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1. Introduction 

 
According to the “domino theory”, changes in a country’s political and economic policies can 

trigger changes in neighboring countries’ policies, producing ripple effects to other countries as 

well. Dogbey et al., (2024) employed this idea to study the spread US COVID-19 policy stringency 

among US states. They find that beside geographic neighbors, COVID-19 policies in the US states 

spread to their political “neighbors” (those whose governors share same political identity with 

theirs). The combined effect of the geographic and political contagion was estimated to be 30%, 

while they individually account for 11% and 24% respectively. 

 

Using the same approach, our paper examines whether the political channel extended beyond 

governor party affiliation to state party affiliation and whether including this channel in the 

estimation increases the size of the overall contagion they estimated. 

 

Dogbey et al., (2024) employed both static and dynamic Spatial Durbin models to estimate the 

overall size of the COVID-19 policy contagion but did not use the dynamic model in the estimation 

of individual channels. To compare our estimates with theirs, we re-estimate all the models in the 

dynamic setting since the lag dependent variable in their benchmark model was significant 

(signifying internal habit persistence in the data). Other researchers suggest that spillover effects 

in Stay-at-Home policies and Shelter-in-Place policies exist at the state level (Lin and Meissner, 

2020 and Cui et al., 2020), but did not estimate the size of the contagion. We find that, COVID-

19 policy stringency contagion is greater by state party affiliation channel than governor party 

affiliation and geographic channels and that including the state party affiliation channel in the 

estimation increases the overall estimated size of the contagion from 30% to 44%.  

 

2 Channels that spread COVID-19 Policy 

 
Policy contagion is a situation where related regions inherit spillover policies from each other 

(Edwards, 2000). An example of this is a phenomenon called “Tiebout Competition” where states 

or countries copy each other’s policies in a bid to compete for Foreign Direct investment or attract 

residents from related regions in order to increase their tax base (Simmons, Dobbin, and Garrett, 

2006).  

 

Several reasons could explain the spread of COVID-19 policy. State residents could put pressure 

on their state leaders to act in line with their political peers. This can also be appealing to state 

leaders since it can allow them to share blame should those policies fail to achieve their intended 

results. Barrios and Hochberg (2021) also illustrated that attention paid to COVID-19 was 

correlated with states’ position during the 2020 presidential election. They found that political 

parties became more homogenous in the way they affected the risk perception of their members 

and their health-related reactions to the COVID-19 health crisis. 

 

 

 

 



 
 

 

 

 

 

 

 

Fig. 1: Comparing the COVID-19 Stringency Graphs of Democrat States and Republican 

States (highlighting those who flipped in the 2018 Governor election) 

a) Stringency Graph of                                  b) Stringency Graph of Democrat States      

    Democrat States                                            (States with Republican Governors highlighted)                   

          \ 

c) Stringency Graph of                            d) Stringency Graph of Republican States      

     Republican States                                   (States with Democrat Governors highlighted)               

             
Fig. 1 shows that the stringency graphs of the few states which voted Democrat (Vermont, Rhode 

Islands, Virginia, Massachusetts, Arizona, New Hampshire, and Georgia) or Republican 

(Louisiana, Kansas, Kentucky and North Carolina) in the 2018 governor elections but flipped in 

the 2020 presidential elections seem to have trends identical to the rest of the states they identified 

with in the 2020 presidential election. This suggests that state party affiliation played a role in the 

spread COVID-19 policy stringency. 

 

3. Methodology 

 
We follow Dogbey et al., (2024) who used Spatial Durbin Model (SDM) to model COVID-19 

policy stringency. The dynamic SDM model is specified as:   
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where � is the spatial dependence coefficient,  � = 1,… , � is the time index and � is the number 

of panel cross sections (i.e., the 48 contiguous US states and Washington DC). The dependent 

variable �!  represents the stringency index and is an �� × 1 vector. �!  is an �� × � matrix of 

explanatory variables, namely the infection rate, death rate, and fully vaccinated rate. �" is a � × � 

identity matrix. �! is an independently and identically distributed disturbance term with zero mean 

and a constant variance �&
'. � is a vector of spatial (state-specific) fixed effects; a! is a vector of 

time-specific fixed effects. �#  is an � × �  identity matrix. �#  is an � × �  row-normalized 

weights matrix. 

