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Abstract

I investigate deterministic best-reply dynamics in generalized Polya-urn coordination games, where a Pareto dominant
equilibrium coexists with a risk-dominant one and players have partial information on current population shares. After
analytically deriving estimates for the basin of attraction of either equilibrium, I study numerically (and via simulation)
equilibrium selection in the long run. Results indicate that risk dominance robustly prevails over Pareto efficiency as a
selection principle. Furthermore, I find that the probability of selecting a Pareto-efficient outcome decreases the
smaller the sample size drawn by entrants and increases the larger the initial pool of incumbents.
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1 Introduction

Equilibrium selection in coordination games has a long-standing tradition in game theory and economics,
encompassing both static frameworks (Kim, 1996) and evolutionary, dynamic approaches (Samuelson,
1998). This prominence reflects the wide applicability of such games across various domains (Schelling,
1978; Cooper et al., 1990). A notable area of focus has been the adoption of technological standards in the
presence of network externalities (Katz and Shapiro, 1985; Nelson et al., 2004). In dynamic contexts, this
problem is typically modeled using evolutionary games (Young, 1996), where a fixed population of agents
repeatedly revises strategies in a coordination game, myopically best-responding to global (Kandori et al.,
1993) or local (Ellison, 1993; Blume, 1995; Fagiolo, 2005a) adoption shares.

Alternatively, when agents irreversibly select their strategy upon entering a growing population, Polya-
urn processes highlight the role of initial conditions, path dependence, and potential inefficiencies (Johnson
and Kotz, 1977; Arthur, 1994; Dosi and Kaniovski, 1994; Dosi et al., 1994). In these models, entrants
perfectly observe current population shares and respond to global adoption rates using either probabilistic
(Arthur et al., 1986) or deterministic/noisy best-reply rules (Fagiolo, 2005b). While this assumption is
plausible when adoption rates are freely available, it becomes problematic when information about global
shares is costly and agents can only observe a sample of incumbents. In this case, the properties of the
model are poorly understood.!

Although much of the seminal work on coordination and Polya-urn processes dates back to the 1990s
and early 2000s, more recent contributions have been relatively scarce. Nonetheless, the mechanisms
underlying equilibrium selection remain of enduring relevance, not least because coordination problems
continue to arise in settings with evolving technologies, network externalities, and decentralized informa-
tion (Agarwal et al., 2016; Raducha and San Miguel, 2022).

Against this background, the present paper extends the Polya-urn coordination framework to environ-
ments where agents face partial information. Specifically, I study Polya-urn coordination games where
population grows over time due to entrants who cannot observe global adoption rates, but only a sample
of incumbents. Upon entry, players sample (without replacement) a share of incumbents and deterministi-
cally best-reply to irreversibly choose their strategy. To keep the analysis consistent with existing research
(Kandori et al., 1993; Ellison, 1993; Fagiolo, 2005b), I assume that agents face a coordination stage-game
where a Pareto-efficient pure-strategy equilibrium coexists with a risk-dominant one (Harsanyi and Selten,
1988). This allows one to study how long-run equilibrium selection depends on sample sizes and risk
dominance.

2 The Model

I consider a potentially infinite population of agents playing a simple coordination game with 2 pure
strategies s € S = {PE, RD} and a stage-game payoff matrix?:

| PE_RD
PE| 1 0 (1)
RD | « I}

where 0 < @ < 1 and 0 < 8 < 1. The game admits two pure-strategy equilibria (PE, PE) and (RD, RD),
where (PE, PE) is Pareto efficient. I also assume that (RD, RD) is risk-dominant, i.e. o+ g > 1.

LCf. Chen and Wei (2005) and Chen et al. (2014) for results in the applied probability literature.

2This stage-game payoff can be recovered from a standard 4-parameter setup, where 7 : S x S — R, n(PE, PE) = a,
m(PE,RD) = b, 7(RD, PE) = ¢ and 7(RD, RD) = d, assuming that a > ¢, ¢ > b, d > b, a > d, and a > b, subtracting b
from all entries, and dividing by a — b > 0.



Therefore, the set A of admissible parameters in the game is defined as:
A={(a,f):a<1,0<B<l,a+ 5 >1}, (2)

implying that a + 8 < 2.

Time is discrete. At t = 0, there are Ny players in the game. We assume throughout that the
initial strategy configuration is drawn independently at random tossing a fair coin. Agents are irreversibly
associated to their chosen strategy and cannot revise their choices across time. In each subsequent time
period t = 1,2,..., the dynamics runs as follows:

1. A new agent enters the game;

2. The new agent samples without replacement k; agents from the pool of Ny = Ny + ¢ incumbents,
where 1 < k; < Ny

3. The new agent chooses the pure strategy s* € {PE, RD} that maximizes total payoffs from playing
against players in the k;-agent sample.

