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I examine the implementation of the Friedman rule under the assumption that age 

dependent lump sum transfers are possible and private intermediation is costly. This is 

done both in an infinitely lived agents model and in an overlapping generations model. I 

argue that in addition to a zero nominal-interest-rate policy (the so called Friedman rule) 

a transfer to young agents, or a government loan program is required for satiating agents 

with real balances. The paper also contributes to the understanding of Friedman’s original 

article and discusses related questions about the size of the financial sector. It is shown 

that the adoption of the (modified) Friedman rule will crowd out private lending and 

borrowing. I also look at the social value of a market for contingent claims and argue that 

resources spent on operating a market for accidental nominal bequests are a waste from 

the social point of view in spite of the fact that individuals have an incentive to trade in 

such markets.       
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1. INTRODUCTION 

 

 The recent financial crisis has led to a renewed interest in monetary economics 

and old questions that were never fully answered are now at the top of the research 

agenda. While many of the same issues are relevant, the focus (or perhaps the 

terminology) has shifted from “money” to “liquidity”. Like money, liquidity is not easy 

to define. Roughly speaking, I use liquidity for instruments and policies that help to 

mitigate the effects of trade frictions.  

Does the government have an advantage over the private sector in supplying 

liquidity? In one area, namely money creation there is almost a consensus that the 

government does have an advantage. The government has also an undisputed advantage 

in collecting tax payments. Can this advantage be used to increase liquidity? Similarly,  

many believe that the government has an advantage in enforcing uncollateralized loan 

contracts.1 Should it play a role in the credit market? 

Here I look at these questions through the lenses of Friedman (1969) original 

optimum quantity of money article. In his seminal article, Friedman argues that the social 

cost of producing real balances is zero and therefore a policy aimed at satiating agents 

with real balances is optimal. I argue here that satiating agents with real balances requires 

perfect credit markets or a particular type of a tax/transfer policy. This suggests that in 

order to realize the full gains from the government’s advantage in money creation, it must 

also realize its advantage in other areas such as collecting tax and uncollateralized loan 

payments.  

I follow Friedman in using the “money in the utility function approach” and 

discuss problems that arise as a result of heterogeneity and market incompleteness. This 

is done in a version of Friedman’s original model with infinitely lived agents (the IL  

                                                 
1 There is little difference between collecting taxes and collecting uncollateralized loan payments. 

Therefore, the advantage in collecting taxes may imply an advantage in collecting loan payments. 
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model) and in a Blanchard (1985) type of overlapping generations (OG ) model. In the 

IL  model, the cost of intermediation matters for the transition to the optimal steady state. 

In the OG  model, it matters also in the steady state because of the built in age 

heterogeneity.  

I start with the case in which the cost of private intermediation is prohibitive. To 

see the need for a transition period in the IL  model that will arise in the absence of 

intermediation, let us assume that the price level drops after the adoption of the Friedman 

rule, to a level that on average satiate agents with real balances. After the drop, some 

agents will have more money than they want to hold and some will have less money than 

they want to hold. Those with “too much” money will decumulate real balances by 

consuming more than their income while those who do not have enough money will 

accumulate money by consuming less than their income. This process will continue until 

they reach the efficient steady state and during the transition period agents do not hold 

the optimal quantity of money.  

In the OG  model agents may hold suboptimal levels of real balances even in a 

steady state with zero nominal interest rate because young agents may start with 

suboptimal levels of money.  

The government may restore efficiency by realizing its advantage in collecting tax 

and uncollateralized loan payments. It can make a transfer to the young and collect taxes 

to cover the “interest payments” on the transfer or it can institute a loan program. The 

equivalence between the transfer payment solution and the loan solution can be explained 

in terms of a Ricardian equivalence type of reasoning. The tax implications of the 

“transfer solution” can be viewed as interest payments and the initial transfer can be 

viewed as a loan that agents are forced to accept. The use of “force” is however not 

consequential because the optimal policy allows agents to save at the same interest rate 

that they pay on the “forced loan”. Therefore an agent can simply deposit the unwanted 
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fraction of the “forced loan” in government bonds and use the interest payment to cover 

the tax obligations. 

I also attempt the broader question of the optimal size of the financial sector. I 

show that the optimal policy (that includes government loans or a transfer to the young) 

will crowd out costly private lending and borrowing. In this sense the financial sector that 

exists when the optimal policy is not implemented is “too big”. I also show that resources 

spent on contingent contracts on accidental nominal bequests are a waste from the social 

point of view. Trade in claims on accidental bequests is likely to emerge and may be 

important if the transfer solution is used to satiate agents with real balances. The problem 

is less severe under the loan program because in this case agents do not own most of the 

money they hold and the accidental bequest is small.     

  

2. A VERSION OF THE FRIEDMAN MODEL 

 

A short review of the large literature that followed Friedman’s original article may be 

useful. Friedman developed his main argument in the context of “a hypothetical simple 

society” in which money is the only asset (no bonds and no physical capital). In this case 

the optimal real rate of return on money (which is approximately equal to the deflation 

rate) is the subjective interest rate. Friedman then introduced default-free bonds and 

riskless physical capital and argued that the policy maker can achieve his objective by 

choosing a rate of deflation that will make the nominal interest rate equal to zero. This 

has become known as the Friedman rule. See Eden (2005, ch. 2) for an exposition of the 

Friedman model.  

