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Abstract

We consider situations where players hit targets with known probabilities and are rewarded according to given rules.
The division of the expected payoff resulting from their joint actions is studied in the context of transferable utility
games, using the Shapley value as the allocation rule.
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1 Introduction

Consider a group of actors (or factors) and a target that each actor is able to hit with a given
probability. In this framework, the question of the allocation among the agents of the resulting
overall probability of success comes in. Framing this problem as a cooperative game with
transferable utility — a probability game — Hou et al. (2018) have proposed to use the Shapley
value. Probability games and their duals have been further studied by Dehez (2023) together
with a proper axiomatisation of the Shapley value on probability games.

The present paper extends the previous setting by considering a situation where there are
several targets to which payoffs are associated. The question then concerns the allocation of
the resulting expected payoff. This is an ex-ante allocation that provides a key to the
apportionment of actual payoffs.

We consider different scenarios, assuming that each player hit at most one target. If a coalition
forms, payoffs could be allocated depending simply on the targets hit by its members.
Alternatively, if some of its members hit a same target, the payoff could be allocated to that
coalition only once. And a payoff could go to a coalition only if the associated target has not
been hit by the complementary coalition. The games emerging under the first scenario are
additive and, as a consequence, the Shapley value allocates to players their individual expected
payoffs. It turns out that the games emerging from the two other scenarios lead to games that
are dual to each other. As a consequence, they both rise to the same Shapley value, a remarkable
result.

Potential domains of applications are many. Here are two examples. In portfolio management,
where rewards are the feasible returns and players are securities, the Shapley value allows for
the identification of the relative contribution of each financial investment. In health matters
where rewards are health indices and players are risk factors, the Shapley value allows for the
identification of the relative importance of each factor. Insurance management is another
possible example.

In all three scenarios, payoffs are being added. In contrast, we consider a situation where, if a
player joins a coalition, its payoff is being multiplied by a coefficient that is specific to that
player: a payoff for a player is associated to his ability to increase the payoff of a coalition. The
coefficient is assumed to be a random variable with known probability distribution. The
associated transferable utility game is a cooperative product game, a concept introduced by
Rosales (2014) in an unpublished memo and studied later in more detail in Dehez (2024).

The paper is organised as follows. Probability games and their duals are defined in Section 2.
Targets are introduced in Section 3 and three scenarios are considered, assuming that payoffs
are added. Section 4 is devoted to the case where payoffs are multiplied. The last section covers
concluding remarks.

2 Probabilistic situations

Consider aset N = {1,...,n} of players facing a target. By his actions, a player alone can hit the
target with a given and known probability, p; € [0,1] for player i. Probabilistic independence
prevails: the success of a player is independent of the success of the other players. A pair (N, p)
defines a probabilistic situation.



A transferable utility game (TU-game for short) is a pair (N,v) where N is the set of players
and v is a (characteristic) function that associates a real number to every subsets (coalitions) of
N. By convention, v(&) = 0.

Notation: Finite sets are denoted by upper-case letters. Lower-case letters are used to denote
their cardinals: # = |71, s = 1S], ... Set inclusion (non-strict) is denoted by —. For a vector x, x(S)
denotes the sum of its coordinates over the subset S. Set inclusion, non-strict and strict, are
denoted by — and ¢ . Braces are sometimes omitted for coalitions, for instance v(i,j) replaces
v({i,j}). By convention, a sum over an empty set is zero and a product over an empty set is
equal to 1.

2.1 Probability games

Given a probabilistic situation (N, p), Hou et al. (2018) define the transferable utility game
(N,v) whose characteristic function v is given by:
v(§)=1-]Ja-p,) forall S = N. (1)
ieS
v(S) is the probability that at least one member of S succeeds. The game (N,v) is concave and
thereby subadditive. The dual game (N,v") is defined by:

vd(S)=v<N)—v(N\S>=H(1—pi>—1‘[(1—p,.>=(1—H(1—p,->jH(1—pi). @)

ieN\S ieN ieS ieN\S

v!(S) is the probability that at least one player in S succeeds, assuming that players outside S

all fail. The game (N, v") is convex (and thereby superadditive) as dual of a concave game.1

By definition of the dual, the probability to be allocated among the players is the same in both
cases: the question concerns the division of the collective probability of success that is given
by v(N) =v*(N).

