start with an initial guess V
0
, then sequentially apply

V
k+1

= log

[

∑

d∈D

(

exp
(

u(d) + βQ(d)V
k
)

)

]

until V
k+1
≈ V

k
.

3 Applying SpMV to Value Function Iterations

To see how costly the standard matrix-vector multiplication Q(d)V can be, note that
the size of the transition matrix Q grows quickly with the number of grids and state
variables. Assuming X has N dimensions, with each dimension discretized into K grids,
the size of Ω will be S = KN , and the size of the transition matrix will be S2 = K2N .
The computational complexity of calculating Q(d)V once is O(K2N) for each action d.
Consider the empirical model in Barwick and Pathak (2015), storing the transition matrix
with 20 grid points for each of four state variables requires over 190 GB of RAM.

On the other hand, the number of state variables also contributes to the sparsity of the
transition matrix, as the joint probability of multiple individually low-probability states
occurring simultaneously can be extremely small. For instance, consider a N -dimensional
random vector Y following N (0, I). The probability Prob(Yn ≤ −2.5) is roughly 0.006
for each dimension n, which is small but still non-negligible. Yet the joint probability
Prob(Yn ≤ −3) for all n is around 0.006N and becomes a tiny 2.1e−7 when N = 3.

Figure 1 panels (a) and (b) illustrate how this force drives the sparsity in the transition
matrix of our numerical example. Each one of the four state variables is discretized into
five grids. Each dot represents a transition matrix element greater than 5.0e−4. The
transition matrix of a single AR(1) variable, as shown in Panel (a), has only 16% of
elements below the cutoff. Yet, the transition matrix of a VAR(1) vector of dimension 3
with each dimension following the same AR(1) process in Panel (a) has 65% of elements
below the cutoff, as shown in Panel (b). Additionally, Panel (c) of Figure 1 illustrates
that the future mileage can only increase when not replacing the engine.

Following the discussion above, we investigate whether approximating these small



Figure 1: Sparsity Patterns in Transition Matrices

(a) x1 (b) x1, x2, x3

(c) x0 when d= 0 (d) x0 when d= 1

(e) x0, x1, x2, x3 when d= 0 (f) x0, x1, x2, x3 when d= 1

Note: x0 represents the endogenous state variable, mileage; x1, x2, and x3 represent
the three exogenous state variables following a VAR distribution; d = 0 represents not
replacing the engine and d = 1 represents otherwise. Each of the four state variables is
discretized into 5 grids; θ0 = 2.0, θ1 = 0.75, θ2 = 0.0. Σ = I. Each blue dot represents a
matrix element greater than 5.0e−4.



transition probabilities as zero, rescaling the remaining probabilities such that each row
of Q(d) still adds up to 1, and storing the rescaled transition matrices in sparse format can
increase computational performance and reduce memory requirement. We first consider
the most common sparse format, CSR. CSR stores in memory only the nonzero elements
and their positions, and multiplies these non-zero elements with the correspondingly-
positioned elements in the vector V. Since this approach skips the data movement and
operation of the zero elements, it can substantially speed up the computation process
when sparsity is high. Specifically, consider anm×nmatrix withNNZ non-zero elements,
represented in CSR format with three one-dimensional arrays (a, ia, ja). The arrays a

and ja are of length NNZ, and contain the non-zero values and column indices of those
values, respectively. The array ia is of length m+1, with ia[1] = 1 and ia[i+1] encoding
1 plus the total number of non-zeros above row i. See Appendix A.1 for more details and
an example.

The second sparse format we investigate is BSR. This is motivated by the observation
that nonzero elements in transition matrices are often contiguous. For instance, consider
yt+1 = φ0+φ1yt+εt, with εt ∼ N(0, σ2). Given current state yt, the future states that will
be realized with non-negligible probabilities are all surrounding φ0+φ1yt and thus form a
dense block.1 BSR partitions the transition matrix using c× c submatrices and, instead
of storing the position of each nonzero element, stores the position of each submatrix
containing at least one non-zero element. Thus, when iterating over all nonzero elements
of a matrix and multiplying them with the vector, the SpMV algorithm takes out a
c × c block of nonzero elements each time it visits the memory under BSR, rather than
a single element as under CSR. This reduction in frequency with which SpMV accesses
the memory under BSR may further speed up the computation process.2

Last, we discuss how sparse representation reduces the memory requirement to store
the transition matrix. As a back-of-the-envelope calculation, each element of an array
requires eight bytes of RAM if using double-digit precision or four bytes of RAM for
integers. Therefore, an (S × S)-sized dense double-digit-precision matrix occupies S2 ×
8/10243 gigabytes of RAM. The storage in CSR is the sum of storage for three arrays,
(

NNZ×8+(S+1)×4+NNZ×4
)

/10243 =
(

NNZ×12+(S+1)×4
)

/10243 gigabytes,
which is much smaller when NNZ is small. The storage in BSR is similar to that of CSR.
Continuing the example in Barwick and Pathak (2015) with four variables discretized into
20 grids each, if 10% of the elements are nonzero, CSR takes up only 28.6GB, which is
well within the RAM capacities of most modern CPUs.