Sample sizes K = {k; < Ny + t,t > 0} are exogenous and deterministic parameters that can possibly
change over time (more on this below in Section 4). Let 1 < p; < k; be the number of agents in the sample
playing PE at time t. Total payoffs read:

Dt if s=PFE

3
apy + B(ke —pe), if s=RD ®)

7(s|pe; ke, o, B) = {

where s € S. If players deterministically best-reply to choose s*, then:

= (4)

. PE if P > Hk}t
RD if p, < Ok

where 6 = 8/(1 — a + ) € (1/2,1) if (o, 8) € A.3. This follows from the assumption that RD is risk-
dominant: agents play PE only if the fraction of PE players in the sample is larger than a threshold
larger than 1/2.

3 Analysis
The law of motion for the number P; of agents playing the PE strategy reads:
Piyr = P+ Zy, (5)

where Z; is a random variable that, conditionally on P, is Bernoulli distributed. The expected value

E[Z;| P;] can be easily computed noting that, as entrants sample without replacement k; incumbents from

a population of N; units, P; of which play PFE, the number p; of PE players in the sample is distributed

as a hypergeometric distribution, i.e.:

BIEn

Prob{p; = p|N¢, Py e} = %,
k¢

3Note that one can safely disregard here payoff ties. This is because we can either assume throughout that players
randomize if a payoff tie occurs as in Fagiolo (2005b); or choose 6 in such a way that the condition p; = 0k: never occurs if
ki€ K.

(6)




with max{0,k; — (Ny — P;)} < p < min{P,, k;}. Consequently:
E[Zt|Pt] = ’I’](Nt,Pt; k‘t, (9) =1- F(lek‘d;Nt, Pt, k‘t) = H(Lek‘tJ;Nt, Pt, k‘t), (7)

where F'(-; Ny, Py, kt) is the cdf of the hypergeometric distribution with parameters (Ny, Py, k). Eqgs. (5-7)
fully characterize the evolution of the process once initial values and parameters (6, K) are given.

Let X; = P;/N; be the share of PE players in the current pool of incumbents and Z; = p;/k; the
correspondent share in the sample drawn by the entrant. Hence, (5) becomes:

N Z f(@) — Xy .
X = X =X+ —— 2L "+ ANz X 8
i Nit ot N a Nitq A Xe), (®)
where:
1 if Ty > 0
N 9
f(@) {0 it 3 <0 (9)
and:
1— f(z b = n(Ng, P ke, 0
M x;) = 4 1 S prob =B, Pk 6 (10)
—f (&), prob =1 — n(Ny, Py; ky, 0)
Since E[A(Z+; Xt)| X¢] = 0, we get that:
T) — X
B[Xp1|Xe] = X + % (11)
t+1

I now investigate convergence of the stochastic process defined in Eq. (8). If ky = Ny, forallt > 0 —i.e.,
entrants can observe the current global share X;— then in Eq. (6) one obtains that Prob{p; = p|N¢, P;} =0
if p # P, and Prob{p; = P;|N;, P,} = 1. Hence, &; = X; in Eqs. 5-11, with n(N¢, P; k,0) = f(X}), and
the model boils down to a standard generalized Polya-urn coordination game with best-response dynamics
(Fagiolo, 2005b). In this case, the sequence X; converges a.s. to the set B = {0,1} as t — oo (cf. Dosi
et al., 1994, , Theorems 1-4). This is because, given Eq. 9, the only fixed points of the deterministic
dynamics described by Eq. 11 lie at the extremes of the unit interval. Thus, full coordination will always
emerge in the limit, but whether a Pareto efficient or risk-dominant equilibrium emerges is unpredictable.
Of course, the larger 6, the larger the basin of attraction (henceforth, BoA) of the RD equilibrium. When
(a+ ) 4 1 then 6 | 1/2 (i.e., the two pure-strategy equilibria tend to be risk-equivalent), we expect the
process to converge with equal probability to either full-coordination configurations.

If 1 <k < Ny, and (Xy, 7¢), Eq. (11) still describes a deterministic law of motion of the process and
we can apply again results in Arthur et al. (1986); Dosi et al. (1994) to conclude that X; converges a.s.
to {0,1}. In order to evaluate the average BoA of the full-coordination RD equilibrium, it is useful to
take expected values of both sides of (8) conditional on X; only. Since E[f(Z)|X:] = n(Ny, Pi; ki, 0) and
E[X(Z; X1)| X¢] = 0, one gets:

ElXin|Xe] =X + Elf @)1 X] - X,

+ ENZ; X¢)| Xy] =

N1
P
=X+ N(Ne, Py ke, 0) — — | =
N1 Ny (12)
Py
X, H(|Oki|: N¢, Py k) — — | =
t+Nt+1|: (|Ok¢|; Ni, Py, ky) Nt:|
W(Pt;N0+t,]€t,0)
:X .
et No+t+1