 Friedman made his argument in terms of first order (no arbitrage) conditions that 

must hold in a steady-state equilibrium, but did not specify the agents’ problems. Brock 

(1974, 1975) used the representative agent assumption to formalize Friedman’s analysis. 

Woodford (1990) summarized the earlier literature and showed that the Friedman rule is 
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optimal in infinitely lived representative agent models that allow lump sum taxes and 

transfers. Cole and Kocherlakota (1998) showed that the Friedman rule is both sufficient 

and necessary for achieving the optimal allocation in a cash-in-advance economy under 

the representative agent assumption.  

Phelps (1973) challenged Friedman’s conclusions on the grounds that when only 

distortive taxes are possible, money should be taxed like any other good. Subsequent 

literature examined this argument and found that the Friedman rule is rather robust. See, 

for example, Kimbrough (1986), Chari, Christiano and Kehoe (1996), Correia and Pedro 

(1996) and da Costa and Werning (2008).   

The literature that allows for heterogeneity with incomplete markets poses another 

challenge for the Friedman rule. Bhattacharya, Haslag and Martin (BHM, 2005) review 

this literature and argue that the adoption of the Friedman rule may not lead to a Pareto 

improvement. I will revisit their argument shortly.  

It may be worth noting that Friedman (1969) provides an extensive discussion of 

the income distribution aspects of his proposal and explicitly abstracts from 

“distributional effects” (page 14) when discussing welfare. He thus focuses on efficiency 

rather than Pareto ranking.  

Since private intermediation is costly, achieving efficiency and satiation with real 

balances is not trivial. I argue here that since the government has an advantage in 

collecting tax and loan payments it can reduce the need for a transition period in which 

agents hold suboptimal balances.  

Another problem for implementing the Friedman rule is the presence of menu 

type costs for changing prices. I start with the case of a technological advanced society in 

which cash is relatively unimportant. As noted by Friedman (1969, page 38), in this case 

it is possible to achieve optimal liquidity by paying explicit interest on money and 

maintaining price stability.  
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2.1 The Environment and a Planner’s Problem 

 I assume n  agents (indexed h ) who live forever and consume a non-storable 

consumption good (corn) and liquidity services. (See the Appendix for the derivation of 

the indirect utility function in a many goods economy). Agent h ’s period utility depends 

on “total consumption” which aggregates corn consumption and liquidity services. 

Liquidity services f h (mtb
h ,Yt

h )  depend on the amount of real balances held at the 

beginning of the period ( mtb
h ) and on corn consumption (Yt

h ). Total consumption is 

Ct
h  Yt

h  f h (mtb
h ,Yt

h )  and agent h ’s utility is ( h )tU h (Ct
h

t1

 )  where U h  is strictly 

concave and monotone and 0   h 1 is agent h ’s discount factor. The liquidity services 

function f h (mtb
h ,Yt

h )  is strictly concave and for any given Yt
h  it reaches a unique 

maximum at the point when the partial derivative is zero: f h
1(mtb

h ,Yt
h )  0 .2 Agents get an 

endowment of corn at the beginning of each period. Each agent gets an endowment of Y  

per period and the aggregate endowment is:   nY  per period. (I will use cap sigma 

both for summation and for the aggregate endowment).  

 I start with the assumption that the economy is fully controlled by a central 

planner who gets the endowment of corn. In addition, the planner has an unlimited 

amount of another good called money (or real balances). At the beginning of each period 

the planner gives each agent a certain amount of money as an interest free loan to be 

returned at the end of the period.  

The planner maximizes the weighted sum of the utilities of the agents in the 

economy, and solve the following problem:  

(1)  max
Yt

h ,mtb
h  h ( h )tU h Yt

h  f h(mtb
h ,Yt

h ) 
t1

h1

n   s.t. Yt
h  

h1

n  for all t 1 , 

where  is the weight that he assigns to agent . 

                                                 
2 Friedman (1969, page 17) argue that the marginal product of money in producing liquidity services will 

be negative after some point because of the need to hire guards to protect the cash hoard. This may also 
apply for a cashless society because a stolen debit card can be used to withdraw money from the checking 
account but not from the savings account. The amount of resources devoted to prevent theft from the 
checking account is related to the amount held in this account. 
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 The first order conditions for this problem require: 

(2)  f h
1(mtb

h ,Yt
h )  0   for all h  and t . 

Thus since real balances are a “free good” efficiency requires that all agents are satiated 

with real balances at all times.  

 Note that our planner can change the allocation of real balances without changing 

the allocation of corn. When f h
1(mtb

h ,Yt
h )  0 , increasing real balances (without changing 

the allocation of corn) improves the welfare of all individuals. 

 I now turn to the description of the actual economy in which agents get the 

endowment of corn and decide how much money to hold.  

  

2.2 The Loan Implementation When Paying Interest on Money is Possible  

  I start with the relatively simple case in which paying interest on money is 

possible, prices are stable and the only source of heterogeneity is in the initial money 

holdings. I show that the government can increase equilibrium liquidity by instituting a 

loan program and given a sufficiently high borrowing limit, we can Pareto rank 

alternative policies.  

There are two assets: money and government bonds. The price of corn is one 

dollar per unit and all magnitudes are therefore in units of corn (real terms).  

