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Abstract
This article evaluates the predictive capability of ANNs (Artificial Neural Networks) and attempts to interpret their

"black box." It provides a detailed analysis of their architecture and explores different interpretability techniques for

predictions suited to opaque models—both model-specific and agnostic approaches. The performance analysis of

various ANN architectures reveals that the model with 2 hidden layers and 8 nodes remains the most effective. It

offers the best balance between accuracy and generalization, with a high-test coefficient of determination (R² = 0.95)

and minimal errors (RMSE = 0.084, MAE = 0.058). The graphical analysis highlights the complex relationships

between several economic variables and their impact on GDP per capita. This type of ANN embodies a synthesis of

technical sophistication and economic pragmatism, making it ideal for predictive or decision-making analyses in

uncertain environments, such as that of Senegal. In summary, the key findings indicate that economic policies should

focus on controlling inflation, strengthening productive investments, and ensuring efficient management of public

spending. These results thus provide a valuable foundation to guide economic decisions and optimize strategies for

economic and social development.
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1. INTRODUCTION 

Economic actors, particularly public policymakers, require relevant information on economic 

activities and outlooks to achieve sustainable economic growth. However, given the complexity 

and uncertainty of financial and economic systems – driven by frequent changes in economic 

environments – it remains challenging to make accurate forecasts (Park and Yang, 2022).  

In recent years, increasingly sophisticated forecasting methods, such as artificial neural networks 

(ANNs), have emerged. As Murdocha et al. (2019) note, machine learning models have achieved 

remarkable success in predicting unobserved data. These authors argue that "the ability to interpret 

what a model has learned is receiving growing attention." Thus, regardless of the country or group 

of countries considered, the use of these forecasting models by policymakers is both legitimate 

and prudent for informed economic decision-making.  

In Senegal, the current economic situation appears challenging, characterized by a significant 

budget deficit and substantial public debt. Like most developing countries, Senegal has recorded 

a chronic budget deficit for several years. An analysis of the past decade's statistics reveals that the 

ratio of the overall fiscal balance to GDP has deteriorated from -3.96% in 2014 to -9.85% in 2019, 

reaching -12.30% in 2023 (Directorate of Forecasting and Economic Studies [DPEE], 2025). 

Public debt has surged from 4,112.9 billion CFA francs in 2014 (42.1% of GDP) to 18,558.91 

billion CFA francs in 2023 (99.7% of GDP) (DPEE, 2025). In this context, public policy decisions 

must rely on accurate forecasts of macroeconomic variables, particularly the key indicator: GDP 

per capita (GDP/capita).  

Given this, it is timely to investigate the best ANN model for predicting Senegal's GDP/capita. 

This article aims to identify the ANN model that offers the most accurate predictions for Senegal's 

GDP per capita. The preferred hypothesis posits that a neural network model with two hidden 

layers is the most effective for this purpose, supported by empirical findings (Eskin et al., 2024).  

To achieve this, several interpretability techniques tailored to opaque models. Neural Interpretation 

Diagram (NID), Garson’s Weighting Method, Partial Dependence Plots (PDP) are employed. The 

predictive accuracy of neural network models is assessed using three performance metrics: the 

coefficient of determination (R²), root mean square error (RMSE), and mean absolute error (MAE) 

(Diakhate and Dieng, 2022).  

Few prior studies have employed interpretability-enhanced artificial neural networks (ANNs) to 

examine the determinants of per capita GDP in Senegal. The originality of this article lies in its 

integration of interpretability techniques into the macroeconomic modeling of developing 

countries, using Senegal as a case study. In this regard, the paper offers a novel and specific 

contribution to the literature on economic forecasting and explainable artificial intelligence (XAI). 

 

The article is structured into five sections. Section 2 reviews the literature. Section 3 outlines the 

methodology. Section 4 presents and analyzes the forecasting results. Section 5 concludes by 

discussing economic policy implications.  



2. LITERATURE REVIEW ON VISUALIZATION AND 
INTERPRETABILITY OF NEURAL NETWORKS 

For some authors, including Liu and Xu (2023) and Alber et al. (2019), deep neural networks have 

spurred a revolution in machine learning applications in recent years, becoming indispensable for 

critical decision-making or predictive processes. This underscores the need to understand and 

analyze the actions and predictions of various neural network architectures, including the most 

complex (Alber et al., 2019). Their popularity stems from their applications across diverse fields, 

including macroeconomics.  