Eq. 12 can be employed to evaluate the expected BoA of long-run equilibria of the process. Define



P*(Ny, t, ki, 0) as the value of P, such that:
W(P*(N()’t?ktae);NO+takt>9):0 (13)

i.e. a zero of the function W wrt P,. The larger P*, the smaller the BoA of the PE equilibrium. Unless
ki = N, ¥Vt > 0, the BoA depends not only on parameters (K, ), but also on initial population size (Np)
and time. Therefore, the quantity Q*(No,t, k¢, 0), defined as:

P*(N07t7 kta 9)

(N =1-
Q( 07t7kt79) No—l—t

(14)

provides the expected share of PE players at time ¢ as parameters change.?

4 Design of the Experiments

I study convergence to full coordination equilibria of the stochastic process defined by Eqgs. (5-7), when
stage-game parameters («, §) vary and assumptions as to K are made. I mostly do so numerically, exploring
the behavior of Q*(No,t, ki, 0) as parameters change. Furthermore, I validate numerical experiments via
Monte Carlo exercises, i.e., simulating Eqs. (5-7) to check whether Monte Carlo frequencies match with
those retrieved by numerically computing Q*.

To simplify the setup, let further transform stage-game parameters as follows:
a+ -1 1
—5 = 25 €(0,1), (15)
with 6 = /(1 — a+ B) € (1/2,1). Here, the parameter ¢ controls for how much the strategy RD is
risk dominant —i.e., how much o + 8 > 1— and goes to zero if PE and RD tend to be risk equivalent.
Conversely, 1 approaches one as both a and § tend to one —i.e., maximum risk dominance.

As to the sequence of exogenous sample sizes K, I consider a very simple baseline scenario where k; is
constant over time and reads:

Y=

kt = L¢N0Ja (16)

where ¢ € (0, 1] controls for the share of initial population size (Ny). This assumption can be justified
if one assumes that, as population size N; = Ny + t increases with ¢, entrants might face sampling costs
preventing them to enlarge their observation sample.

To check for robustness, I also explore a second, alternative, scenario where sampling costs are negligible
and sample sizes k; are allowed linearly to increase with ¢ in such a way that the ratio k;/IN; remains
constant over time:

k't = LQSNtJ’ (17)

and ¢ controls for the share of current incumbents (N;) sampled by the entrants.®

5 Results

Suppose first that sample sizes are constant, i.e. K as in Eq. (16). Figure 1, top panels, reports expected
shares of PE players in the long run, when ¢ — oo and Ny € 100, 1000. PE shares are obtained computing
Q*(No, t, [¢No|,0) and setting t = 1M. Notice, first, that PE shares decrease, everything else being

4A fully closed-form solution for long-run dynamics in generalized Polya-urn settings is typically intractable. This explains
why much of the literature relies on numerical or simulation-based approaches (Arthur et al., 1987; Dosi and Kaniovski, 1994;
Fagiolo, 2005b). The analytical formulation of Q* presented here thus serves as a tractable benchmark.

°In this setup, if ¢ = 1, all entrants are able to observe the current global share X; and the process follows a standard
generalized Polya-urn coordination game with deterministic best-response dynamics (Fagiolo, 2005b).



constant, as 1 increases. This is expected, as a larger 1 implies a stronger risk-dominance of the RD
equilibrium.

More interestingly, the smaller the sample drawn by entrants (i.e., the smaller ¢), the smaller the
probability that the system converges to the PE equilibrium. This happens because the RD strategy is
more rewarding when entrants face mixed populations, where the PE strategy is not dominant. Since
Polya-urn processes are strongly path dependent (Arthur et al., 1987; Arthur, 1994) and initial conditions
are perfectly mixed, the RD strategy is more rewarding insofar the sample drawn by the entrant is
sufficiently mixed. However, the probability of drawing mixed samples is governed by Eq. (6) and it
is well known that (for a given population size and number of successes in the population), the probability
of drawing the same sufficiently mixed sample (e.g., fifty-fifty) is larger the smaller sample size. Therefore,
the smaller sample size, the larger the probability that first entrants choose RD, thus setting the stage to
a path-dependent history converging in the limit to coordination on the RD equilibrium.
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Figure 1: Expected share of PE players when k; = [¢Ny]|, t — oo. Top panels: Q*(No,t, ki, 0) as a
function of (¢,1) with Ny € 100,1000. Bottom panels: Q*(Noy,t, k¢, 0) as a function of Ny for different
values (¢,1.)