Many software support converting a matrix into its sparse representation. A practical
concern, however, is that researchers may not have sufficient computer RAM to construct
the full transition matrix and supply it to the software in the first place. However, it
is often feasible to construct the transition matrix element-by-element and fill (a, ia, ja)
correspondingly along the way.

One such case is when state variables can be divided into several groups and are
independent across groups (though not necessarily within group). Researchers can first
construct the transition matrix for each group, and compute the full transition matrix
as the Kronecker product of these transition submatrices. Thus, researchers would only
need sufficient RAM to support these transition submatrices instead of the full transition
matrix. In our numerical example, x0,t and {x1,t, x2,t, x3,t} are independent. Considering

1This pattern can be seen in Panel (a) of Figure 1. When there are multiple state variables, the
transition matrix still contains many dense blocks, as shown in Panel (b),(e), and (f) of Figure 1.

2See Vuduc (2003) for an in-depth discussion of BSR.



20 grids of each variable, the size of these two submatrices combined is only
(

(203)2 +
202

)

× 8/10243 =0.48GB.
The second case is when all state variables follow a VAR distribution. Tauchen (1986)

proposes linearly transforming the VAR process and discretizing each dimension of the
transformed VAR. Following this method, we are able to compute the value of each
element in the transition matrix, knowing only its row and column index.

4 Results

To evaluate the accuracy, memory requirements, and run time of our proposed method,
we solve our numerical example under various numbers of grids and parameter value
specifications. Specifically, we implement three solvers using Fortran 90 on a Linux
terminal with 8GB RAM. The Standard Solver is the standard value function iteration
with full representation of the transition matrix. The CSR and BSR Solvers adopt the
corresponding sparse representations. We discretize each of the four state variables into
K grids, where K = {3, 4, ..., 12}. We stop at 12 as we need to compare the accuracy
of SpMV against the standard approach, and 124 is the largest matrix dimension we can
accommodate. See Appendix AC for more technical details.

Figure 2 summarizes the results as state variables are discretized into finer grids. Our
benchmark value function is the solution of the Standard solver with K = 12. As shown
in Panel (a), the mean absolute percentage errors drop quickly with the number of grids,
suggesting a large difference between estimates under coarser and finer grids. The errors
are almost identical for both standard and sparse solvers, suggesting that the sparse
and standard solvers generate sufficiently comparable results. Panel (b) shows that the
computational time for Standard solvers remains similar to sparse solvers until K = 6,
and grows to 10.8 and 12.4 times of CSR and BSR solvers when K = 12. Similarly, as
shown in Panel (c), the memory requirements are similar for all solvers until K = 6, while
the Standard solver takes up 5.1 and 4.5 times the storage space as the CSR and BSR
solvers, respectively, when K = 12.

We then evaluate the three solvers when fixing K = 12 and varying the parameters
θ1 and θ2 in equation (2). As shown in Appendix A.2, the mean absolute percentage
errors remain below 0.4% in all our specifications. The speed gains and the reduction
in memory requirement of sparse solvers relative to the Standard solver is also robust
and stable throughout. The correlation between each exogenous state variable and its
own lagged value, θ1, appears to have a large effect on the storage requirement and
computational time of sparse solvers, as shown in Figure 3 Panel (a). As we increase
θ1 from 0.05 to 0.95, storage requirements decline 40% for CSR and 36% for BSR, and
computational time declines 33% for both CSR and BSR. Intuitively, high autocorrelation
θ1 increases the sparsity, as realizations of future values far away from the lagged values
are even less likely to occur. The correlation between each exogenous state variable and
other variables’ lagged values, θ2, has little impact on the performance of sparse solvers.

5 Conclusion

This paper investigates pruning the low transition probabilities when discretizing contin-
uous state variables in dynamic discrete choice models and applying sparse matrix-vector
representation in value function iteration. Our numerical example suggests a substantial



Figure 2: Comparison of Solvers Across Numbers of Grids
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Figure 3: Comparison of Solvers with Different Parameter Values

(a) Varying θ1
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while holding constant all other parameters.



speed gain and reduction in memory requirements with very small loss in accuracy. The
method proposed in the paper should significantly expand the ability of researchers to
solve and estimate dynamic discrete choice models. Lastly, although interesting and im-
portant, studying how SpMV approaches affect parameter estimates is beyond the scope
of this article. Since Rust (1987), several estimation methods for standard dynamic dis-
crete choice models have become available. See Aguirregabiria and Mira (2010) for a
survey of methodologies and Luo and Sang (2022) for penalized sieve estimators.
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A Appendix

A.1 Compressed Sparse Rows (CSR)

Algorithm 1 summarizes the multiplication process givenQ in CSR format.
Since this algorithm operates solely on the nonzero elements, the time
complexity is reduced from O(mn) to O(NNZ). This is consistent with
the indexing practice of Fortran and Matlab. We stick to this one-based
indexing practice throughout this paper. Alternatively, there is zero-based
indexing corresponding to C, C++, and Python, with ia starting from
index 0 rather than 1, ia[0] = 0, and ia[i] encoding the total number of
non-zeros above row i.