However, the most frequent criticism remains their low interpretability as "black-box" models 

(Ponomareva and Caenazzo, 2019). Nevertheless, available literature has sought to improve the 

understanding and visualization of neural networks, primarily focusing on image classification. 

Understanding, visualizing, and explaining deep neural networks are thus essential for better 

utilization. Apley and Zhu (2016) argue that the lack of interpretability or transparency is the 

primary limitation of black-box supervised learning models. Several visualization tools for general 

black-box models have been proposed.  

Partial dependence (PD) plots, the most widespread visualization approach, were later 

supplemented by individual conditional expectation (ICE) plots (Goldstein et al., 2014). 

Accumulated local effects (ALE) plots (Apley and Zhu, 2016) were introduced as an alternative 

to PD and ICE plots, which were criticized for their invalidity with correlated features (Grömping, 

2020). PDPs help visualize the average partial relationship between predicted responses and one 

or more features.  

Interpreting statistical and machine learning models requires analyzing variable importance 

summaries, interaction measures, and partial dependence plots. Several authors, including 

Štrumbelj and Kononenko (2011), Doshi-Velez and Kim (2017), Ghorbani et al. (2017), Alvarez-

Melis and Jaakkola (2018), and, Alber et al. (2019), have addressed interpretability challenges and 

proposed definitions and interpretation methods.  

Montavon, Samek and Müller (2017) tackle the problem of interpreting deep neural network 

models and explaining their predictions. Drawing on a tutorial and a representative set of methods, 

they provide theory, recommendations, and tips for more effective use of layer-wise relevance 

propagation (LRP) on real-world data. Ponomareva and Caenazzo (2019) estimated credit risk for 

a credit card portfolio using deep neural networks. Their results reveal that "relevance analysis, 

sensitivity, and neural activity" can enhance "the interpretability of a neural network in financial 

modeling."  

More recently, Alan Inglis et al. (2021) proposed new visualization techniques applicable to 

regression and supervised classification parameters, such as heatmaps and graphical displays that 

facilitate model summary exploration.  

Several studies have explored explainable AI (XAI) models, particularly those attempting to 

explain deep neural network architectures. Various XAI approaches exist, including local and 

hybrid interpretability models and global interpretation methods. For Saleem et al. (2022), "global 



interpretation methods have emerged as primary explainability methods because they can explain 

each feature and the model's structure." Global interpretation methods provide a comprehensive 

explanation of AI model behavior.  

Using a nonlinear autoregressive neural network, Jin et al. (2025) achieved accurate and stable 

predictions, with low forecast errors for the trading volume observed on thermal coal futures traded 

on the Zhengzhou Commodity Exchange in China.  

However, some deep learning approaches can deliver high-frequency, fine-grained forecasts and 

effective results, "but their interpretability remains controversial" (Wang et al., 2022). Thus, 

simultaneously achieving performance and interpretability is, according to Wang et al. (2022), "a 

universal concern and an urgent unresolved problem." In this vein, these authors proposed 

EcoForecast, an interpretable data-driven approach for short-term macroeconomic forecasting 

based on the N-BEATS neural network (Neural Basis Expansion Analysis for Interpretable Time 

Series Forecasting).  

Applied to China's real macroeconomic data from 1992 to 2022, EcoForecast demonstrated "high 

stability across different sequential learning scenarios" with high-precision performance"lower 

prediction error and variance, tolerance to reduced input samples, and robustness across 

prediction domains" (Wang et al., 2022). Experimental results showed that EcoForecast improved 

accuracy by up to 3.94 times compared to traditional BVAR (Bayesian Vector Autoregression). In 

robustness testing, EcoForecast used only a quarter of the data to achieve forecast errors 2.51 times 

lower than BVAR, while also improving the Purchasing Managers' Index (PMI) forecast accuracy 

by 2.38 times and national electricity production forecasts by 1.45 times (Wang et al., 2022).  

The empirical work of Jin and Xu (2024) revealed the strong potential of Gaussian process 

regression with Bayesian optimizations for modeling and forecasting complex commodity price 

time series for market participants.  

Other proposals have been made for achieving intelligent economic decision-making. Park and 

Yang (2022) proposed two approaches for better economic forecasting and decision-making. The 

first is "a deep learning model based on a long short-term memory (LSTM) network architecture," 

which forecasts economic growth rates and crises by "capturing sequential dependencies within 

the economic cycle." The second is an interpretable machine learning model derived from 

"economic growth and crisis models through effective use of the eXplainable AI (XAI) framework."  