It may help to think of the two assets as two types of deposit accounts in a 

government run bank: a checkable account and a savings account. The checkable account 

yields liquidity services and pays the gross real interest rate Rm  1 rm . The savings 

account pays the gross real interest R 1 r  Rm  and does not yield liquidity services. 

The end of period balances are mt
h  0  in the checking account and bt

h  in the savings 

account. At the beginning of each period t 1 , the agent gets interest payment and a 

money transfer from the government of g  units that is deposited to his checking account. 

The beginning-of-period real balances are: mtb
h  Rmmt1

h  g . The amount in the savings 
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account can be negative but there is a limit to the amount of borrowing allowed: 

bt
h  B   .   

Agent h  starts period t  0  with m1
h  units of real balances that are different 

across agents. At t  0 , the government gives each agent a transfer of   units of real 

balances (that may be different from g - the transfer that he will get in all future periods 

t 1 ). After the initial transfer, the beginning-of-period t  0  real balances are: 

zh  m1
h  .  

The average amount of initial money holdings after the initial transfer is: 

m  (1
n) zh

h1

n . The end-of-period real balances are: m0
h  zh  b0

h , where b0
h  is the 

amount he borrows from the government ( b0
h  is the amount in his savings account that 

may be negative).   

Starting from period t  1 each agent gets an endowment of Y  units of corn per 

period. I simplify and assume that liquidity services can be written only as a function of 

the beginning of period real balances (there is no interaction with corn consumption) and 

this function is the same for all agents. Total consumption is given by Ct
h  Yt

h  f (mtb
h )  

where Yt
h  is the consumption of corn and f (mtb

h )  is the liquidity service in units of corn. 

The function f (mtb
h )  is strictly concave and there is a satiation level m  such that: 

f '(m)  0  when m  m , f '(m)  0  and f '(m)  0  when m  m .  

 At t  0  the government announces a policy (R, Rm  R,  B  0,g, ) . The 

policy variables do not change over time and therefore they are not indexed by t . Agents 

take the policy as given and solve the following problem. 
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(3)  max
Yt

h ,mt
h ,bt

h  t

t1



 U(Ct
h )  

 s.t. 

 Ct
h  Yt

h  f (mtb
h )  

 mtb
h  Rmmt1

h  g  

 m0
h  b0

h  m1
h   zh

 

 bt
h  mt

h Yt
h  Y  Rmmt1

h  Rbt1
h  g  

 zh  0  is given, mt
h  0 , bt

h  B . 

 

Using dynamic programming we can write (3) as:   

(4)  V (z)  maxm00,b0B v(m0 ,b0 )  s.t. m0  b0  z  and 

 v(m,b)  maxm '0,b 'B U Y  Rmm  Rb  m ' b ' g  f (Rmm  g)  v(m ',b ')   

 

The function v(m,b)  defined by the Bellman equation, is the maximum utility that one 

can get if he starts period t 1  with m  units of real balances and b  units of bonds. Later, 

I use the symbol v  to denote different (but similar) value functions. The functionV (z)  is 

the maximum utility that the consumer can achieve if his post initial transfer balances are 

z  units.   

The first order conditions that an interior solution to (3) must satisfy are:  

(5)  U '(Ct )
U '(Ct1)

 R  Rm 1 f '(mt1b )  

The first equality is the standard Euler equation. It equates the marginal rate of 

substitution to the real interest rate on bonds. The second equality says that the total real 

rate of return on money (the sum of Rm  and the marginal product Rm f ' ) must equal the 

real rate of return on bonds. Note that the relevant marginal product is at t 1  because 

liquidity services depend on the beginning of period real balances.  
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Equilibrium is a policy announcement (R, Rm  R,  B  0,g, )  an initial level of real 

balances (z1  m1
1  ,..., zn  m1

n  ) , the amounts of funds in the two accounts 

{bt
h ,mt

h}t0
  and the amount of corn consumption {Yt

h}t1
  such that: (a) given the policy 

announcement and the initial level of real balances, the choices of the consumers are 
optimal (solve [3]) and (b) the market for corn is cleared, Yt

h

h1

n  nY  for all t 1 .  

 

A steady state equilibrium characterized by the level of real balances m  is an equilibrium 

which satisfies the added condition: mt
h  m  (1

n) zh

h1

n  for all h  and t . 

 

 Thus in the steady state, real balances do not change over time. Since all agents 

use the same f  function they hold the same level of real balances. Corn consumption and 

bond holdings may still be different across agents. When B  is sufficiently large, agents 

with initial holdings of real balances that is less than the average m  take a loan from the 

government and those whose initial holdings is more than m  make a loan to the 

government. This is the only time agents adjust their portfolios. After this adjustment 

agents consume their permanent income. This is stated in the following Claim.  

 

Claim 1: A policy announcement R 1 , Rm , B,g  rmm,  m  (1
n) m1

h

h1

n  with a 

large enough limit on borrowing | B | , and the following choice variables

mtb
h  Rmm  g  m  

bh  zh  m  m1
h   m  m1

h  (1
n) m1

i

i1

n  for all t  0 , 

Yt
h  Y  rbh  rmm  g  Y  rbh , Ct

h  Ch  Y  rbh  f (m)  for all t 1 , 

is a steady state equilibrium if m  satisfies the first order conditions (5), which can now 

be written as:  

(6)  R  1   Rm 1 f '(m)  . 
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 Assuming m  m , there is a unique solution to (6) for any given policy choice 

Rm and we can therefore introduce the following Claim.  