 

3.1 Weights Matrices 

 
The weights matrix models the dependence structure between the sampled spatial units. Weights 

matrices are typically spatial in nature (e.g., contiguity matrices, distance-based matrices, k-nearest 

neighbors’ matrices and gravity model matrices), but they need not be. Depending on the data or 

research question, a binary matrix (assigns a weight of one to two units that are similar or zero 

otherwise), a distance decay weights matrix (assigns a weight inversely proportion to the distance 

between  two units) or a bilateral trade weights matrix (assigns a weight equal to the volume of 

imports or exports between two countries expressed as a percentage of their total imports or 

exports) is used. 

 

Our geographic weights matrix employs the “queen” case of first-order contiguity. This means that 

each state assigns a weight to any state it shares borders with vertically, horizontally, or at its 

vertexes. In this case, each state assigns a weight of one to every state that it shares borders with 

and a weight of zero to other states. For the governor party affiliation weights matrix, a state gives 

a weight of one to other states whose governors share identical affiliation with theirs and zero 

otherwise. In the state party affiliation weights matrix, states give a weight of one to others 

identical to them (blue or red) and zero otherwise; this matrix is what we have added to our 

estimation in addition to those of Dogbey et al., 2024.  The final weights matrix is the summation 

of all three weights matrices, ensuring that states give weights to those who share one, two or all 

three identities with them or, zero otherwise. 

 

Table 1: Moran’s I Statistic 

 

 

 

 

 

 

Fig. 1 indicate a high political (state identity) similarity among the contiguous US states around 

the times COVID-19 began, suggesting a possible spatial dependence in our data. The presence of 

spatial dependence in the data is known to bias the OLS estimator (LeSage and Pace, 2014) in the 

form of omitted variable bias. The weights matrices control for this dependence. But to use them 

we need to compute the Moran’s I static on our weights matrices under the null hypothesis the 

observed spatial pattern could be attributed to complete spatial randomness. As indicated by the 

Moran’s I statistic results in Table 1, we reject the null hypothesis for all three weights matrices at 

Weights matrix Statistic Z-value P-value 

Geography 0.259***  3.125 0.001 

Gov. affiliation 0.350*** 12.659 0.000 

State affiliation 0.238***  8.880 0.000 



 
 

the 1% significance level, indicating the presence of spatial dependence. The next step is to 

compute the magnitude of the contagion in our models, �. 

 

3.2 Data 

 
Our study employed biweekly panel data on the 48 contiguous US states and Washington DC over 

the period from 02/05/2020-05/28/2022 (61 time periods). Our variables are the stringency index 

from the Oxford COVID-19 Government Response Tracker (OxCGRT) stringency index, 

infections rate, deaths rate, and vaccinations rate in each state from the United States Center for 

Disease Control and Prevention (CDC).  

 

The stringency index (0: low, 100: high) is a measure of the strictness of closures and containment 

policies aimed at restricting behavior during the pandemic and this information can be found on 

the OxCGRT website. 

 

The infection rate is computed as the total percentage of a state’s population infected with COVID-

19. The death rate is computed as the percentage of the infected whose cause of death was COVID-

19. The vaccination rate is the percentage of the population that received the full dosage of the 

COVID vaccine. The insured unemployment rate is the number of people currently receiving 

unemployment insurance as a percentage of the labor force. 

 

Our parameter of interest, �, measures the spillover that the dependent variable of one spatial unit 

receives from the dependent variables of other spatial units. The direct effect measures the effect 

that a change in each explanatory variable of a particular state has on its own stringency index 

averaged over all states. The indirect effect captures the effect that each explanatory variable of all 

states has on the stringency index of a state except its own explanatory variable. The total effect is 

a measure of the effect that a change in an explanatory variable (of all states) have on the stringency 

index of a particular state averaged over all states.  It is the sum of the direct and indirect effects.  

