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Abstract
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1 Introduction

We consider the provision of a pure public good and are interested in the construction
of social choice functions that are strategy-proof and plateau-only when agents’ pref-
erences are single-plateaued— generalizing single-peakedness allowing for a segment of
equally most-preferred alternatives, the plateau. 1 Building on Berga (1998) and Moulin
(1984), we describe a recursive procedure for the construction of social choice functions
of our interest that reduces to tie-breaking rules, one for each agent selecting a rep-
resentative element from his plateau. We establish that any tie-breaking rule satisfying
strategy-proofness, plateau-onliness, and Nash independence of irrelevant alternatives can
be expressed as the projection of a strategy-proof and plateau-only social choice function
defined over the remaining agents (Proposition 1). A drawback of the recursive procedure
is that in each round we must suppose that the corresponding tie-breaking rules satisfy
NIIA since this property is not always translated from one round to the next. In many
allocation or voting problems, agents may have plateaus of equally most-preferred alter-
natives, such as desired tax rates, public good levels, or funding thresholds. Proposition
1 suggests that the selection of a representative point in each agent’s plateau should not
be arbitrary but should reflect the outcome guided by the preferences of others. This
captures situations where agents consider the welfare or positions of their peers. For
example, in public good provision or cost-sharing, individuals might favour compromise
points that balance their own satisfaction with the concerns of their peers. Hereafter,
Section 2 introduces the model and Section 3 presents the result and its proof.

2 Model

Let N be a society with n agents, n ≥ 2, that must decide the provided level of a public
good in A = [0, 1], the set of alternatives. 2 Each agent i ∈ N is equipped with an
ordinal preference relation ui over A. 3 The preference relation ui is single-plateaued if
there is an interval τ(ui) ≡ [p−(ui), p+(ui)] ⊆ A, called the plateau of ui, such that for all
xi, yi ∈ A, if yi < xi ≤ p−(ui) or p+(ui) ≤ xi < yi, then ui(xi) > ui(yi) and if xi, yi ∈ τ(ui),
then ui(xi) = ui(yi). A preference relation ui is single-peaked if it is single-plateaued
and p−(ui) = p+(ui). Denote by F the set of all single-plateaued preferences over A.
Let u = (u1, ..., un) ∈ Fn denote a preference profile, which can also be written as
u = (uS, uN\S) for S ⊆ N , and τ(u) = (τ(u1), ..., τ(un)) ∈ An a plateau profile. A
(n-agents) social choice function is a mapping f : Fn → A. It assigns the provided
level of the public good for each preference profile. We consider social choice functions
satisfying strategy-proofness, i.e., that prevent agents from gaining by misrepresenting
their preferences.

1. Single-peaked preferences have been widely studied in the literature of social choice, political
economy and public economics and a huge variety of results concerning strategy-proof rules have been
obtained. See e.g. Black (1948), Moulin (1980), and Ching (1997), among many others. Many fewer
results have considered single-plateaued preferences. See, e.g. Barberà (2007) for a paper about indiffer-
ence; Ehlers (2000), Ehlers (2002) and Doghmi and Ziad (2015) for applications in allocation or private
good settings; and Moulin (1984), Berga (1998) for public good economies. In the division problem,
see e.g., Ching and Serizawa (1998), Massó and Neme (2001), and Sakai and Wakayama (2012) where
single-plateaued is related to maximal domain results.

2. A similar result would be obtained if A was either R or any closed interval in R.
3. For the sake of tractability, we use utility functions to denote them.



