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Abstract

In this article, I develop a new monopolistic competition model where the product variety space is a network defined
as a "graphon". I determine and fully characterize the free-entry equilibrium of such a new setting. I obtain two major
results. First, I find that denser networks generate less entries, lower aggregate quantities and lower welfare. Second,
compared to the standard monopolistic competition model without network structure, the new setting generates more
entries, higher aggregate quantities and higher welfare.
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1 Introduction

Network externalities have become inescapable in economics (see Jackson et al. 2017).
Notably, network externalities play a central role in the pricing rule of firms (see Bloch
2016, and Ushchev and Zenou 2018). However, it is worth noting that this literature
faces three drawbacks. First, the literature focuses solely on the case where there is a
finite number of firms. Firms are either part of a duopoly or an oligopoly. The case with
an infinite number of competitors is not studied. This assumption is restrictive because
many markets are composed of a very large number of firms (see Aumann 1964). It is
also restrictive because most theoretical models in macroeconomics and international trade
are based on monopolistic competition with a continuum of firms. Second, the literature
considers models with no entry. The free-entry case is left out. This means that the
interaction between the consumer/product network and the decision to enter made by
firms is not understood. Third, existing models in the literature are not very tractable.
The main reason for this is that these models are based on the study of an adjacency
matrix. Such a mathematical object is complicated to analyze and sometimes requires
strong assumptions.t So, it is rare to derive explicit solutions, and models can be very
cumbersome. This overall lack of tractability is undesirable as it translates into a lack of
interpretability, making it difficult to identify the consequences of the network structure.
As a consequence, extending the case from a finite number of firms to the case with an
infinite number of firms should be more practical.

In other words, the effects of network externalities in a monopolistic competition model
with free entry are still opened questions. Is it possible to develop a monopolistic compe-
tition model with infinite product variety networks? If so, how to model a network when
the number of varieties is infinite? What are the features of a free-entry equilibrium?

In this article, I answer these questions. Toward that goal, I develop a new monopolistic
competition model where preferences are linear-quadratic and where the degrees of substi-
tutability of varieties are given by a graph/network w. When there is an infinite number
of varieties, the suitable notion of network is a graphon.? In particular, I emphasize that
the best form for the graphon is when it is constant w = 1 where 1 is a measure of the
network topology. An increase in ¢ (i.e., a denser network) means that products are more
subtitutes. The constant graphon is the best form because it is standard, interpretable,
tractable, finds empirical support and is microfounded since it is the unique limit of Erdos-

Rényi random graphs.? T then determine the free-entry equilibrium (which exists and is

!For example, Ushchev and Zenou (2018) have to assume a profit function of the form 7 = pq instead
of the standard form 7 = pg — cq — f to derive their elegant results.

2Graphon for graph function, see Glasscock (2016), Avella-Medina et al. (2018) and Parise and Ozdaglar
(2018).

3See Lovész and Szegedy (2006) and Lovész (2012).



unique and explicit due to the constant graphon) of this new framework.

I find the following. I demonstrate that denser networks are associated with less entries,
lower aggregate quantities and lower welfare. Equivalently, relative to the standard monop-
olistic competition model without network, the new model generates more entries, higher
aggregate quantities and higher welfare. T offer an intuitive rationale for these results.

This article contributes to the literature of imperfect competition models with product
variety networks. Within a large literature, Ushchev and Zenou (2018) are the first to
characterize the Bertrand-Nash equilibrium of firms evolving in a finite graph. Chen et
al. (2018) focus on a duopoly setting and show that the social network of consumers can
affect the firms’ prices. Chen et al. (2022) generalize Chen et al. (2018). They build
an oligopolistic competition model with consumer networks and study how the topology
network interacts with prices and the number of firms. To the best of my knowledge, the
present article is the first to study a monopolistic competition model with infinite product
variety networks and with free entry of firms. One contribution is to underline that the
appropriate framework is the constant graphon when the number of varieties becomes
infinite. Another contribution is to show that a free-entry equilibrium behaves well under
the constant graphon, so that it is possible to identify all the effects of the network structure
on key economic variables.

The article is structured in the following manner: Section 2 presents the model and the

results, and Section 3 provides the conclusions.

2 Monopolistic competition and infinite networks

In what follows, I derive the results of the article step-by-step.

2.1 The constant graphon as the best model for infinite product

networks

The economy is populated by a unit mass of identical households.