 

3.3 Estimation 

 
The dynamic SDM uses the biased-corrected quasi-maximum likelihood (QML) estimator. In 

STATA, it uses the xsmle command, which implements the fixed effect (FE) variant. By treating 

the lagged dependent variable as exogenous regressor, the maximum likelihood estimates are 

computed. The coefficient estimates and their standard errors are then adjusted with computed bias 

corrections due to individual and time effects in the dynamic panel data setting. The xsmle 

command also computes a one-way clustered standard errors similar to the derivation of robust 

standard errors for nonspatial models using the command vce(robust), which is similar to 

vce(panelvar). The default asymptotic variance-covariance matrix of the coefficients is derived 

from the observed information matrix (Yu, et al., 2008, and Belloti et al., 2017). All estimation is 

done is STATA. 

 

 

 

 



 
 

4. Results 

 
Table 2 reports the results using each of the weights matrices individually. It shows that the size  

 

 

Table 2:  Comparing the Spread of COVID 19 Policy Stringency Channels 

 
                                                     Dependent Variable: COVID-19 Stringency Index 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

                                                      

                                                     t-statistics in parentheses. *, **, and *** denote rejections of the null hypothesis of no 

                                                     significance at the 5%, and 1% significance level, respectively 

 

 

Independent  Variables 

 

Weighted 

by geography 

Weighted 

by gov. party 

affiliation 

Weighted by 

state party 

affiliation 

� 

 

Lag stringency 

 

0.27*** 
(8.31) 

0.6480*** 

(22.42) 

0.32*** 
(9.71) 

0.4940*** 

(13.38) 

0.38*** 
(11.73) 

0.5200*** 

(18.08) 

Infection rate           

Long term direct 

0.6914 

(1.37) 

0.6696** 

(2.18) 

0.2879 

(0.77) 

Death  rate              

 Long term direct 

1.1416 

(0.46) 

1.3685*** 

( 2.98) 

1.5888* 

(1.92) 
Vaccination rate     

Long term direct 

Insured unemployment rate      

Long term direct 

-0.2276 

(-1.18 ) 

0.3613 

(0.69) 

-0.2103*** 

(-2.62) 

-0.0049 

(-0.02) 

-0.1377* 

(-1.95) 

-0.1279 

(-0.34) 

Infection rate           

Long term indirect 

-0.4799 

(-0.12) 

0.5900 

(0.93) 

0.6406 

(0.87) 

Death rate              

 Long term indirect 

6.3371 

(0.05) 

28.2695*** 

(3.90) 

36.5907* 

(1.87) 

Vaccination rate     
Long term indirect 

Insured unemployment rate     

Long term indirect 

-0.2650 
(-0.03) 

-1.1201 

(-0.09) 

-0.5939** 
(-2.10) 

-5.0551*** 

(-3.38) 

-0.7663 
(-1.42) 

-7.659* 

(-1.65) 

Infection rate               

Long term total 

0.2115 

(0.05) 

1.2595*** 

(2.59) 

0.9286 

(1.42) 

Deaths rate          

Long term total 

7.4787 

(0.06) 

29.6381*** 

(3.95) 

38.1796* 

(1.89) 

Vaccination rate     

Long term total 

Insured unemployment rate     

Long term total 

-0.4927 

(-0.06) 

-0.7587 

(-0.06) 

-0.8042*** 

(-3.10) 

-5.0601*** 

(-3.4) 

-0.9041* 

(-1.65) 

-7.659* 

(-1.65) 

Infection rate           

Short term direct 

0.2421 

(1.35) 

0.3303** 

(2.08) 

0.1295 

(0.70) 

Death  rate              

 Short term direct 

0.1273 

(0.43) 

0.4018** 

(2.06) 

0.2793 

(1.33) 

Vaccinations rate     

Short term direct 
Insured unemployment rate     

Short term direct 

-0.06342** 

(-2.06) 
0.1595 

(1.11) 

-0.0996** 

(-2.38) 
0.04876 

( 0.36) 

-0.0558 

(-1.62) 
0.0382 

(0.22) 

Infections rate           

Short term indirect 

-0.1923 

(-1.02) 