 

Claim 2: The steady state welfare of all agents is increasing in Rm  ( Rm  R  1  ). 

 

 The proof of the Claim uses (6) to show that an increase in Rm  leads to an 

increase in m  and in the liquidity services f (m)  for all agents. Since bh  is the same 

across steady states, total consumption Ch  Y  rbh  f (m)  is increasing in m  m  for all 

h . To get the first best, the government must choose: R  Rm  1  .  

To get the intuition, we may think of the transition to a steady state as occurring 

in two stages. In the first stage agents lend or borrow to achieve a common amount of 

real balances. Then agents get an initial transfer of  . Since achieving a steady state with 

more real balances requires a larger   and since all agents end up holding this initial 

transfer and derive liquidity services from it, all agents are better off in a steady state with 

more real balances.  

The assumption of rigid prices allows for Pareto ranking in spite of the 

heterogeneity in the initial distribution of money. Unlike Bhattacharya, Haslag and 

Martin (BHM, 2005), here achieving a steady state with higher real balances does not 

change the value of the initial holding m1
h  and therefore there is no redistribution effect 

that may reduce the welfare of some individuals.  

 

2.3 An Initial Transfer Implementation  

 An alternative way of achieving the first best is to replace the loan by a large 

transfer of money at t  0  and adopt the policy: R  Rm  1  , B  0 , 

g  r m  (1
n) m1

h

h1

n  and   m .  

Note that after the initial transfer, agent h  has zh  m  m1
h  unproductive real 

balances. He deposits the unproductive balances in the savings account (by choosing 
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bh  m1
h ) and consumes his permanent income: 

Yt
h  Y  rm  rbh  g  Y  r m1

h  (1
n) m1

i

i1

n .  
In general, there is no difference here between the transfer solution and the loan solution. 

We can consider alternative policies: 

R  1 , Rm , B  0,g  rm m  (1
n) m1

h

h1

n ,  m





 and show that total consumption 

in the steady state is the same as under the loan program and Claims 1 and 2 hold for this 

case as well. This is because of the Ricardo type equivalence between the loan and the 

transfer that was mentioned in the introduction: The transfer may be viewed as a loan and 

the increase in future tax obligations as interest payments. The only difference is that here 

the agent does not choose the size of the loan but this is not important because he can 

always deposit the unproductive balances in the savings account.  
 

2.4 Flexible Prices 

The “baseline” model considered by Friedman assumes perfectly flexible prices. In this 

case, paying explicit interest on money is not necessary and the optimal steady state can 

be achieved by choosing an inflation rate   such that the gross real rate of return on 

money is: 
1

1
1   and    .  

 We can reach the steady state immediately, without a transition period, and 

without having a government run bank, provided that we allow for large jumps in the 

price level at the time of the announcement of the optimal policy. I focus here on two 

cases. 

Initial hyperinflation: The government can achieve any steady state (without a transition 

period and without a government run bank) in the following way. It first announces the 

interest rates (R  1 , Rm  R) . After the announcement, the steady state level of real 

balances m  is determined by (6). The government then makes a large transfer of T

dollars per agent. After the transfer the price level jumps to P0  and agent h  holding of 
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real balances is: zh 
M1

h T

P0

, where M1
h  is the initial money endowment in nominal 

terms. When T  is sufficiently large, the real value of the initial endowment of money 

holding is small and zh  m  for all agents. Thus a large transfer eliminates the difference 

in the initial money holding and the need for a transition period to the steady state.  

 Thus, when T is sufficiently large, we can Pareto rank alternative steady states 

and the optimal steady state is achieved when choosing Rm  R  1  .3  

 I now turn to show that the introduction of government bonds is enough to 

eliminate the transition period.  

 

The role of government bonds in eliminating the transition period: The government can 

eliminate the transition period without an initial transfer (T  0 ) and without lending, 

provided that agents are allowed to save in government bonds and all agents hold a 

strictly positive amount of money. In this case, after the government announces the 

interest rates ( R  1 , Rm  R ) the price level is determined so that the real balances of 

the individual(s) with the lowest money holding is the steady state level m . All other 

agents will have more money than they want to hold and will deposit the unproductive 

balances in government bonds.  

 To see how this works, I assume B  0 , so that agents cannot borrow from the 

government but can still lend to it. I use M  to denote the lowest amount of nominal 

balances held at t  0 : M 0
h  M  for all h  with strict equality for some h .  

                                                 
3 Without the initial transfer and without lending and borrowing, we will have a transition period during 

which agents with initial holdings of money that are less than average will accumulate real balances and 
agents with initial holdings that are higher than average will decumulate real balances. This will continue 
until all agents hold the steady state level of real balances. As was noted by BHM different 
announcements of Rm  R  1   imply different distribution of initial wealth. A higher Rm  will in 
general benefit agents with relatively high amount of initial money holdings and may make the Pareto 
ranking of alternative (non steady state) equilibria impossible.  
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After the announcement of the policy, m  is determined by (6) and the price level is 

determined by: m  M
P0

. Agents’ optimal lending is: b0
h 

M 0
h  M

P0


M 0

h

P0

 m . Let 

b  (1
n) b0

h

h1

n  denote the average holding of bonds. The budget constraint of the 

government is now: g  rb  rmm . The consumption of corn is equal to permanent 

income: Yt
h  Y  rb0

h  rm  Y  r(b0
h  b) .  