2.1.1 The Erdés-Rényi graph

Households derive utility U from consuming a set of N varieties of a differentiated good
produced in a single industry. N is assumed to be (very) large meaning that the scale of
the economy is nationwide. As usual, each variety is produced by a single firm.

As in Ottaviano et al. (2002) and Ushchev and Zenou (2018), U is linear-quadratic

such that:
N 3 N N N
U(X,GN) = x0+a2xi — 52:1022 _VZZQM%%‘
i=1 i=1

i=1 j=1



where x is the consumption profile, x; is the consumption of variety ¢ € {1,..., N} and x
is the level of consumption of an outside good. « accounts for the consumers’ willingness
to pay for varieties, § captures the consumers’ love for varieties and 72?;1 Zjvzl GijTiT;
measures the substitutability linkages across varieties.

The interactions between varieties/firms are captured by an adjacency matrix denoted
by GN. GV = (9ij); j—1.. v 18 an N X N symmetric matrix with binary entries {0,1}:
gi; = 1 if there is a "link" between varieties 7 and j, g;; = 0 otherwise, and g;; = 0 for all
i€ {l,...,N} and for all j € {1,..., N}. In other words, two varieties are "substituable" if
they are connected.

In addition, as the number of firms is very large, the adjacency matrix has a specific
form. The exact structure of the network does not matter: the exact distribution of "0"
and "1" is inconsequential. The adjacency matrix can be randomly constructed, and what
matters is the average interactions across varieties. In particular, the suitable notion for
G" is when G¥ follows an Erdos-Rényi graph. Erdos-Rényi graphs constitute a (standard)
class of finite graphs that are built by connecting nodes/varieties randomly. Any possible
link between any two pair of nodes has a probability ¢ € [0, 1] to exist.* When the number
of firms is large, the adjacency matrix is an Erdés-Rényi graph for four reasons. First, it is
well-acknowledged that Erdés-Rényi graphs are the best objects to generate, characterize
and study large networks with binary entries (see Easley and Kleinberg 2010). Second,
the interactions across varieties are controlled by a simple and interpretable parameter. v
can be viewed as a global measure of network topology. An increase in v implies "denser"
networks of firms as firms/varieties are more connected. Third, Erdos-Rényi graphs find
empirical support in the sense that it is easy to estimate the value of ¢ using data and
using the algorithm proposed by Sealfon and Ullman (2019).° Last, Erdos-Rényi graphs

have the best asymptotic properties among the class of random graphs (see next section).

2.1.2 The constant graphon
When N — 400, households derive utility &/ such that:
1 1 1,1
U(q, W) = qo+ a/ q(i)di— 5 | q(i)’di =~ w(i, j)q(i)q(j)didj
0 0 0o Jo

q is the consumption profile, ¢(4) is the consumption of variety ¢ € [0, 1] and ¢ is the level

of consumption of an outside good.® The term yfol fol w(i,7)q(i)q(j)didj summarizes the

4As a consequence, the probability that a firm has edges to M < N other firms and no edges to the
rest of N — M firms is (;))¥™ (1 — 1)V ~*. This also implies that the average number of connections in
the graph is simply N4, and the associated variance is therefore N(N — 1)?. Last, note that the product

network is "complete" when 1 = 1 as all firms are direct competition with each other.
5See Appendix A for a short methodological comment.
5As before, o is the consumers’ willingness to pay for varieties and 3 captures the consumers’ love for

varieties.



substitutability linkages across varieties, and W is the continuum analog of G .

Here w(i,j) is a graphon that describes the interaction between varieties i and j. A
graphon is any symmetric B ([0,1]) x B ([0, 1])-measurable real-valued square-integrable
function where B ([0,1]) is the Borel o-field of the set I = [0,1]. w is also connected to
the graphon operator W : L2 ([0, 1]) — L? ([0, 1]) defined by [W f], = fol w(i, 7)f(j)dj with
feL*([0,1]) and i € [0,1].