-0.0025 

(-0.01) 

0.0108 

(0.06) 

Deaths  rate              

Short term indirect 

1.1932*** 

(2.74) 

7.3812*** 

(8.20) 

5.2651*** 

(7.94) 

Vaccinations rate     

Short term indirect 

Insured unemployment rate     

Short term indirect 

-0.0238 

(-0.69) 

-0.2875* 

(-1.73) 

-0.1103* 

(-1.70) 

-1.3744*** 

(-4.97) 

-0.0969* 

(-1.77) 

-1.1351*** 

(-3.98) 

Infections rate               

Short term total 

0.0498*** 

(0.71) 

0.3277*** 

(3.63 ) 

0.1403* 

(1.91) 

Deaths rate          

Short term total 

1.3206*** 

(3.06) 

7.7831*** 

(8.63) 

5.5444*** 

(8.73) 

Vaccinations rate     

Short term total 

Insured unemployment rate     

Short term total  

�! 

Log-pseudolikelihood 

-0.0873*** 

(-3.24) 

-0.1280 

(-0.83) 

0.86 

-1.010e+04 

-0.2099*** 

(-5.08) 

-1.3256*** 

(-5.97) 

0.83 

-1.016e+04 

-0.1301*** 

(-4.73) 

-1.0969*** 

(-4.50) 
0.83 

-1.010e+04 



 
 

of the spread of COVID-19 policy stringency is 38%, 32% and 27% for state affiliation, governor 

affiliation and geography respectively, suggesting that state affiliation is relatively more important 

in the spread of COVID-19 policy. 

 

 

Table 3:  The size of COVID 19 Policy Stringency Spillover 

 
                              Dependent Variable: COVID-19 Stringency Index 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                           

                                                  

 

 

                                                      

                              

                              t-statistics in parentheses. *, **, and *** denote rejections of the null hypothesis of no significance at the 10%, 5%, and 

                              1% significance level, respectively 

 

 

 

 

Independent  Variables 

 

Weighted by 

geography, state 

and gov. 

party affiliations 

 

Weighted by 

geography, state 

and gov.  

party affiliations 

 

Weighted by 

geography and gov. 

party affiliations 

(Dogbey et al., 2024) 

 

Weighted by 

geography and gov. 

party affiliations 

(Dogbey et al., 2024) 

	� 

 
Lag stringency 

 

0.44*** 

( 12.85) 

0.4933*** 

(14.21) 

0.44*** 

(8.89) 

0.51627*** 

(14.77) 

0.30*** 

(8.89) 

0.4914*** 

(12.97) 

0.35*** 

(10.18) 

0.4841*** 

(12.75) 

Infections rate           

Long term direct 

0.3329 

(0.78) 

0.4024 

(0.76) 

0.6316** 

(1.96) 

0.6254* 

(1.86) 

Deaths  rate              

 Long term direct 

1.1449 

( 0.08) 

0.7739 

(0.23) 

0.4646 

(1.21) 

0.9636** 

(2.23) 

Vaccinations rate     

Long term direct 

Insured unemployment rate     

Long term direct 

-0.1557 

(-0.74) 

-0.1901 

(-0.05) 

-0.1612 

(-1.15) 

 

 

-0.2096*** 

(-2.64) 

 

 

--0.2123*** 

(-2.65) 

-0.0420 

(-0.15) 

Infections rate           

Long term indirect 

1.1406 

(0.13) 

2.7841 

( 0.17) 

0.8526 

(1.46) 

0.7497 

(1.03) 

Deaths  rate              

 Long term indirect 

43.1555 

(0.06) 

31.7219 

(0.20) 

15.8041*** 

(4.49) 

33.775*** 

(3.55) 

Vaccinations rate     

Long term indirect 

Insured unemployment rate     

Long term indirect 

-0.7573 

(-0.08) 

-9.1420 

(-0.05) 

-0.9598 

(-0.17) 

 

 

-0.4711** 

(-2.14) 

 

 

-0.6613** 

(-2.01) 

-6.3221*** 

(-3.28) 

Infections rate               

Long term total 

1.4736 

(0.16) 