2.2 The Shapley value of a probability game

Given a set of players N, the set G(N) of all characteristic functions on N coincides with the
real vector space R* . In proving the uniqueness of his value, Shapley (1953) shows that the
collection of unanimity games (u;);_y ;. defined by
u(S) =1 ifTcS,
=0 ifTeS,

is a basis of G(N): given a characteristic function v in G(N), there exists a unique (2" —1)—
dimensional vector (a; ),y r.o such that:

V()= au(S)=) a. 3)
TcN TcS
The coefficients a, can be defined recursively, starting with a, =0, as follows:
a, =v(T) =Y a; = & = D (=D u(S) forallT < N. 4)
SCT ScT

U'A game (N,v) is superadditive if v(SUT) = v(S) + v(T) for all disjoint subsets S and 7. A game (N,v) is convex if
v(SUT) + v(SNT) 2 v(S) + v(T) for all subsets S, T. It is subadditive (resp. concave) if the game (N,-v) is
superadditive (resp. convex). For more on convexity of TU-games, refer to Shapley (1971).



Following Harsanyi (1959), «,(N,v) is the dividend accruing to coalition 7" once all sub-
coalitions have received their dividends. By (3), the sum of all dividends is equal to v(N). An
allocation can then be obtained by distributing the dividends of each coalition among its
members. Harsanyi shows that the Shapley value gives to each player the sum of the per capita
dividend of the coalitions of which he is a member. Hence, we have:

1
SVAN.v= D =a(Nv). (5)
TcN:ieT
Using (4), the Harsanyi dividends of the probability game (N,v) associated to the probabilistic
situation (N, p) are given by:
a,(N.,v)==D"T]p. (6)
ieT
They alternate in sign according to coalition size and have no particular interpretation. The
dividends of the dual game (N,v") are given by:
aT(N,Vd)ZHPj H(l_p,) (7)
jeT JEN\T
It is the probability that players in T all succeed while players outside 7 all fail. Dividends of
dual probability games are nonnegative: dual probability games are positive, a class of games
on which solution concepts converge: the core coincides with the set of weighted Shapley
values and the Harsanyi set that collects all possible distributions of dividends (see Dehez,
2017 for a survey).

The Shapley value is a self-dual allocation rule: the value of a game coincides with the value
of its dual. Introducing successively (6) in (5) and (7) in (5), we obtain two equivalent
formulations of the Shapley value associated to a probabilistic situation (N, p):

svp= > - 3 o, ®

TcN:ieT jeT TCN ieT jeT\i

and

SV.AN.p)= D, Hp [Ta-pp=p > - Hp I[Ta-rp 9)

TcN: IET jeT JEN\T TcN: teT jer'li JEN\T

where i = 1,...,n. Hence, whatever is the definition of the probability of success of a coalition,
(1) or (2), the Shapley value defines the same allocation: (8) and (9) coincide.

The Shapley value follows a natural decomposition of the collective probability of success. In
the 2-player case, the collective probability p, + p, — p, p, is decomposed as follows:

1 1
X =D _§p1p2 and x, =p, _5p1p2'

This decomposition is easily extended to any number of players. In the 3-player case, the
collective probability is given by p, + p, + p,— p,p, — p,ps — P,P; + P,P,P; and the amount
allocated to player 1 is given by:

1

1 1 1 1 1
X =D _Eplpz _Ep1p3 +§p1p2p3 =D (l_apz —§P3 +§p2p3j'

Looking at (8), we observe that the Shapley value allocates to a player a share that is
proportional to his probability of success: SV,(N, p) = p, f(p_,) where p.; denotes the vector



of probabilities from which the coordinate i has been eliminated and f:R"" — R, is the
player-independent and symmetric* function given by:

f@=1+ > =D Iz (10)

T, ,n-1} +1 jer

In Dehez (2023), it is shown that proportionality, together with efficiency and symmetry,
characterises the Shapley value of a probability game: there is one and only one function f
verifying these three properties.’

3 Associating payoffs to targets

We consider situations where there may be several targets. Probabilities and a payoff are
associated to each target enabling the definition of a transferable utility game (N,w) where
w(S) is the expected payoff resulting the coordinated actions of the player in S. The resulting
Shapley value SV (N,w) then defines a fair allocation of the expected payoff w(N) and a
distribution key (¢,,...,c,) where a, = SV.(N,w)/w(N) measures the relative contribution of
player i. That key can then be used to allocate the realised payoff.

We first consider the case of a single target, extending the previous section. The case of several
targets is analysed thereafter within different scenarios.

3.1 The case of a single target

Let r be the payoff associated to the target, » > 0. There are two possible scenarios. In the first
scenario, a coalition obtains the payoff if it succeeds, independently of the success or failure of
the complementary coalition. If coalition S forms, its expected payoff is given by:

wO(S)z(l—H(l—pi)jr (11)
ieS
Referring to the probability game (N,v), we have w,(S)=v(S)r. In the second scenario, a

coalition obtains the payoff if it succeeds while the complementary coalition fails. If coalition
S forms, its expected payoff is given by:

Wg(S):(I_H(l_pi))H (l_pi)r- (12)

Duality applies: w; (S)=v*(S)r. In both cases, the question concerns the allocation of the
collective expected payoff given by:

wy(N)=wy (N)= (=] [A=p))r.

ieN
By self-duality, the Shapley value can be computed indifferently from (11) or (12). By linearity
of the Shapley value, it is simply given by:

SV.(N,p,r)=SVi(N,p)r
where SV,(N, p) is given, by (8) or (9).