As GV has a particular form, W and w have a particular form too. Notably, it is
well-acknowledged that, when varieties become infinite, a sequence of Erdés-Rényi ran-
dom graphs denoted by (G")y>; converges (almost surely) toward the constant graphon
w(i,j) = 1 for all (,7) in [0,1]? (see Lovasz and Szegedy 2006, and Lovész 2012). Tt is
worth noting that this convergence exists and is unique, explicit and tractable. In turn,
this tractability implies that a free-entry equilibrium exists, is unique and has a closed-form
solution (see Sections 2.2-2.3).7

Under this convergence, preferences can collapse to:

U(q,W)ZqOﬂLOé/Ol()dl—é/ )?di — W// j)didj

Remind that v captures the degree of subtitutability between any two substitutes and
that v is the probability that any two varieties are substitutes. Consequently, v can be
interpreted to be the average degree of substitutability between firms. Equivalently, vy

represents a measure of the extent/toughness of competition between firms.

2.2 Infinite-firm game with no entry
2.2.1 Consumers’ program

The budget constraint of households is as follows: ¢q + folp(i)q(i)di = Gy + y where
Qo is the initial endowment in the numéraire, p(i) is the price of variety ¢ € [0,1] and
y is the revenue of households. Under this environment, the consumers’ program is:
maxqg U(q,W) st g+ fo q(i)di = G, + y. Solving this problem leads to:

p(i) = o — Bq(i) w/ J)dj, Viel0,1]

This is the standard inverse demand function augmented by the presence of the constant

graphon 1.8

"See Appendix B for a summary of all the desirable properties of the constant graphomn.
8Set 1) = 1 to find the classical inverse demand function in standard monopolistic competition models.



2.2.2 Firms’ program

Plugging the expression of p(i) into the traditional definition of the profit function 7 yields:

1
(i) = p(0h(i) — i) — £ = | = Bat@) =10 [ aiai] )~ a0 - £, Vi€ 0.1
0
where ¢ > 0 is the constant marginal cost and f > 0 is the fixed cost. Consequently, the
firm i’s program is as follows: max,(;>o { [a — Bq(i) — vy fol q(j)dj] q(i) — cq(i) — f}.
2.2.3 Symmetric equilibrium
Under this setup, a symmetric equilibrium denoted by (¢, pk,,Ur,) is as follows.

Proposition 1 A symmetric equilibrium is characterized by the following:®

4y, Do o,
_31D < 0, 9 < 0, 9 < 0.
o B (B+)
* a—==cC ~ * « YW)C - « ~
no — > nos no — > U o > Uno.
q 25 + o q p

W4y 2w S

where the superscript e,, denotes the result in the traditional monopolistic competition

model with no entry but without network.

The effect of network topology is unambiguous. An increase in 1 induces lower prices,
lower quantities and lower welfare. Equivalently, the new monopolistic model predicts
higher prices, higher quantities and higher welfare relative to the standard monopolistic
model. In both cases, the explanation is the same.!? By definition, a denser network means
that varieties are more often linked and so substitutes. In practice, this means that each
firm produces a less differentiated product. As a result, firms are now operating in a tougher
competitive environment. They know that if they raise their prices, part of their demand
will shift to other competitors, since goods have become more similar/substitutable. This
squeezes their margins and puts downward pressure on prices. In addition, the fact that
goods are more homogeneous also means that more firms are addressing the same demand.
Firms serve a smaller market. At equilibrium, their market share declines. The combination
of lower prices and lower quantities also leads to lower profitability. Last, at first examina-
tion, the welfare consequences of an increase in the density of the product-variety network
are unclear. Lower prices benefit consumers, while lower quantities penalize them. Here,
the net result is negative, since the negative effect of lower quantities always outweighs the

positive effect of lower prices.

9See Appendix C for a proof.

au;, ~
o0 <0=>U, > Uno

aslong as ¥ < 1. Remind that ¢ < 1 implies that the role of competition in the new framework is diminished

10Tt is easy to demonstrate that Bg—i" <0=¢q}, > Gnos 65—;3” < 0=p}, > Pnoand

compared to the standard model.



2.3 Infinite-firm game with free entry

So far, the number of firms is fixed. Hereafter, I relax this assumption by considering that
there are n > 0 (potential) competitors in the industry.

2.3.1 Consumers’ program

In that case, the linear-quadratic preferences reduce to the following:

U(q,W)Zq@Jra/an(i)di—g/o )2di — W/ / 7)didj

Solving the consumers’ program leads to:

p(i) = a — Bq(1) 71/1/ J)dj, Vi€ [0,n]
Under free entry, the degree of competition faced by firms is measured by yi¥n where vy
is the overall degree of product substitutability and n is the number of competitors.
2.3.2 Firms’ program

Plugging the expression of p(i) into the profit function 7 yields:'!
m(i) = {a — Bq(i) / Yq(j dy] (i) — cq(i) — f, Viel0,n]
and the firm ¢’s program is: max,;>o { [a — Bq(i) — v fo } q(i) — cq(i) — f}.