 Note that an individual with an average holding of money will hold an average 

amount of government bonds. The average individual will use the interest payments on 

his assets (bonds and money) holding to cover the lump sum tax and will consume Y

units of corn per period. The average individual will definitely prefer steady states with 

high m  and high level of average total consumption.  

 The “poorest” individuals will not hold government bonds and will consume 

Y  rb  units of corn per period. Since the average bond holding b  is decreasing in P0 , it 

is possible that the welfare of the “poorest” individuals is relatively high in steady state 

with high P0  and low m . Therefore, Pareto ranking of alternative steady states may not 

be possible. 

 We can say however that efficiency requires the Friedman rule because only when 

the government announces Rm  R  1  , agents will be satiated with real balances.  

 

2.5 Differences in the Demand for Money 

 Pareto ranking of alternative choice of Rm  is not possible when agents have 

different f  functions. In this case the demand for money in the steady state is the 

solution  to R  Rm 1 f h '(m) , where f h (m)  is the production of liquidity services 

technology available to agent h . As before, the lump sum transfer for t 1 is given by: 

g  rmm , where m  (1
n) mh

h1

n  is average real balances in the steady state. When we 

increase Rm  (holding R  1   constant) average money holding increases and the 

transfer decreases. For agents who derive large amount of services from holding real 
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balances, the increase in real balances will more than compensate for the decrease in the 

transfer. But for agents who derive little or no liquidity services, the reduction in the 

transfer will dominate and their welfare will go down.   

To illustrate, I assume that agents’ initial endowment of real balances is zero  

( m1
h  0  for all h ) and the initial transfer of money is equal to the average amount of 

real balances in the steady state (  m ). The amount that agent h  will deposit in his 

savings account is: bh    mh  m  mh . The transfer from the government in the steady 

state is: g  rmm . And the consumption of corn in the steady state is: 

Yt
h  Y  rbh  rmmh  g  Y  (m  mh )(r  rm ) . When r  rm  the corn consumption of 

agents with higher than average demand for money ( mh  m ) is less than their 

endowment (Y h  Y ) and agents with lower average demand for money is higher than 

their endowment. In this sense, agents with higher demand for money transfer resources 

to agents with lower demand for money. When we reduce the tax on real balances 

(r  rm )  tax revenues typically go down and the transfer from those with above average 

demand to those with below average demand goes down. The welfare of some agents 

may actually decline in spite of the fact that the distortion created by the tax has been 

reduced. For example, the consumption of corn of an agent that does not use real 

balances ( mh  0 ) is: Y  (r  rm )m . This agent’s corn consumption is above his 

endowment by the average tax revenues and his welfare will go down if we adopt the 

Friedman rule and eliminate the tax on real balances.  

This argument was made by BHM (2005, Proposition 1) who use the Lagos-

Wright search model. In their model agents that have less than average demand for the 

goods produced in the decentralized market have less than average demand for money.   

 The argument is not special for money. If we impose a tax on yellow cheese and 

distribute the tax revenues equally, it may benefit agents who do not consume yellow 

cheese. But this is not usually used to argue for a tax on yellow cheese. I therefore think 
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that the bar of adopting a policy only if it leads to a Pareto improvement is too high and I 

adopt here the lower bar of efficiency.  

  

3. SATIATING AGENTS WITH REAL BALANCES IN AN OVERLAPPING 

GENERATIONS MODEL 

 

There are some important differences between the OG  model presented here and 

the IL  model of the previous section. As a result of age heterogeneity the optimal real 

interest rate is different. The newly born may receive different bequests and as a result 

the problem of heterogeneity is present in the steady state and not only in the transition 

period. And there may be a difference between the transfer solution to the heterogeneity 

problem and the loan solution.4  

The optimal real interest rate in the IL  model is R  1
  and the policy maker has 

no choice in this matter. In the OG  model there is more than one real interest rate that is 

consistent with a steady-state equilibrium. A policy-maker who runs a government loans 

program will therefore face a non-trivial choice.5 

I focus here on the steady state and on the loan implementation under constant 

prices of 1 dollar per unit of corn.  

 
  

                                                 
4 Friedman (1969) assumes that the members of his hypothetical simple society are “immortal and 
unchangeable”. In footnote 1 he says: “this is equivalent to regarding the community as having a constant 
distribution of persons by age, sex, etc. Each of our infinitely long-lived individuals stands, as it were, for a 
family line in the alternative population of changing individuals but unchanging aggregates”. I do not think 
that it is easy to defend this footnote because of the age heterogeneity that is present in the OG model but 
not in the IL  model. 
5 The difference between the two models’ implications about the real interest rate has created a controversy 

that to my mind has not been fully resolved. Cass and Yaari (1966) question the interpretation of the 
interest rate in Samuelson’s (1958) model and argue that it is not a price used in actual transactions and 
not even an implicit price. (page 354). Here the government set interest rate is a price used in transactions 
between the government and private agents. 
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3.1 The Environment and a Planner’s Problem 

As in Blanchard (1985), agents face uncertainty about life and the probability that 

an agent will die in the current period ( ) does not depend on his age (indexed by t ; 

note the difference between the use of this index to describe calendar time in the previous 

section and the use of it here).  The survival probability is denoted by  1 . Death 

and birth occur at the beginning of the period and live agents age t 1  get an endowment 

of Y  units of corn (the newly born age t  0  do not consume and do not get the 

endowment). Agents are distributed over J  families or types (indexed j ). The number 

of agents who are born from each type is the same as the number of agents who die from 

that type and is equal to n . At each point in time there are thus  tn  age t  type j  agents.  