2 A function is symmetric if permuting its arguments leaves its value unchanged.
3 Efficiency requires that the value of the game v(N) is exactly distributed. Symmetry requires that an identical
amount is allocated to pairs of players who contribute identically to coalitions to which they both belong.



3.2 The case of several targets

Consider a situation involving a finite set M of targets, m > 2. Target A is associated with a real
number 7, >0 expressed in terms of some "money". We denote by p, €[0,1] the probability
that player i hits target & and by P the corresponding probability matrix [p,, ].

We assume that each player can hit one (and only one) of the m targets with probability one:
the p, sum up to one for all i € N. Three scenarios will be considered.

We denote by X, the (discrete) random variable associated to player i. It is defined by the
payoffs (r,...,r,) and corresponding probabilities (p,,..., p,,). For example, if n=m =3,
there are 3° =27 possible events. For example, the probabilities are associated to the event
(r,,r,,1,). Table 1 lists the events and probabilities for the case where n = 3, m =2, and
Pn=1-p,.

The first scenario is the simplest: once a player hits a target, he obtains the corresponding
payoff. The expected payoffs then define the additive game (N,w,):

WI(S) :ZE[X,] = Z b Zpih'

ieS heM ieS

We have indeed w,(S) =Zies w,(§) for all S < N. The Shapley value being an additive
allocation rule, it simply allocates to each player his individual expected payoft:
SV.(N,w)=E[X,1= Y p,r, (i=1,...n).
heM

Example 1 Consider the case of 3-player case and two targets, with the individual probabilities
(P> Pays P3;) =(0.6,0.3,0.7). The resulting probability distribution is given in Table 1.
Assuming that (r,r,)=(5,7) are the payoffs, the resulting game (N,w,) is given by
w, = (5.8,64, 5.6| 12.2,11.4,12 | 17.8) and its Shapley value is given by (5.8, 6.4, 5.6), giving
the distribution key (0.326, 0.359, 0.315).

event probabilities

YRR DP11P2 P3y 0.126
UELITR) D11P21 P 0.054
ho1hshy DP11Pxn D3 0.294
111 D11P2 Py 0.126
hshsh P12 P21 Py 0.084
hhshsh P12Pa P 0.036
hyhyh P12 P2 D3 0.196
bbby D12 P2 P 0.084

Table 1: Events and probabilities



In a second scenario, a coalition obtains a payoff once the corresponding target has been hit by
one of its members, independently of the number of its members that have succeeded. This is
illustrated in Table 2. The expected payoffs define the game (N, w,):

w,(8) =D v, (),

heM

where v, (S) is the probability that at least one member of S hits target /4, as given by (1):
v, ($)=1-TTd-py)-

ieS

event {1} {2} | {3} | {1,2} | {1,3} | {2,3} | {1,2,3}
n.n,h ri ri ri ri ri ri ri

n,hsn r r r r rn+rn|n+nr ri+nr
n,n,n r rn r r+nrn r ri+nr ri+nr
n,n,n r rn 1%) rn+nrn|rn+nrn rn ri+nr
n,h, N r r r ri+r | n+nr r r+n
nL,h,h rn r rn r+nr rn ri+nr r+n
n, %, H 1% rn r rn n+nr|rn+nrn ri+nr
5,5, rn r rn rn r r r

Table 2: A same payoff is not repeated within a coalition.
Being a positive linear combination of concave games, the game (N,w,) 1is concave.

In the preceding scenario, if a coalition S and its complementary N\ S both hit the same target,
they obtain the corresponding payoff. We exclude this in a third scenario where a payoff can
be obtained only once: if a coalition forms, it obtains the payoff associated to a target only if
no player outside the coalition has hit the same target. This is illustrated in Table 3.

event {1} {2} {3} {1,2} | {1,3} | {2,3} | {1,2,3}
5L 0 0 0 0 0 0 T
hLhsT, 0 0 r r r m r+nr
n,hyh 0 m 0 r r m ro+nr
n,h,1 r 0 0 ri ri rn ri+nr
h,h, 1 123 0 0 r r T r+n
5,1, 0 r 0 r r r r+nr
AN 0 0 r r r r ro+nr
b, b 0 0 0 0 0 0 r

Table 3: A same payoff does not go to a coalition and its complement.