2.3.3 Symmetric equilibrium

Under this new environment, a symmetric equilibrium denoted by (n?, ¢*, p*, Q% UY) is as

follows.

Proposition 2 A symmetric equilibrium is characterized by the following:'?

on’ oq: op 0Q: u:x
<0, —¢=0 c=0 £ <0, =<0
EERR VR VL WS S ")
and
* 1 a—C ~ * ~ * ~ * A * y
Neg = — - QB > N, Qe = Ge;  Pe = De, Qe > Q67 Z/{e > z/[e'
Y f

B

where Q = nq 1s global quantity and where the superscript o, indicates the result in the

traditional monopolistic competition model with free entry but without network.

n this article, firms are assumed to be homogeneous. However, it is possible to consider heterogeneous

firms with different cost functions. This may complicate the model and I leave this for future research.
12Gee Appendix D for a proof.



As in Proposition 1, the effect of network topology is clear. An increase in 1, implying
an increase in variety substitutability, results in lower firm entry (i.e. extensive margin),
lower aggregate quantities and lower welfare. However, a denser network has no impact
on quantities per firm (intensive margin) and prices. Equivalently, the new model predicts
more firms on the market, higher overall quantities and higher welfare than the classical
model. In both cases, the intuition is the same.!® Since firms now produce less differentiated
goods, they compete more fiercely for consumers. This squeezes their margins and lowers
their profit expectations. In turn, this limits the entry of new actors into the market.'*
Unlike the case without endogenous entries, producing more similar goods is inconsequential
on prices and the intensive margin of firms. This is a standard property of linear-quadratic
preferences. Intuitively, the fact that each firm sells a more substitutable good should
lower prices and quantities for the reasons outlined in Section 2.2. What changes under
the free-entry condition is that the toughness of competition between firms depends on
both the general substitutability of varieties captured by v and the number of active
firms n. A denser network induces more substitutability, but also fewer competitors. The
net effect is therefore generally ambivalent. Under linear-quadratic preferences, the two
opposing effects cancel each other out, leaving individual quantities and prices unchanged.
In addition, the fact that the intensive margin remains the same implies that the global
quantity Q* and welfare U* are entirely pinned down by the extensive margin. Since there
are fewer firms on the market, aggregate quantities decrease. Last, as each firm produces a
specific variety, fewer firms mean fewer varieties of the good, and therefore less choice for

consumers. This naturally reduces consumer welfare.

3 Conclusions

In this article, T develop a new monopolistic competition model where preferences are
linear-quadratic and where the product variety space is a network defined as a graphon. I
study the free-entry equilibrium of such a framework. I demonstrate that denser networks
are associated with less entries, lower aggregate quantities and lower welfare. Relative to
the standard monopolistic competition model without network structure, the new setting

generates more entries, higher aggregate quantities and higher welfare.

on* ~ oaq™* - op™ ~
n6<O:>nZ>ne,a%;:O:>q;‘=qe, 66;:0:>p:=pe,

31t is easy to demonstrate that = "
a(%: <0= Q> Q. and %ZE < 0=U*>U, as long as 1) < 1. Remind that ¢ < 1 implies that the role

of competition in the new framework is diminished compared to the standard model.
4“Remind that v is a parameter that controls competition toughness. If 1/ increases, varieties are more

often linked and so substitutes.
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A Methodological comment

It is worth noting that adopting a statistical point of view when the number of competitors
becomes large is fairly natural in economics. This is the famous result of Aumann (1964)
stating that exchange economies converge toward markets with an atomless continuum of
traders. What matters is the statistical distribution of traders when the number of these
traders becomes large. This point of view is also present in Game Theory. For example, in
an n—player game, it is common to substitute the strategy profile of the other players a_;
by the empirical measure ZZ;; da, of the other agents such that r(a;, a—;) = r(a;, ZZ;; ay,)
where r is the reward of the game, a; is the action/strategy of player ¢ and § is the Dirac

probability measure.

B Why is the constant graph the best network model

when the number of varieties 1s infinite?