Figure 1, top-right panel, also suggests that expected PE shares depend on initial population size as,
given the same (¢,1), the BoA of the RD equilibrium seems to shrink. This behavior is exemplified in
the two bottom panels of Figure 1, where expected PE shares are plotted against Ny for different values
of sample sizes and two levels of 1 (small vs. large RD dominance). Results confirm that, everything
else being constant, a larger initial population sizes implies larger expected PE shares. Using again the
intuition above, this finding can be rationalized noting that (given the same sample ratio) a similar level



of mixing in the sample is more probable —as per Eq. (6)— when the population size is smaller. As a
result, in larger initial populations, the PE strategy is more rewarding than in smaller ones, leading to
larger long-run expected PE shares.

Next, I explore what happens when entrants are allowed to draw a sample of incumbents that grows
linearly with population size, as in Eq. 17. To begin with, recall that long-run shares are highly dependent
on the choices made by first entrants, who are more uncertain, but whose decision has a larger impact
on the future history of the process. Therefore, an increasing sample size should not have a detectable
impact on long-run expected shares, as key decisions are made with smaller samples. Those entering later
in the process, who can already count on almost-settled shares, enjoy a further boost of information, being
allowed to sample a larger fraction of incumbents. This is indeed what Figure 2 shows, where for similar
values of (¢,1) I plot expected shares for the case Ny = 100.

Expected Share of PE Players Share of PE Players
/} 7’
0.5 ST 0.5
P P
, .
”
S ¢ 2o ¢
e ¥
0.4 9 0.1 0.4 a’ 0.1
REy 0.2 L 0.2
R ® 04 o ® 04
4 ® 05 A/ ® 05
@ ; 7
203 == 0.8 0.3 =, 08
@ . kel .
(%] q 3 ‘ ]
> e | kS A4
c . >
% , ug; ,
g ‘ w ’ v
g 02 e 02 W
£ , b
L e 01 #‘, e 01
s A 02 v A 02
o m 05 ‘ m 05
2" . ’, .
0.1 2 + 07 0.1 e + o7
B’ 2
, B 08 . B 08
’ )
‘
, 7
00 - 00 -
, ,
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Constant Sample Expected

Figure 2: Constant (k; = |¢No]) vs Increas- Figure 3: Expected vs Simulated Shares Ny =

ing (kt = |¢N¢]) Sample Size. Expected shares 100. Simulated shares computed via Monte Carlo

Q*(No, t, ki, 0) with t — oo. simulation of Eqs. 5-7. Sample Size: M =
100, 000. Constant sample setup.

Finally, I validate via Monte Carlo simulations the results obtained with expected shares Q*(No, t, [¢No |, 0).
The experiment is done repeating for a sample of M = 100,000 independent replications (where param-
eters and initial conditions are kept fixed) the simulation of the process according to Eqs. 5-7. Figure 3
shows (for the case where sample sizes are constant and Ny = 100) a very good match between expected
and simulated PE shares. This result is confirmed for larger values of Ny as well.

6 Conclusions

The foregoing results bear some interesting implications in terms of equilibrium selection in Polya-urn
coordination games. To begin with, although long-run shares remain unpredictable and dynamics is
governed by path dependence, risk dominance prevails over Pareto efficiency across the whole parameter
range. This is in line with findings obtained in fixed-population with reversible choices by the evolutionary-
game literature (Kandori et al., 1993; Ellison, 1993).

Furthermore I find that, when players cannot observe global shares, the probability of selecting a
Pareto-efficient outcome decreases the smaller the sample size drawn by entrants. This implies that risk-



dominance is reinforced as a selection criterion when entrants choose on the basis of a noisier, partial signal.
However, Pareto-efficiency can partially offset this tendency the larger the initial pool of incumbents. This
finding is somewhat at variance with Lane and Vescovini (1996). The contrast stems from the distinct
informational mechanism at work in their contagion model: there, Bayesian optimization with larger
samples may perversely entrench inferior options, whereas simple heuristics can ensure convergence on the
superior alternative. By contrast, in my setting smaller samples exacerbate noise and favor risk-dominance
over Pareto efficiency. The apparent divergence thus reflects the opposite role that sample size plays across
the two frameworks.

While the foregoing analysis provides a consistent characterization of equilibrium selection, it is partly
constrained by the difficulty of deriving fully closed-form dynamics. For this reason, the paper combines
some analytical results —notably the formulation of Q* as the zero of W— with numerical exploration
and simulation-based validation, in line with established practice in the evolutionary-game and Polya-urn
literatures.

My results can be checked for robustness against a number of different assumptions about sample-size
dynamics (e.g., decreasing sample size) and player choice criteria (e.g., linear vs. non-linear probabilistic
decision rules). Furthermore, an interesting avenue for future research would be to relax the assumption
that entrants project sample shares directly onto the population and instead allow for Bayesian belief
updating based on observed samples. Finally, since the baseline coordination game analyzed here already
corresponds to a restricted stag-hunt structure, further extensions could instead explore genuinely different
payoff setups, such as prisoner’s dilemma matrices or coordination games with asymmetric payoffs.
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