The LSTM model outperformed traditional predictive models for major G20 countries from 1990 

to 2019, particularly in emerging economies (Park and Yang, 2022). Their results show that private 

debt in developed economies and public debt in emerging economies are key factors limiting future 

economic growth. Regarding COVID-19's economic impact, their findings also indicated that 

sharp interest rate declines and rising public debt increased the likelihood of future crises in some 

emerging countries.  

Jin and Xu (2025), using PC algorithms and the Linear Non-Gaussian Acyclic Model (LiNGAM) 

for directed acyclic graph (DAG) inference, found a complex dynamic in the adjustment processes 

of monthly commercial real estate price indices in 10 major Chinese cities following shocks. 



Xu (2020), evaluating thirty individual time series models and ten combined forecasts based on 

six pruning strategies, used the unconstrained least squares method, without a constant, to estimate 

the combined weights of the individual models without pruning. The result obtained was a model 

recalibration frequency of at least one month.  

Liu and Xu (2023) reviewed recent advances in interpretable neural networks, presenting various 

application scenarios for deep interpretable neural networks (DINs) and discussing existing 

challenges and future directions. These authors distinguish two DIN methods: model 

decomposition neural networks, which pre-design an interpretable network structure, and semantic 

DINs, which assign post-hoc interpretability to a black-box network structure.  

Ultimately, the results of various studies confirm the relevance of ANNs for forecasting and 

interpreting macroeconomic variables. In this context, using ANNs to predict Senegal's 

GDP/capita is justified.  

3. METHODOLOGY 

3.1 Data and Variables  

The model is based on a Keynesian approach, where GDP/capita depends on components of 

aggregate demand, including domestic spending (Tammar, 2021), government expenditure 

(Aschauer, 1989), and gross fixed capital formation (GFCF, investment) (Ntamwiza et al., 2022). 

Control variables influencing GDP/capita include trade openness (Rodriguez and Rodrik, 2001), 

inflation (Arawatari et al., 2018), and population growth rate (Mankiw, Romer and Weil, 1992). 

These variables are defined by the World Bank Indicators (WDI). The data, spanning 63 years 

(1960–2023), were extracted from the WDI database using the R package WDI 

3.2 ANN Architecture and Training  

3.2.1 Architecture 

The methodology is based on ANNs, inspired by the human brain and introduced by McCulloch 

and Pitts (1943). Unlike parametric methods, ANNs offer a nonlinear, data-driven adaptive 

approach rather than relying on explicit probabilistic models. Among various architectures, the 

feed-forward network was selected for its unidirectional structure (input → output without 
feedback loops). These models are particularly effective for analyzing complex, non-explicit 

relationships between variables, as illustrated in Figure 1. 

 

 

 

 



Figure 1: Schematic of a Feed-Forward Neural Network 

 

Figure 1: Schematic representation of a feedforward neural network. The architecture illustrates the flow of information from the input 

variables through weighted connections to the intermediate layer, and finally via weights to the output node. 

 

X = (xၶ, xၷ, xၸ, xၹ) are the inputs to neuron ݅ 

Y = Output variable ௜ܹ௝  = Weight of neuron ݅  �௜= Bias 

The bias �௜ regulates the net input of the activation function based on whether it is positive or 

negative. A negative weight is inhibitory, reducing the net contribution, while a positive weight is 

excitatory, increasing it. The feed-forward model equation is: 

�ܻ = �଴ + ∑ �௜ூ
௜=ଵ . � ቌ�௜   + ∑ Ω௝௜௃

௝=ଵ . x�−௝ቍ + ��                               ሺͳሻ 

Where �௜ �݊݀ Ω௝௜are the parameters of the model and represent respectively the weight of the 

intermediate, nodes connected to the output node. The matrix of parameters connecting the input 

nodes to the intermediate nodes. are the biases connecting the last hidden layer and the response 

variable of the model. ݅ = Ͳ,ͳ,ʹ, … . , ݆ and ܫ = Ͳ,ͳ,ʹ, … .  being the number of independent ܫ with    ܬ

input nodes or variables. ܬ, represents the number of nodes at the intermediate layer. X represents 

the input values. Each input value is connected to a weight which will affect the output variable. 

is the activation function given by the following formula: 

�ሺ�ሻ = ͳͳ + ݁−�                                                                                       ሺʹሻ 

This function is applied to the last hidden layer to obtain the output layer (Shengkun Xie et al., 

2020). 