The constant graph is the best network model when the number of varieties is infinite,

because the constant graph is:

- standard, since the constant graphon is a basic graphon in the literature.

- interpretable, since the 1 parameter is a measure of the substitutability of the good’s
varieties.

- finds empirical support, since the 1) parameter can be easily estimated.

- simple and therefore tractable. This tractability is key, since it means that a free-entry
equilibrium exists, is unique and has a closed-form expression. The fact that the free-entry
equilibrium is explicit makes it possible to determine the effects of network structure on
quantities, prices, profits, the number of varieties and consumer welfare.

- microfounded since the constant graphon is the limit of Erdés-Rényi graphs, and this

limit is well posed because it exists and is unique.
In turn, Erdos-Rényi graphs have desirable properties as they are:

- standard, since they are basic random graphs in the literature.
- intuitive, since they only assumes that any two pair of nodes has a probability v to exist

- finds empirical support, since the 1 parameter can be easily estimated.

To my best knowledge, only the constant graphon has all these good properties. To confirm
this, note that another explicit graphon is the power graphon: w(i,j) = (ij)¥ with ¢ > 0

being a constant. Unfortunately, such a graphon emerges as the limit of coupled Kuramoto



phase oscillators, which has no economic sense. Moreover, this graphon is not tractable as

the free-entry condition becomes the following:

1 ) 1l Y g (28) [
1+_w) 1 dz':( ) !

L(le-3) ) «- G5

-1 i1
<I+ﬂw) 1] 14 (1 —27)
28 ; -n(1-2y-%)o

This makes the free-entry condition highly non-linear such that the equilibrium mass of

with

firms may not exist and may not be unique.

C Proof of Proposition 1

The firm ¢’s program is defined as follows:

max { o= st = [ 6.9 o) — cat - 1}

q(4)>0

Such a problem is "well-posed" in the sense that there exists a unique solution denoted by

¢:,(7) and that is determined by the following first order condition:

_ 1
Gali) =55 — 55 | @ DaL)d €01

Then, using the property of W, and defining the resolvent operator as follows:

-1 2 3
Y B Tw _ () 2 e 3
(tgw) v e ()W (7)) W

the vector of equilibrium quantities denoted by q*, can be expressed as:'

-1
@, = C<I+ 7W> 1

2 23
As the limiting graphon from Erdés-Rényi graphs is the constant graphon, it can be readily
verified that W satisfies: W1 = 1/*1 with k being a positive integer. As a consequence,

the resolvent operator becomes:

—1 2 3
N L W (N e, (Y s 28
<I+26W) 1_1+_261 (—25) 1 +<25> 1 "'_—2B+w1

5Existence and uniqueness of q* are established if 25[W][ <1 where ||| denotes the operator norm.

The operator norm coincides with the largest eigenvalue of W (see Avella-Medina et al. (2018) and Parise
and Ozdaglar (2018) for more details).



and the equilibrium quantity /consumption per firm denoted by ¢, is:

a—c a—c  0q,

C]ZOZ—Z@}LO: 5 <0
26 +7¢ 26+~ OY

as ¢ < 1, and where @,, is the equilibrium quantity in the standard monopolistic com-
petition model with no entry but with no network. Integrating this relationship into the

pricing rule gives the equilibrium price per firm denoted by p; such that:

of  Brle,; _ B | (BEy)e I
26+ 208+ 26+~ 20+~ oY

as ¢ < 1, and where p,, is the equilibrium price in the standard monopolistic competition

<0

* J—
pno -

model with no entry but with no network. Last, note that the following holds in equilibrium:

* * 5 * *
u (qno) =qo+ Aldpy — 5 (qn0)2 - 7¢ (qno)Z

2
_ * * * /8 *
=qo+ (OZ - ﬁqno - 7¢Qno) Ao + §qno
* * /8 *
=qo+ Prono + §qno
As oy <1, 8;—5;" < 0 and 85—3}" < 0, this implies that:
ou* N
2 <0 and U, > U,
oY

where U,, is the equilibrium utility in the standard monopolistic competition model with

no entry but with no network.