The planner chooses the amount of corn consumption Yt
j  and the amount of real 

balances, mt
j  that he will give to agent age t  type j . The allocation of corn to age t  

agents is n  t

j1

J Yt
j . Summing over types yields the aggregate allocation of corn: 

n  t

j1

J Yt
j

t1

 . Aggregate supply is: nJY  t

t1

 
nJY
1

.  Using  
JY
1

 we can 

write the resource constraint as:  
(7)   jYt

j

j1

Jt1

    
 

Money is a free good. The planner maximizes welfare in the steady state and 

solves the following problem: 

(8)  max
Yt

j0,mt
j0

 j ( )tU Yt
j  f (mt

j ) 
t1

j1

J   s.t. (7), 

where  j  is the weight of type j .  
 The first order conditions for this problem require (for all t  and j ): 

(9)  f '(mt
j )  0  

 

(10) 
U ' Yt1

j  f (mt1
j ) 

U ' Yt
j  f (mt

j )  1 

 
(11)   jU ' Yt

j  f (mt
j )  1U ' Yt

1  f (mt
1)  
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3.2 Steady-State Equilibrium  

Agents leave their assets holdings as accidental bequest when they die. The heirs 

are responsible for paying any outstanding loans left by their parents so that the value of 

the bequest may be negative. The accidental bequests of type j  agents are distributed 

equally among the newly born type j  agents. In the steady state, bond holdings are 

different across types and therefore accidental bequests are different across types: A 

newly born type j  gets a bequest of z j  dollars. Types are identical in all other respects.  

As before there is a government run bank that offers two accounts: checking and 

savings. I start with the case in which there is no private lending and borrowing and no 

markets for contingent claims.      

The problem of a newly born agent with initial money holdings of z  units is: 

 

(12)  V (z)  maxm00,b0B v(m0,b0 )  s.t. m0  b0  z  and 

(13) v(m,b)  maxm '0,b 'B U Y  Rmm  Rb  m ' b ' g  f (Rmm  g)   v(m ',b ')  

 
This problem is similar to (4). The only difference is that here the future is “discounted” 

by   instead of just  . The first order conditions that an interior solution to (12) and 

(13) must satisfy are: 

(14)   
U '(C)

U '(C ')
 R  

(15)  Rm 1 f '(Rmm ' g)  R  

Condition (14) is a standard Euler condition. Condition (15) determines the level of real 

balances and has a unique solution: m  m ' . Thus the beginning-of-period real balances 

do not change with age.  
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A steady-state equilibrium is a vector of accidental bequests received by the newly born, 
(z1,...,zJ ) , a level of real balances m  (1

J) z j

j1

J , a policy choice 

(R, Rm  R,  B  0,g)  and a sequence of endogenous variables {mt
j  m,bt

j ,Yt
j }  such 

that: (a) given the policy choice, the endogenous variables are a solution to (12) and (13), 

(b) the market clearing condition (7) is satisfied, (c) the government transfer to agents age 
t 1  is: g  rmm  and (d) z j    t

t0

 (Rbt
j  m) .    

  

The definition is standard except for (d) that requires equality between the accidental 

bequest received by the newly born and the value of the portfolio of those who died in the 

current period. Here, I assume that interest payment and transfers occur before a fraction 

  of the adult population dies. The value of the portfolios held by type j  agents at the 

beginning of the period (before some agents die) is n  t

t0

 (Rbt
j  m)  and the newly 

born get a fraction   of this value.  

The balanced budget requirement g  rmm  leads to mtb  Rmm  g  m  and we 

can use (15) to solve for the steady state real balances: 

(16)  f '(m)  R

Rm

1   

 When R  is held constant, we can write the solution to (16) as m(Rm ) .  

A change in Rm  will lead to a transition to a new steady state. In the case of 

flexible prices, the change will result in a price level change. Here I assume constant 

prices and therefore the change requires special transfers. When the government changes 

the real rate of return on money from Rm  to R̂m , it must transfer m(R̂m )m(Rm )  dollars 

(here also units of real balances) to all the agents in the economy.  

We can rank welfare across steady states with the same R  and with a large 

enough borrowing limit B .   

 

Claim 3: The steady state welfare of all agents increase with Rm  R . 
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 To show this Claim note that when the policy maker increases Rm  he makes a 

transfer to all agents and they hold it and derive utility services from it. The government 

can satiate agents with real balances by setting Rm  R .  

 I now turn to the choice of the real interest rate R . 

 

Claim 4: There exist at least two steady states: An efficient steady state with R  1
  and 

an inefficient steady state with R  1
 .  

 

The proof is in the Appendix.   