Algorithm 1 SpMV Algorithm with CSR Representation

1: procedure SpMV CSR(a, ia, ja,V) ⊲ Q is represented by a, ia, ja
2: for i = 1, length(ia)− 1 do ⊲ Iterate over rows of Q
3: yc = 0 ⊲ Scalar replacement since reused
4: for k = ia(i), ia(i+ 1)− 1 do ⊲ Iterate over nonzero entries in row i
5: yc ← yc+ a(k)× V (ja(k)) ⊲ Element-wise multiplication

6: y(i) = yc

7: return y ⊲ The output array

For instance, consider the following transition matrix:

Q =





0.7 0.3 0
0.1 0.8 0.1
0 0.1 0.8



 . (4)

The CSR representation of Q is shown in Table I. The SpMV multiplies
each element of a with the corresponding element in V, sums the products
by each row of Q, and generates the output array.

Table I: Example: CSR Representation for Q in Equation (4)

a (0.7 0.3 0.1 0.8 0.1 0.1 0.8)
ia (1 3 6 9)
ja (1 2 1 2 3 2 3)



A.2 Accuracies of SpMV

Figure 4: Comparison of Accuracies of Solvers with Different Parameter Values
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Note: K = 12, θ0 = 2.0, θ1 = 0.75, θ2 = 0.0. Σ = I. Each panel varies one parameter
while holding constant all other parameters.



A.3 Details of Numerical Experiment

Specifically, we implement three solvers using Fortran90 on a Linux termi-
nal with Intel® Xeon® CPU E5-2683 v4 @ 2.10GHZ and 8GB RAM. The
Standard Solver is the standard value function iteration with full repre-
sentation of the transition matrix. It uses the highly-tuned dense matrix-
vector multiplication operator dgemv from the Intel OneAPI Math Kernel
Library. The CSR Solver employs the SpMV operator mkl dcsrgemv for
CSR representation from the same library. The BSR Solver converts the
CSR representation to a BSR representation using operator mkl dcsrbsr
and then employs the SpMV operator mkl dbsrgemv. In BSR, we parti-
tion the transition matrices using 2× 2 submatrices.

When discretizing state variables, we stop at 12 because 124 is the
largest matrix dimension we can accommodate. We have two transition
matrices corresponding to d = 0 and d = 1. K = 12 generates two matrices
taking up 6.4GB combined. K = 13 generates two matrices taking up
12.2GB combined. We discretize the three exogenous variables following
Tauchen (1986). Our precision cutoff for sparse representation is 5.0e−4

when K ≤ 6, 2.0e−4 when K ∈ {7, 8}, 1.0e−4 when K = 9, 6.0e−5 when
K = 10, 2.0e−5 when K = 11, and 1.0e−5 when K = 12. All elements
below the precision cutoff are treated as zero. We select these cutoffs such
that the sum of the transition probabilities approximated to zero remains

below 2%. For all solvers, our initial guess is V
0
= 0. Convergence is

defined as max |V
k+1
−V

k
| < 1.0e−8.

We measure accuracy, memory requirements and run time of the three
solvers as follows. For accuracy, we first generate 54 benchmark grids by
discretizing the four state variables. Next, we set our benchmark value
function as the solution of the Standard solver with K = 12. Then, we
compute the mean absolute percentage error between the value function
estimates of each solver and the benchmark value function at these 54

benchmark grids. If the value functions in question are not evaluated at
these benchmark grids (for instance, when we evaluate the value function
with K = 7), we linearly interpolate their values. CSR and BSR generate
identical value function solutions, so we plot the accuracy of CSR only. For
memory requirements, we mean the RAM needed to store the transition
matrices. For run time, we capture the computational time for the value
function iteration part of each solver. We do not include the time to
construct a transition matrix in either standard or sparse format. As
the transition matrices remain the same throughout the value function



iteration, this step only needs to be completed once and can be performed
separately from the value function iteration.


	Introduction
	Dynamic Discrete Choice Models
	Applying SpMV to Value Function Iterations
	Results
	Conclusion
	Appendix
	Compressed Sparse Rows (CSR)
	Accuracies of SpMV
	Details of Numerical Experiment