D Proof of Proposition 2

The firm ¢’s program is defined as follows:

e { [ i) 90 [ atirii| ) - cati) - 1

q(1)>0

Such a problem is "well-posed" in the sense that there exists a unique solution denoted by

¢ (i) and that is determined by the following first order condition:

q. (i) = 23 —% ;

Solving the above equation yields:

q¢:(j)dj, Viel0,n]

 a-c
2B+ yun

*

e



In addition, integrating the expression of ¢’ into the profit function yields:

2
a—c
= — ] -
’ <2ﬁ+wn) d
Assuming free entry m = 0, and after some algebra, I find the following equilibrium mass

*,
e

of firms denoted by n

1 (a- 1 [a- on
' CC g va, == [ 9|, Ze g

CT v\ T 0
ok % v \/% (0

as ¥ < 1, and where n. is the equilibrium mass of firms in the standard monopolistic

competition model without network. Plugging this solution into the expression ¢ leads to:

o=l —g, % _y
Vs T o

where ¢, is the equilibrium individual quantity in the standard monopolistic competition

model without network. Using the pricing rule, this also implies that:

» 15} a—c - op?
= — — — - 9 = — =
p=a-p o) =5 o

Vi

where p, is the equilibrium price in the standard monopolistic competition model without

=0

network. Similarly, defining aggregate quantities as () = ngq, it is readily verified that:

Q= (22 9p \/Ezéze:l Az _gg) )8 2

:v_w\/g 1\ /3 JAY

as ¢ < 1. Last, note that the following holds in equilibrium:

* * _k 6 * E3 * *
U(q)) = qo+aniq; — =ni () — v (niq))?

2
o * N 6 -
= qo + (Oé - /qu - ’ywneqe) Nede + §neqe
o k% 6 -
= qo + PeNede + Eneqe

As ¢ <1, pi = p. and QF > Q., this means that:
u: > U.

where U, is the equilibrium utility in the standard monopolistic competition model with

no network. Similarly, as %i’f =0 and 85% < 0, this implies that:

U

o

<0




E Finite-firm game

E.1 Consumers’ program

Households face the following budget constraint: o+ 21111 pix; = To+y with p; being the
price of variety i, Ty being the endowment of zy and y being the revenue of households. Un-
der this environment, the consumers’ program is defined as: max, U (x, G ) s.t. xo+

Zf;l PiT; = Top + y. Solving the consumers’ program gives:
N
pi = o — Px; — ’ngijlﬂj
j=1

This is the standard inverse demand function augmented by the linkages across varieties.
Set g;; = 1 for all (¢,7) to end up with the standard result in monopolistic competition
models. As U is linear-quadratic, the inverse demand function is independent of y the

revenue of households.

E.2 Firms’ program and equilibrium quantities/consumptions

Integrating the above result into the profit function II gives:
N
I = piw; —cx; — f = (04—5% —VZgiﬂj) x; —cx; — f
j=1
where ¢ is the constant marginal cost and f is the fixed cost. In that case, the firm i’s

program is simply: max,, {(a — Bx; — 7y Zjvzl gijxj> xT; — cr; — f}. Solving the firm ¢’s

program leads to the following:

N
o — C Y
T = — 57 9%,
25 2B; 377

and equilibrium quantities denoted by x* can be re-written in "matrix form" as follows:'®

-1
x" = a ¢ (IN + lGN) 1N

23 23

-1
Iy is the N identity matrix and 1, is the N-dimensional vector of ones and (IN + %GN>

is defined as follows:
v - o 7\ 7\’
I LGN =1 LGN - [L) gM L) GV — .
(”25 ) AT (2@) 25

16Following the Perron-Frobenius theorem, the equation is well-defined if % < W with /\maz(GN )

being the largest eigenvalue of G" .



In line with Ushchev and Zenou (2018), equilibrium quantities are a function of centrality
measures as X* depends on the sign-alternating Bonacich centrality measures of varieties
(see Bonacich (1987)). Last, note that, as the limiting graphon from Erdos-Rényi graphs
is the constant graphon, it can be readily verified that the following holds:

x* —q° when N — o0

F  Discussions

So far, the analysis of the model has been focused on Industrial Economics. However, the
model may have marketing and management implications. These implications could be
the subject of future, more in-depth research. With regard to marketing, a denser product
network should encourage each firm to invest more in marketing to counter the rise in
competition by making the product more differentiated. In this case, the v parameter
becomes the firm’s choice, and an increase in ¢ should imply a decrease in v in the medium
term. With regard to management, it is possible to assume that the productive capacity
of firms depends positively on management effort. In this case, the effect of an increase
in competition induced by a denser/connected consumer network could be lessened by an

increase in management effort.
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