Strategy-proofness of f : For all u ∈ Fn, all i ∈ N and all u′
i ∈ F , ui (f(u)) ≥

ui



f(u′
i, uN\¶i♢)



.
Another condition requires the outcome to only depend on the plateau profile.
Plateau-onliness of f : For any i ∈ N and u, u′ ∈ Fn such that for any i ∈ N ,
τ(ui) = τ(u′

i), then f(u) = f(u′).
We will apply these properties for societies N̄ ⊆ N .
According to Theorem 2 in Berga (1998), if we are interested in strategy-proof and
plateau-only social choice functions, our attention should be restricted to tie-breaking
rules that are themselves strategy-proof and plateau-only. Agent i’s tie-breaking rule
chooses a representative ballot in i’s plateau, for each preference profile u:
A (n-agents) tie-breaking rule for agent i ∈ N is a function hi : Fn → A such that
hi(u) ∈ τ(ui) for all u ∈ Fn.
Strategy-proofness of hi, i ∈ N : For any u ∈ Fn, any j ∈ N \ ¶i♢ and any u′

j ∈ F ,

uj (hi(u)) ≥ uj



hi



u′
j, uN\¶j♢



.

Plateau-onliness of hi, i ∈ N : For any u, u′ ∈ Fn such that for any j ∈ N, τ(uj) =
τ(u′

j), then hi(u) = hi(u
′).

Example 1 illustrates one tie-breaking minmax social choice function, the class charac-
terized in Theorem 2 in Berga (1998). Let (aS)S⊆N denote a list of parameters in A, one
for each coalition S ⊆ N , satisfying the conditions in Equations 1 and 2, being Af the
range of f :

∀S, T ⊆ N : S ⊆ T ⇒ aT ≤ aS, (1)

a∅ = max¶x : x ∈ Af♢, aN = min¶x : x ∈ Af♢. (2)

Example 1 Let N = ¶1, 2♢, a∅ = 1, aN = 0, and a¶1♢ = a¶2♢ = 1
2
. Define hi(u) =

1
2

(p−(ui) + p+(ui)) for each i = 1, 2. The associated tie-breaking minmax social choice
function f such that for any u ∈ F2,

f(u) = min
S⊆N



max
i∈S

(hi(u), aS)


.

By Theorem 2 in Berga (1998), f is strategy-proof and plateau-only since each agent’s
tie-breaking rule satisfies both properties. □

We now relate (n-agents) tie-breaking rules to social choice functions for (n − 1) agents
defined in Moulin (1984). Note that Moulin (1984) studies choice functions whose domain
is a Cartesian product of the set of all single-plateaued profiles and the set of all closed
subintervals of A, denoted as I. 4 Thus, to carry out our analysis, notice first that each hi,
i ∈ N , can be viewed as hi : Fn−1 × I → A such that for all uN\¶i♢ ∈ Fn−1, for all B ∈ I,
hi(uN\¶i♢, B) ∈ B, where B represents τ(ui) for some ui ∈ F . We use plateau-onliness
to rewrite hi in this way. Second, the tie-breaking rules must additionally satisfy Nash
Independence of Irrelevant Alternatives (NIIA).

Nash independence of irrelevant alternatives of hi, i ∈ N : For all uN\¶i♢ ∈ Fn−1,
ui, u′

i ∈ F with τ(u′
i) ⊆ τ(ui) and hi(ui, uN\¶i♢) ∈ τ(u′

i), hi(u
′
i, uN\¶i♢) = hi(ui, uN\¶i♢).

Reducing i’s plateau without excluding the chosen outcome does not alter the result.
NIIA can be viewed as a constancy-type condition with respect to i’s preferences. Exam-
ple 2 illustrates NIIA and Example 3 shows it is not implied by strategy-proofness and
plateau-onliness.