3.2.2 Training 

In the model, GDP/capita is the dependent variable. The dataset is split into two parts: a training 

set (80% of the data) for analyzing variable relationships and a test set (20%) for evaluating model 

performance. 

Several configurations of fully connected feed-forward neural networks were tested by adjusting 

hidden layer dimensions and neuron counts. Only a two-hidden-layer configuration was retained 

due to superior performance. For each configuration, nested 10-fold cross-validation was 

employed. This involves an inner loop for performance optimization and an outer loop for 

generalization error evaluation, which is done by averaging performance over several divisions of 

the test set.  

In addition, the number of samples in the training set for the first loop was varied from 1 to 35. 

For each value in this set, 100 samples were drawn and the remainder reserved for the test set. This 

cross-validation approach not only provides a reliable assessment of the model's performance on 

each of the 3500 training data sets, but also prevents potential biases. The highest performances in 

terms of accuracy across all training trials are then recorded and evaluated. In the following, the 

interoperability methods used in this article will be presented. 

3.3 Model Evaluation  

The presentation and analysis of forecast results will take place in three stages. First, the 

performance of the results will be analyzed in terms of forecast accuracy.  Next, the forecast error 

graph will be analyzed. Finally, an overall interpretation of the results of the ANN forecast of 

Senegal's GDP/capita will be proposed. 

3.3.1 Forecast Accuracy 

There are several alternative performance measures such as mean absolute error (MAE) and Root 

mean squared error (RMSE), which can facilitate more robust comparisons between different 

models or target variables. Using these performance measures, Xu and Zhang (2023) demonstrated 

the relevance of the nonlinear autoregressive neural network model for forecasting the prices of 

the new energy index in mainland China. 

Table I: Forecast Results 

Number of  

hidden layers  

Number of  

de nods 

R2 RMSE MAE 

Training Testing Training Testing Training Testing 

3 10 0.982 0.935 0.0506 0.096 0.041 0.071 

2 8 0.979 0.950 0.0550 0.084 0.046 0.058 

1 8 0.989 0.858 0.0404 0.155 0.031 0.128 

1 4 0.981 0.904 0.052  0.121 0.052 0.099 

Source: Authors 
 
Table I: A performance comparison of neural network architectures for predicting Senegal’s per capita GDP reveals that the model with two hidden 
layers and 8 nodes per layer achieves the highest test R² (0.950) while maintaining low error metrics (RMSE = 0.084, MAE = 0.058. 



Results in Table I show that models with more than one hidden layer perform best. High R² values 

(~98% training, ~95% testing) indicate strong correlations between predicted and observed 

GDP/capita, with independent variables explaining over 90% of response variable forecasts. 

The 2-layer, 8-node architecture achieves the best results (R² = 95%, RMSE = 8.4%, MAE = 

5.8%).The 1-layer, 8-node model (Figure 7c) shows overfitting, excelling in training but 

generalizing poorly. The 1-layer, 4-node model (Figure 7d) is undersized, with higher test errors. 

The 3-layer, 10-node model (Figure 7a) performs well, but the added layer offers no significant 

gains. 

Using the optimal architecture (2 hidden layers, 8 neurons per layer; Table I), we applied 

interpretability techniques such as NID, Garson's weighting, PDP, and the Partial Derivatives 

Method to assess model behavior. 

4. RESULTS AND DISCUSSION 

4.1 Model Interpretability  

4.1.1 Neural Interpretation Diagram (NID) 

This global interpretation method defines feature importance as the increase in prediction error 

after permuting variable values. A variable is important if permutation degrades model 

performance. 

Figure 2: Neural Interpretation Diagram 

 

Figure 2: Architecture of the Neural Network Model for Economic Prediction. The diagram illustrates a Multi-Layer Perceptron (MLP) 

designed to estimate Gross Domestic Product per capita (PIB.HBT). The network consists of an input layer with six features, two hidden layers 

including bias units (B1,B2,B3), and a single output node. The thickness of the connecting lines represents the magnitude of the synaptic weights 

between neurons. 

Figure 2 shows a neural model characterizing the relationships between macroeconomic variables. 