To better understand the reason for setting R  1
 , note that from the planner’s 

point of view, the price of consumption at age t  in terms of consumption at age t 1  is 

1
 : The planner can take a unit from age t  type j  agents and give more than a unit (i.e., 

1
 ) to age t 1  type j  agents without changing the amount he gives to other agents. He 

can do it because there are less age t 1  agents. Therefore the choice of R  1
  that 

reflects the true social cost of current consumption, leads to an efficient allocation.  

 Note that (14) and  1 imply that when R  1
 , corn consumption decreases 

with age. In this case, young agents will consume above their endowment. Agents who 

live for a long time will consume below their endowment and their consumption will 

approach zero as their age goes to infinity. Note also that the optimal interest rate does 

not depend on the time preference parameter  . This is an important difference between 

the infinitely lived agents ( IL ) model and the overlapping generations model in 

Samuelson (1958). It may be argued (and indeed Friedman [1969] does make this point) 

that the only reason for discounting the future is uncertainty about life and therefore 

  1 . In this case, the two models yield the same prescription about the interest rate.  

  
  



Vanderbilt University Department of Economics Working Papers, VUECON-SUB-12-00011

21 

4. THE OPTIMAL SIZE OF THE FINANCIAL SECTOR  

 

 The financial sector may be too big because of the incentives to create substitutes 

for money. Counterfeiting money is an extreme example. Clearly, resources spent by the 

private sector on counterfeiting money are a waste from the social point of view but from 

the individual point of view there are incentives to do it. Note that agents have an 

incentive to counterfeit also when they are satiated with liquidity services because they 

can always use additional money to buy corn. (So, literally speaking, they are never 

satiated with money, they are only satiated with liquidity services).  

The private sector creates assets that are only in part substitutes for money. In this 

case, it is not trivial to distinguish between assets that serve a useful social function and 

assets that are mostly counterfeits for money. See Maya Eden (2012) for a discussion of 

the social value of intermediation aimed at the allocation of physical capital.  

 More generally, the problem is to map the areas in which the government has an 

advantage over the private sector in supplying liquidity. Here I use the above OG  model 

to provide partial answers under the assumption that the government has an advantage in 

creating money and in collecting uncollateralized loan and tax payments.   

 

4.1 Private Intermediation 

 I relax the assumption that the cost of private intermediation is prohibitive, and 

assume instead a private intermediation sector that accepts one period deposits and makes 

one period loans. I follow Mehra, Piguillem and Prescott (2011) in assuming that the cost 

of intermediation is proportional to the amount intermediated. They also assume that the 

government debt is intermediated at zero cost. I take it to mean that the government can 

borrow and lend money without using any resources.   

 I use dt
j  to denote the amount of private bonds owned by a type j  agent at age t

(negative amounts are loans). I use d  (d0
1,...,d0

J ;d1
1,...,d1

J ;d2
1,...,d2

J ;...)  to describe the 
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holding of private bonds in the steady state and the index function It
j  1 if dt

j  0  and 

It
j  0  otherwise. I assume that individuals face a limit D  on private borrowing.   

 A vector of private bond holdings is feasible if: 

(17)   t dt
j

jt0

  0  and dt
j  D  for all t, j . 

The aggregate cost of private intermediation is:  

(18)  TC(d) n  t It
jdt

j

jt0

   if (17) is satisfied and TC(d)     otherwise.  

Here 0   1  is a cost parameter. 

Intermediation is done by a competitive banking sector that pays (charges) the 

interest Rd  on deposits (loans) and an additional “service charge” of Id  for loans. 

The problem of the representative type j  agent is now:  
 

 (19)  max
Yt

j ,mt
j ,bt

j ,dt
j ( )tU(Ct

j )
t1



  

s.t.  Ct
j  Yt

j  f (mtb
j ) ;  mtb

j  Rmmt1
j  g  

 m0
j  b0

j  (1I0
j )d0

j  z j  

 mt
j  bt

j  (1It
j )dt

j Yt
j  Y  Rmmt1

j  Rbt1
j  Rddt1

j  g  

 z j  0  is given, mt
j  0 , bt

j  B , dt
j  D  

This problem can be written as:  

(20)  maxm00,b0B,d0D v(m0 ,b0 ,d0 )   s.t. m0  b0  (1I )d0  z  ;  and 

(21) v(m,b,d)  maxm '0,b ',B,d 'D U Y  Rmm  Rb  Rdd  g  m ' b ' (1I )d ' f (Rmm  g)   

 
 v(m ',b ',d ')  

The first order conditions that an interior solution to (19) must satisfy are: 

(22)  
U '(Ct1

j )
U '(Ct

j )
 R 

Rd

1It
j  Rm 1 f '(Rmmt1

j  g)  

 

Claim 5: (22) and (17) can be satisfied only if dt
j  0  for all t, j .  
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 To show the Claim, note that the effective interest for borrowers who use private 

intermediation (= RD
1 ) is higher than the interest for lenders (= RD ). Thus, (22) cannot 

hold for both lenders and borrowers.  

 The implication of Claim 5 is that costless government intermediation will crowd 

out costly private intermediation. This is not surprising. What may be more surprising is 

the realization that satiating agents with real balances requires the crowding out of private 

intermediation. In the absence of government intermediation, the choice Rm  RD  will 

satiate lenders with money, but since in this case Rm 
RD

1 , borrowers will hold 

suboptimal level of real balances. This is different from the description in Friedman 

(1969) who assumed that private bonds are held in the optimal steady state. I will discuss 

this difference later.  