4. See Definition 1 and the note on p. 137 for the extension to single-plateaued preferences.



Example 2 For any u ∈ F3, let p− = max ¶p−(u1), p−(u2)♢ and p+ = min ¶p+(u1), p+(u2)♢.
Define a (3-agents) tie-breaking rule as follows: h3(u) = projτ(u3)Π(u1, u2), where Π(u1, u2) =
p− if p− > p+ and Π(u1, u2) = 1

2
(p− + p+), otherwise. h3 is plateau-only and NIIA (the

former, since only the plateau profile matters when defining h3; the latter, by Lemma
1 in Moulin (1984) since h3 is a projection over τ(u3)). The proof of strategy-proofness
is intuitive but case-based. As a hint, only agents without the outcome at the top may
misrepresent, and for any profile at most one agent could try, but never profit. □

Example 3 For any u ∈ F3, h3(u) = 1
2

(p−(u3) + p+(u3)). h3 is strategy-proof since
it does not depend on agents 1 and 2’s preferences. h3 is plateau-only since it depends
only on his plateau. h3 violates NIIA: take any uN\¶3♢, τ(u3) = [0, 7

8
], and τ(u′

3) = [1
4
, 1

2
].

Then, h3(u) = 7
16

∈ τ(u′
3) but h3(u

′) = 3
8

̸= h3(u) = 7
16

. □

3 Recursive procedure

We first obtain that any strategy-proof and plateau-only tie-breaking rule of agent i
satisfying NIIA can be written as the projection over i’s plateau of the outcome of a
strategy-proof and plateau-only social choice function over the remaining (n − 1) agents:

Proposition 1. A tie-breaking rule hi : Fn → A for agent i ∈ N is strategy-proof,
plateau-only and satisfies NIIA if and only if for all ui ∈ F and all uN\¶i♢ ∈ Fn−1,
hi(ui, uN\¶i♢) = projτ(ui)Πi(uN\¶i♢), where Πi : Fn−1 → A is a strategy-proof and plateau-
only social choice function.

We need the following Lemma 1 in Moulin (1984) for single-plateaued preferences.

Lemma 1. A tie-breaking rule hi : Fn −→ A for agent i ∈ N satisfies NIIA if and only
if there exists a mapping Πi : Fn−1 −→ A for i ∈ N such that for all uN\¶i♢ ∈ Fn−1 and
ui ∈ F : hi(ui, uN\¶i♢) = projτ(ui)Πi(uN\¶i♢).

5

Proof of Proposition 1 (⇐) (”if statement”) Let Πi be strategy-proof and plateau-
only and hi(ui, uN\¶i♢) = projτ(ui)Πi(uN\¶i♢). By Lemma 1, hi satisfies NIIA. We prove
strategy-proofness of hi by contradiction. Suppose that there exist u ∈ Fn, j ∈ N\¶i♢,
vj ∈ F , such that uj(hi(vj, uN\¶j♢)) > uj(hi(u)). Clearly, hi(u) /∈ τ(uj). Without loss
of generality, suppose that hi(u) < hi(vj, uN\¶j♢). By definition of hi, Πi(uN\¶i♢) ≤
hi(u) and Πi(vj, uN\¶i,j♢) ≥ hi(vj, uN\¶j♢). By strategy-proofness of Πi, Πi(vj, uN\¶i,j♢) ≥
ruj

(Πi(uN\¶i♢)).
6 Note that for any ωj ∈ S with p(ωj) = p+(uj), Πi(wj, uN\¶i,j♢) =

Πi(uN\¶i♢) by strategy-proofness and plateau-onliness of Πi. Take wj, which exists, such

that wj



Πi(vj, uN\¶i,j♢)


> wj



Πi(wj, uN\¶i,j♢)


. This contradicts strategy-proofness of
Πi. Plateau-onliness of hi is straightforward since hi is the projection on agent i’s plateau
of Πi, which is plateau-only itself. Otherwise, if for some preference profiles u, u′ ∈
Fn such that for each j ∈ N , τ(uj) = τ(u′

j), hi(u) ̸= hi(u
′) holds, then Πi(uN\¶i♢) ̸=

Πi(u
′
N\¶i♢) since τ(ui) = τ(u′

i), which contradicts plateau-onliness of Πi.