Connection weights, similar to regression coefficients, describe these relationships. Two hidden 



layers capture non-linearities, while node reduction simplifies the calculation, adapted to often 

noisy or incomplete economic data, without losing precision. 

Connection thickness indicates contribution importance, and color (black for positive, gray for 

negative) shows direction. Weights eliminate irrelevant variables for GDP/capita and reinforce 

strongly correlated ones. For example, input nodes I1 (trade openness) and I4 (GFCF) have 

negative weights, suggesting adverse effects on GDP/capita. Conversely, I2 (inflation), I3 

(government spending), I5 (population growth), and I6 (domestic spending) have positive weights. 

Biases (B1–B4) act as intercepts. Final connections reveal that inflation, FBCF, and population 

growth most influence GDP/capita. Government spending, strongly linked to hidden layers, 

appears to directly stimulate growth. This architecture highlights key dynamics between economic 

variables and their impact on GDP/capita. 

4.1.2 Garson’s Weighting Method 

This method evaluates variable importance in neural networks. Olden’s algorithm identifies all 
connection weights between each feature and the response variable, calculating relative 

importance. Unlike Olden’s, Garson’s method indicates whether relationships are positive or 
negative. The Garson statistic is: 

��� = ∑ ሺ�௝=ଵ ሺ ɘ௝௜/ ∑ ɘ�௝��=ଵ  ሻ�௝௞ሻ∑ ሺ�௜=ଵ ∑ ሺ�௝=ଵ ሺ ɘ௝௜/ ∑ ɘ�௝��=ଵ  ሻ�௝௞ሻ                           ሺ૜ሻ 

Where ɗ௜௞represents the percentage impact of the input variables �݅ on the output y௞, relative to 

the remainder of the input variables. ∑ ɘ�௝��=ଵ  denotes the sum of the connection weights between 

the input neurons � and the hidden neuron ݆ . ɘ௝௜ represents the connection weights between the 

input neuron ݅ and the hidden neuron ݆. v௝௞ remains the connection weights between the hidden 

neuron ݆ and the output neuron ݇ for each of the network's hidden neurons. It is given by: 

ɘ௝௜ = ∑ ሺ�௞−ଵ ሺ X௜௞ − ܺ̅௜ሻሺ Y௜௞ − ܻ̅௜ሻሻ√∑ ሺ�௞−ଵ X௜௞ − ܺ̅௜ሻଶ ∑ ሺ�௞−ଵ Y௜௞ − ܻ̅௜ሻଶ                ሺ૝ሻ 

The relative importance of each input parameter is given in Table I below. 

 

 

 

 

 



Table II: Variable Importance According to Garson. 

Importance Variables 

-367.99 INFLATION 

-191.07 GOV_EXPENDITURE 

60.60 TRADE_OPENNESS 

98.36 GFCF 

256.40 DOMESTIC_SPENDING 

408.53 POPULATION_GROWTH_RATE 

Source: Authors 

Table II: Variable importance rankings according to Garson’s algorithm for the selected two-hidden-layer neural network model predicting per 

capita GDP in Senegal. Positive values indicate a direct relationship with per capita GDP, while negative values denote an inverse relationship. 

Population growth rate emerges as the dominant driver. 

Results show that inflation and population growth have the strongest negative and positive 

relationships with GDP/capita, respectively Adu-Gyamfi et al. (2020) - Maestas et al. (2023). 

Trade openness has negligible importance, while GFCF has a marginal but contextually 

insignificant effect. 

Figure 3: Garson’s Graph 

 



Figure 3: Neural network variable importance using modified Garson’s algorithm. The plot summarizes the connection weights to determine 

the relative contribution of each feature. The results highlight the contrast between growth-promoting factors (light blue) and inhibitory factors 

(dark blue). 

The figure illustrates variable importance in predicting Senegal’s GDP/capita. Population growth 
is the most influential, with a strongly positive effect. Domestic spending and GFCF also 

significantly impact growth, aligning with Barro (1990). Government spending has a negative 

effect, while inflation is even more detrimental. Trade openness has a modest positive impact 

(Koutima-Banzouzi, 2023). 

4.1.3. Partial Dependence Plots (PDP) 

PDPs analyze the marginal effect of a macroeconomic variable on GDP/capita, offering a global 

view by calculating average relationships. Derived from ICE curves, PDPs reveal individual 

deviations from average trends. 