3.1866 

(0.19) 

1.4842*** 

(3.45) 

1.3751** 

(2.42) 

Deaths rate          

Long term total 

44.3004 

(0.06) 

32.4959 

(0.20) 

16.2687*** 

(4.57) 

34.7391*** 

(3.57) 

Vaccinations rate     

Long term total 

Insured unemployment rate       
Long term total 

-0.9131 

(-0.10) 

-9.3321 
(-0.05) 

-1.1210 

(-0.19) 

 
 

-0.6808*** 

(-3.50) 

 
 

-0.8737*** 

(-2.83) 

-6.364*** 
(-3.34) 

Infections rate           

Short term direct 

0.1562 

(0.84) 

0.1659 

(0.92) 

0.3132* 

(1.88) 

0.3137* 

(1.78) 

Deaths  rate              

 Short term direct 

0.1872 

( 0.97) 

.07034 

(0.35) 

0.2012 

(0.62) 

0.1994 

(1.05) 

Vaccinations rate     

Short term direct 

Insured unemployment rate      

Short term direct 

-0.0712* 

(-1.79) 

-0.0149 

(-0.09) 

-0.0679* 

(-1.78) 

 

 

-0.1026** 

(-2.50) 

 

 

-0.1029** 

(-2.43) 

0.0335 

(0.23) 

Infections rate           

Short term indirect 

0.0417 

(0.19) 

0.0750 

(0.36) 

0.1219 

(0.61) 

0.0210 

(0.10) 

Deaths  rate              

Short term indirect 

7.9907*** 

(8.42) 

2.6684*** 

(3.88) 

4.6726*** 

(7.10) 

8.3383*** 

(8.32) 

Vaccinations rate     

Short term indirect 

Insured unemployment rate     
Short term indirect 

-0.0748 

(-1.23) 

-1.9133*** 
(-5.95) 

-0.01625 

(-0.28) 

 
 

-0.0969 

(-1.55) 

 
 

-0.1103* 

(-1.66) 

-1.5956*** 
(-5.44) 

Infections rate               

Short term total 

0.1979** 

(2.13) 

0.2409*** 

(2.69) 

0.4351*** 

(4.82) 

0.3347*** 

(3.53) 

Deaths rate          

Short term total 

8.1778*** 

(8.77) 

2.7388*** 

(4.27) 

4.7927*** 

(7.66) 

8.5378*** 

( 8.62) 

Vaccinations rate     

Short term total 

Insured unemployment rate     

Short term total  

�! 

Log-pseudolikelihood 

-0.1460*** 
(-3.51) 

-1.9282*** 

(-7.34) 

0.81 

-1.013e+04 

-0.0842** 
(-2.08) 

 

 

0.84 

-1.013e+04 

-0.1995*** 
(-5.01) 

 

 

0.84 

-1.018e+04 

-0.2132*** 
(-4.89) 

-1.5621*** 

(-6.81) 

0.82 

-1.017e+04 



 
 

Table 3 presents the results when all three weights matrices are combined to estimate the overall 

size of the spread of COVID-19 policy stringency, compared to Dogbey et al., (2024) which only 

combined geography and governor affiliation weights.  Our model reports 44% compared to theirs 

of 30%. 

 

Our results (for �) remain the same even when we include insured unemployment rate (which was 

not included in their model) as a macroeconomic control variable.  However, most of the 

independent variables in their model (in Table 3) that were significant become insignificant once 

we add state affiliation to our combined weights matrix to measure the overall size of the 

contagion. Also, we run the model of Dogbey et al. (2024) again and control for insured 

unemployment rate to see how the results compare with ours. The magnitude of the contagion 

increases from 30% to 35% but still fall short of the estimate of our model of 44%, indicating that 

the inclusion of state party affiliation in our combined weights matrix does make a difference in 

capturing the magnitude of the overall contagion.  

 

The pseudo-loglikelihood is used for model fit. Our models that employ state party affiliation 

weights matrices produce the lowest pseudo-loglikelihood compared to those which include 

governor party affiliation, or a combination of governor and geography only as shown in Table 3.  
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