5. The proof is straightforward from Moulin (1984)’s proof for single-peakedness, as he observes. Tie-
breaking rules must also satisfy a technical condition, continuity with respect to closed subintervals in

A. Formally, hi(ui, uN\¶i♢) is continuous with respect to τ(ui) ∈ I. To define continuity, the set I is
identified with R

2 and endowed with the induced topology.
6. For v ∈ F and a ∈ A\τ(v), rv (a) ≡ ¶x ∈ A\¶a♢ : v(x) = v (a)♢ if it exists, 1 if it does not exist

and a < p−(v), and 0, otherwise.



(⇒) (”only if”). Let hi be a strategy-proof and plateau-only tie-breaking rule satisfy-
ing NIIA. By Lemma 1, for any uN\¶i♢ ∈ Fn−1, ui ∈ F , hi(u) = projτ(ui)Πi(uN\¶i♢)
where Πi : Fn−1 −→ A. It remains to prove that Πi satisfies strategy-proofness and
plateau-onliness as a social choice function on Fn−1. We prove strategy-proofness of Πi

by contradiction. That is, suppose that there exists j ∈ N\¶i♢, uN\¶i,j♢ ∈ Fn−2, vj ∈ F ,

such that uj



Πi(vj, uN\¶i,j♢)


> uj



Πi(uN\¶i♢)


. Let ui ∈ F such that τ(ui) = A. By

definition, hi



ui, vj, uN\¶i,j♢



= Πi(vj, uN\¶i,j♢) and hi(u) = Πi(uN\¶i♢). Then hi would

not be strategy-proof since uj(hi(vj, uN\¶j♢) > uj(hi(u)).
Plateau-onliness of Πi is straightforward since hi is also plateau-only. Otherwise, if for
some preference profiles uN\¶i♢, u′

N\¶i♢ ∈ Fn−1 such that for each j ∈ N \ ¶i♢, τ(uj) =
τ(u′

j), Πi(uN\¶i♢) ̸= Πi(u
′
N\¶i♢) holds, then hi(u) ̸= hi(u

′) since τ(ui) = τ(u′
i), which

contradicts plateau-onliness of Πi. ■

We now turn to social choice functions and describe a recursive procedure to construct
the subclass of interest: those satisfying plateau-onliness and strategy-proofness. We
start with n = 2 where the recursive device consists of one round with 3 steps and we are
interested in any strategy-proof, plateau-only f on F2:

Step (1): By Theorem 2 in Berga (1998): there exist a strategy-proof and plateau-only
tie-breaking rule for each agent and a set of parameters in A, ¶aS♢S⊆N , such that for any
u ∈ F2,

f(u) = min
S⊆N



max
i∈S

¶hi(u), aS♢


.

By continuity on closed subintervals of A and NIIA, we obtain:
Step (2): By Proposition 1, h1(u) = projτ(u1)Π1(u2) and h2(u) = projτ(u2)Π2(u1) where
both Π1 : F → A and Π2 : F → A are strategy-proof and plateau-only social choice
functions on F .

At this point, we need to characterize the class of 1-agent strategy-proof and plateau-only
social choice functions, that are minmax rules as stated in Proposition 2. 7

Proposition 2. A social choice function f : F → A is strategy-proof and plateau-only
if and only if f is a median voter rule; that is, for all u ∈ F , f(u) = med¶c∅, c1, g1(u)♢,
where c∅, c1 ∈ A, c1 ≤ c∅, and a plateau-only g1 : F → A such that g1(u) ∈ τ(u).

Step (3): By Proposition 2, Π1 and Π2 are median voter rules such that Π1(u2) =

med¶b1
∅, b1

2, g1(u2)♢ and Π2(u1) = med¶b2
∅, b2

1, g2(u1)♢ for some given collections of param-
eters (b1

S)S⊆¶2♢ ∈ A and (b2
S)S⊆¶1♢ ∈ A satisfying conditions in Equations 1 and 2.

Adding up the information from the steps, we obtain that the shape of any strategy-proof
and plateau-only 2-agents social choice function is a combination of minmax rules.