���̂௝(�௝) = ͳ݊ ∑ ݂̂ቀ�௝ , �−௝ሺ௜ሻቁ�
௜=ଵ                      ሺ5ሻ 

Where n is the number of observations used, the �−௝ሺ௜ሻ
 represent the actual attribute values of the set 

of uninteresting values (the black lines in figure X). ���̂௝ belongs to the interval [min ሺ�௝ሻ, ݉��ሺ�௝ሻ] with �௝ = ቀ�௝ሺ௜ሻ, . . . , �௝ሺ�௝ሻቁ. 
Figure 4: Partial Dependence and Individual Conditional Expectation Plots 

 

                            Source: Authors 

Figure 4: Partial Dependence (PDP) and Individual Conditional Expectation (ICE) plots. The graphs visualize the marginal effect of each 

feature on the predicted GDP per capita (PIB.HBT), holding other variables constant. The thick red line represents the average effect (PDP), while 

the thin grey lines depict the relationship for individual observations (ICE), highlighting potential heterogeneity in the data. The rug marks along 

the x-axis indicate the distribution of the observed data points. 



The figure shows the impact of explanatory variables on GDP/capita using PDPs. Each panel 

displays GDP/capita predictions against a specific variable, with average trends in red and 

individual trajectories in black. 

For population growth, the PDP indicates a positive correlation with GDP/capita. Predictions rise 

gradually by 0.0125 as growth increases, with a sharp uptick beyond 20%. This suggests 

nonlinearity and potential interactions with other variables. 

GFCF and domestic spending are positively associated with GDP/capita (Ntamwiza et al., 2022; 

Carvalho et al., 2021, respectively). A GFCF increase leads to a near-linear GDP/capita rise, 

implying investment-supportive policies could directly boost growth. Domestic spending also 

drives GDP/capita, though less markedly than GFCF. 

Government spending negatively affects GDP, suggesting excessive or poorly allocated public 

expenditure may hinder growth. This aligns with Blanchard and Leigh (2013), who found fiscal 

austerity, affected negatively the GDP. This confirms the results obtained from the garson’s 
analysis. 

Inflation exerts a strongly negative effect, as rising prices reduce purchasing power and create 

economic uncertainty. The PDP shows GDP/capita declines by 0.4 with inflation before stabilizing 

beyond 75%. This corroborates (Jordà et al. 2024), who argue persistent inflation above 5% 

discourages private investment and reduces long-term GDP growth. 

Trade openness positively correlates with GDP/capita, highlighting globalization benefits. 

However, the relationship is nonlinear. In Sub-Saharan Africa, trade expansion drives growth, with 

inter-regional trade contributing 1.9% and intra-regional trade 0.6%, highlighting its greater 

influence (Calderon et al. 2020). 

4.1.4. Sensitivity 

This method examines explanatory variable importance by analyzing response variable sensitivity. 

Figure 5 shows the mean effect of input variables on GDP/capita (x-axis) and combined variance 

impact (y-axis). 

Figure 5: Sensitivity Analysis 

 

Figure 5: Mean vs. Standard Deviation of variable sensitivity. The plot categorizes the macroeconomic determinants by their average impact 

on the target variable (x-axis) and the heterogeneity of that impact across the data space (y-axis). 



Population growth and domestic spending are the most influential factors, with high mean impact 

and low variability, indicating stable roles in economic dynamics. They show a non-linear but 

positive relationship with the response variable. This result corroborates that of Pizarroso et al. 

(2022). 

Inflation and government spending show significant mean and variance, suggesting nonlinear, 

context-dependent relationships with GDP/capita. Both have negative effects, confirming earlier 

findings. This matches Adu-Gyamfi et al. (2020) on inflation's negative GDP impact but 

contradicts Tammar (2021) on government spending's effect on GDP per capita. 

GFCF and trade openness exhibit moderate impacts, implying long-term rather than immediate 

economic influence. Investment is a key growth factor, and trade openness amplifies its positive 

impact, as shown by John Boamah et al. (2018). 

These results underscore the need to stabilize inflation, optimize public spending allocation, and 

promote strategic investments for sustainable growth. 

4.2 Forecast Validation  

4.2.1 Forecast Error Analysis 

Error analysis (Figure 6) shows RMSE and MAE decline as observations increase, indicating ANN 

model improvement. ANN.532 (blue) and ANN.53 (red) perform best, with lower errors and 

greater stability. ANN.4 (orange) and ANN.8 (green) are less accurate. 