The expected payoffs are computed on the basis of the dual probability games (N, v{):
wy(S$)= Y vi(S)n,

heM
where

V:(S):(I_H(l_p,h)j H (1_pi}1):[1_1—[(1_p,’h)j H (l_pih)

ieS ieN\S ieS ieN\S

is the probability that at least one member of § hit target 4 while those outside § all fail, as
given by (2). w, =w{ and, being a positive linear combination of convex games, the game
(N,w;) is convex. By self-duality and linearity, the two scenarios lead to the same Shapley
value. Using (8), it is given by:

!
VNP =Y SN p) =Y pr Y ST ps =3 bt £(p)

heM heM TcN:iel ! jeT\i heM
where f'is the function defined by (10).

Example 1 (continued) The games (N,w,) and (N,w,) associated with the probabilities
(Py1s Pays P3y) =(0.6,0.3,0.7) and payoffs (r,r,)=(5,7) are defined respectively by:

w, =(5.8,6.4,5.619.34, 8.46, 9.481 10.698) and
w, =w =(1.218, 2.238, 1.35815.098, 4.298, 4.898110.698).

The (common) Shapley value and the associated distribution key are respectively given by
(3.306, 4.116, 3.276) and (0.309, 0.385, 0.306).

4 Multiplicative effects

In the preceding section, payoffs were added. Now, consider a situation where adding a player
to a coalition multiplies its payoff by a coefficient that is specific to that player: a payoff for a
player is associated to his ability to increase the payoff of a coalition.

The coefficients are assumed to be independent random variables with known probability
distribution function and finite mean. More precisely, the coefficient specific to player i is a
random variable X, defined on the interval [1,4+0). Hence, z, >1 and the case where u =1
occurs only if X, =1 with probability one.

Given the assumption of independence, the associated transferable utility game is defined by:
w(S):E{HXl}—lznyi—l. (13)
ieS ieS
Hence, a player contributes to a coalition once his expected coefficient is larger than 1. Indeed,

w(i) = 1. —1 and the marginal contributions of player i are given by:

w(S)—w(S\i)= (g, ~1) ] #, forall S such thati e .

jeS\i

The game (N,w) belongs to the class of cooperative product games introduced by Rosales
(2014) and revisited in Dehez (2024).* Obviously, marginal contributions are increasing. As a

4Rosales defines v(S) as the product of the coefficients. This would be consistent if he had assumed that v(J) = 1.



consequence, product games are convex (and thereby superadditive). They are strictly convex
if 1> 1 for all i € N. Using (4), the Harsanyi dividends are given by:
a,(N.w)=]](x-1)
ieT

Consequently, using (5), the Shapley value is given by:
1
SViN, phseos ) = =1) D% =] (1, =D

TcN:ieT ¥ jeT\i
We observe that proportionality applies to product games as well. The Shapley value can
indeed be written as:

SV.AN, ptysees pt,) = (1, = 1) g (1)

where the function g:R"" — R is the player independent and symmetric function given by:

1
s@=1+ >, —]]-D.

Tc{l,...,n—1} t jer

Dehez (2024) shows that efficiency, symmetry and proportionality characterise the Shapley
value on the class of product games.

Example 2 The 3-player game associated to the means (1.3,1.8,2.1) is given by
(0.3,0.8,1.111.34,1.73, 2.78 1 3.914). The Shapley value and the associated distribution key
are respectively given by (0.673, 1.448, 1.793) and (0.172, 0.370, 0.458).

5 Concluding remarks

The assumption of probabilistic independence is clearly a limitation. However, in the
multiplicative case, the independence assumption can be dispensed with by considering the
geometric mean instead of the linear mean. For an arbitrary random variable X, the geometric
mean is defined by:

E [X] — eEUOg(X)J
G .

It is an alternative measure of the central tendencies of random variables defined on the positive
reals. It is used in different contexts.’> The geometric expectation of a discrete random variable
X defined by {(xl,ql),...,(xm,qm)}, where x,>0 for all 72 and the g, sum up to one, is then
simply given by:

EG[X] = H th >
h=1

hence the name "geometric" mean. The geometric mean is linear and bounded above by the
linear mean. The first property is immediate and the second property is a direct consequence
of Jensen inequality. Furthermore, the geometric mean of a product of random variables
defined on the positive reals is the product of their geometric means, a property that applies
without requiring independence. Hence, we could define the game (N, w) in (13) by replacing
L by the geometric mean.

5 There is a large literature on the geometric mean and its applications, in particular in finance and insurance. See
for instance Jasiulewicz and Kordecki (2016).



We have assumed that each player can hit one but only one target. If instead, players can hit
simultaneously several targets, the picture gets more complicated, except in the first scenario
where players are rewarded independently of the performances of the other players. We have
also limited our analysis to the discrete (and finite) case. Investigation of these situations could
be the object of future research.
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