We can generalize this recursive argument for any number of agents n which would consist
of (n−1) rounds repeating steps 1 and 2, and apply step 3 once. We start by considering
a social choice function with n agents in round 1 and in each round l > 1 studying social
choice function with [n−(l−1)]-agents defined in previous rounds. In each round, besides

7. The proof of Proposition 2 follows from that of Theorem 2 in Berga (1998) for n = 1. Thus, we

have that for all u ∈ F , f(u) = min
S∈¶∅,¶1♢♢



max
i∈S

¶gi(u), aS♢



. Moreover, it is easy to prove the equivalent

median expression where bS = aS (see Moulin (1980) and Ching (1997) for single-peaked preferences and
the equivalence between minmax rules and median voters for n agents).



assuming continuity, we require the tie-breaking rules to satisfy NIIA—a property not
generally preserved across rounds (see Footnote 10, Example 4).
Summarizing, using Theorem 2 in Berga (1998) joint with our Propositions 1, 2 and the
recursive argument on the number of agents, we can build a strategy-proof, plateau-only
social choice function f for any number of agents. We do not know what additional
condition(s) on f would guarantee that tie-breaking rules inherit NIIA, which remains a
drawback of our approach. We hope our analysis serves as a catalyst for new perspectives
leading to a fully closed characterization.

Example 4 presents a 3-agents social choice function exemplifying the recursive procedure
and spelling out the tie-breaking and the associated two- and one-agent functions.

Example 4 Define for any u ∈ F3, f(u) = median¶h1(u), h2(u), h3(u)♢, where hi(u) =
p−(ui), for i = 1, 2 and h3(u) = projτ(u3)Π

1
3(u1, u2), being Π1

3 : F2 → A strategy-proof
and plateau-only. 8 By Theorem 2 in Berga (1998), f is strategy-proof and plateau-only.
Observe that each tie-breaking rule is NIIA by Lemma 1, since hi(u) = projτ(ui)Π

1
i (uN\¶i♢)

where Π1
i (uN\¶i♢) = 0, for i ∈ ¶1, 2♢. So far, this corresponds to the first round in the

recursive procedure—the initial application of step 1 (f being a minmax rule; a median
rule in this example) and step 2 (each agent i’s tie-breaking rule hi being a projection over
τ(ui) of a strategy-proof and plateau-only rule Π1

i depending on the other two agents’
preferences; Π1

1 and Π1
2 being constant rules). We start the second round for Π1

3. By
Theorem 2 in Berga (1998), Π1

3 (known to be strategy-proof and plateau-only) must be
a minmax rule which we assume to be as follows: 9 Π1

3(ū) = med¶h̄1(ū), h̄2(ū), 1
2
♢ where

h̄1(ū) = projτ(u1)Π
2
1(u2) and h̄2(ū) = projτ(u2)Π

2
2(u1) for any ū ∈ F2 by Proposition 1.

Thus, we would have gone through the second round of the recursive procedure: second
time applying steps 1 and 2. Now, step 3 applies, Π2

i : F → A any strategy-proof and
plateau-only as in Proposition 2 for i = 1, 2. 10 Suppose that Π2

1 and Π2
2 are such that

Π2
1(u2) = med¶0, 1, p+(u2)♢ = p+(u2) and Π2

2(u1) = med¶0, 1, p+(u1)♢ = p+(u1). □

8. Note that f is a minmax rule satisfying Equations 1 and 2 where aS = a′
S for #S = #S′,

a0 = a1 = 1, and a3 = a2 = 0.

9. That is, Π1
3(ū) = minS⊆¶1,2♢

{

maxi∈S

{

h̄i(ū), bS

}}

for any ū ∈ F2, where bS = b′
S for #S = #S′

and b0 = 1, b2 = 1

2
, b3 = 0 and h̄i being strategy-proof, plateau-only, and NIIA.

10. If h̄i(ū) = 1

2
(p−(ūi) + p+(ūi)) for some i = 1, 2, h̄i would not satisfy NIIA (see Example 3).
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