Figure 6: Forecast Error Curve 

 

Figure 6: Convergence analysis of ANN architectures. Comparison of RMSE (left) and MAE (right) for neural networks with varying hidden 

layer configurations. The "ANN 532" model achieves the lowest median error, indicating superior predictive performance. 



Errors are high and unstable initially but stabilize after 30 observations, demonstrating strong 

learning and generalization capabilities. ANN.532 is the most reliable for precise forecasts, while 

ANN.4 and ANN.8 require adjustments. 

4.2.2 Observed vs Predicted 

The optimal model is the 2-layer, 8-node network, balancing accuracy and avoiding over-/under 

fitting. It closely mirrors observed values, explaining the 95% R².  

Figure 7: Observed vs. Predicted Variables  

 

Figure 7: Visual assessment of model fit for different ANN configurations. The architecture with two hidden layers (top right) demonstrates the 

best generalization with a stable fit, whereas the single hidden layer with eight nodes (bottom left) exhibits high variance and instability, indicative 

of overfitting. The three-layer models (top left, bottom right) show a lag in capturing initial volatility but align well with the final trend. 

The experimental results indicate that the intermediate architecture with two hidden layers 

consistently outperforms both the shallow (one-layer) and deeper (three-layer) models, 

demonstrating superior stability and convergence properties. Exclusive reliance on the training R² 

values reported in Table I would have erroneously favored the single-layer model with eight nodes, 

despite its markedly inferior real-world performance. Figure 7’s learning curves reveal the severe 
overfitting and instability of this configuration, underscoring the limitation of training metrics in 

isolation. A combined analysis of Table I and Figure 7 provides conclusive evidence supporting 

the selection of the two-hidden-layer architecture with eight nodes per layer. This model exhibits 

smooth convergence, high reliability, and excellent generalization, as confirmed by both its 

training trajectory and independent test-set metrics. 



4.3. Global Interpretability  

Sensitivity analysis reveals key influencers government spending, inflation, trade openness, and 

GFCF. High-dispersion variables exhibit nonlinear relationships with GDP/capita. Inflation’s 
strong negative impact underscores the need for stabilization policies.  

Trade openness and investment positively affect growth, but policies must mitigate external 

dependency risks. Government spending’s efficacy depends on allocation efficiency, highlighting 
the need for rigorous fiscal management.  

Inflation remains a key risk to monitor in Senegal to avoid economic imbalances. However, its 

negative effect can be offset by robust trade activity.  

Variable importance analysis (Table II) confirms population growth and domestic spending as top 

positive drivers. Inflation remains the most detrimental factor, emphasizing price stability as a 

policy priority.  

5. CONCLUSION 

This article evaluates ANNs’ predictive capacity and interprets their "black box." After reviewing 
ANN evolution and analyzing their architecture, it explores interpretability techniques for opaque 

models, distinguishing model-specific (NID, partial derivatives, Garson) from agnostic (PDP) 

methods.  

Performance analysis reveals the 2-layer, 8-node model as optimal, offering the best precision 

generalization trade-off (R² = 0.95, RMSE = 0.084, MAE = 0.058).  

Graphical analysis highlights complex economic variable relationships and their GDP/capita 

impact. The ANN model delivers relatively accurate predictions, though some observed-predicted 

gaps remain, suggesting potential hyper parameter tuning or data augmentation. This ANN 

balances technical sophistication and economic pragmatism, ideal for predictive/decision-making 

analyses in uncertain environments like Senegal’s.  

Forecasting and interpreting Senegal’s GDP/capita demonstrates that economic policies should 
prioritize inflation control, productive investment, and efficient public spending. Trade openness 

should be encouraged within a framework shielding against external volatility.  

Demographic growth, while beneficial, requires infrastructure and education investments to ensure 

long-term positive impacts. These findings provide a valuable foundation for guiding economic 

decisions and optimizing socioeconomic development strategies.  

The unavailability of comprehensive institutional data covering the entire observation period 

constitutes a limitation of this work. Indeed, empirical studies including that of Acemoglu et al. 

(2001) emphasize the decisive role of institutional frameworks in the long-term dynamics of GDP 

per capita. In a future research perspective, the availability of such data would make it possible to 

account for the institutional effect on the growth trajectory of GDP per capita. 
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