 There is of course another reason why any equilibrium outcome with private 

intermediation cannot coincide with the solution to the planner’s problem (8). The 

clearing of the market for corn requires:   

(23)  jYt
j

j1

Jt1

   It
jdt

j

j1

Jt0

    

This will coincide with the resource constraint (7) only when dt
j  0  for all t, j  and the 

market for private intermediation is not active. Otherwise, the inequality in (23) is strict 

and the aggregate consumption of corn is less than the aggregate endowment.  

  Note that the Ricardian type equivalence between transfers and loans holds also 

here. The government can shut the loan program by imposing B  0  and give each newly 

born agent m  units of real balances as a transfer. As in section 2.3, agents use the   

unproductive balances to buy government bonds and the interest on money and bond 

holdings is used to pay the lump sum tax. This equivalence may not hold once we allow 

for costly markets for contingent claims.  

  

4.2 A Market for Contingent Claims on Nominal Bequests 
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From the individual point of view there is an incentive to sell bequests (contingent 

contracts that promise assets in the case of death) even when operating this market 

requires resources. But from the social point of view, the resources spent on operating a 

market for accidental bequests may be a waste. This may be important when agents are 

satiated with real balances and accidental bequests are large. 

To illustrate, I assume that all agents are identical and start with the case in which 

the government gives the newly born representative agent z  units of real balances. There 

are no bonds (private or government) but there is a costly market for accidental bequests. 

The price of a promise to deliver a unit of accidental bequest with probability   is 

proportional to the probability of delivery and is given by q . An agent age t  that holds 

mt  units of real balances can therefore sell a promise to “deliver” Rmmt  g  units at time 

t 1  if he does not survive (with probability   1 ). The representative agent can buy 

a portfolio of promises on accidental bequests that will deliver a unit with certainty. This 

is possible because the fraction of agents that die is known and prices are actuarially fair. 

I use At  to denote the amount that the agent will get (with certainty; in units of corn) at 

age t 1  from the portfolio of bequests bought at age t .  

The seller pays a fraction 0    1  of the amount of claims that he sells to cover 

real transaction costs. An agent who dies at time t 1  will have Rmmt  g  dollars in his 

account and can sell claims on this amount at time t  for q (1  )(Rmmt  g)  dollars. 

The budget constraint of the representative agent is thus:  

(24) Yt  qAt  mt  Y  At1  q (1  )(Rmmt  g) Rmmt1  g  

The market clearing conditions are: 
(25)   t Att0

  q  t (Rmmt  g)
t0

  

(26)  tYtt1

      t Att0

  

 When At  0 , the amount of corn that can be distributed according to (26) is less 

than the amount that can be distributed according to the resource constraint (7). 
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Therefore, the equilibrium outcome will coincide with the planner’s solution to (8) only if 

At  0  for all t .  

To achieve efficiency the policy-maker may impose a 100% inheritance tax. 

Alternatively, the government may give the newly born z  dollars as a loan rather than a 

gift. This will be only a partial solution in the case of heterogeneous agents because in 

this case some will die with strictly positive net worth and a market for accidental 

bequest may emerge. 

 The case of nominal bequest is different from the case in which the accidental 

bequest is physical capital or corn.  A market for “real accidental bequest” may actually 

improve matters because agents fail to take into account the positive effect of leaving 

physical capital as accidental bequest. An external effect of this type is absent in the case 

of money because the amount of real balances held is determined by the demand for it 

(which depends on Rm ) and is independent of the amount of accidental bequest. To make 

this point, I now add the possibility of investing in physical capital.  

 

4.3  Real Investment Opportunity and a Market for Real Bequests 

 I add the possibility of sowing corn: An individual that sows k  units of corn at 

age t  will harvest at age t 1 , F(k)  units of corn. I assume that F  is differentiable, 

strictly monotone and strictly concave. Note that physical capital (corn in the soil) fully 

depreciates after one period. As in the previous section, all agents are identical.  

 Agents who die do not get the fruits of their investment: Their heirs do. The 

aggregate harvest is n  t1
t1

 F(kt1)  and the resource constraint in the steady state is:  

(27)   t

t1

 (Yt  kt )     t1
t1

 F(kt1)  

The planner’s problem is: 
(28)  maxYt0,mt0,kt0  t

t1

 U Yt  f (mt )   s.t. (27).  

The first order conditions for this problem require:  
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(29)  U '(Ct1)
U '(Ct )

 1 F '(kt )  

 Steady State Equilibrium: I start with the case in which there is no market for bequests 

and no private intermediation. The budget constraint of the representative agent is now: 

Y  m ' b ' k '  Y  Rmm  Rb  F(k) g , and the newly born solves the following 

problem:  
 

(30)  maxm00,b00,k00 v(m0 ,b0 ,k0 )   s.t. m0  b0  k0  z   and  

 v(m,b,k)  maxm '0,b '0,k '0 U Y  F(k) Rmm  Rb  g  f (Rmm  g) m ' b ' k '  
  v(m ',b ',k ')  

The first order conditions for an interior solution to this problem are: 

(31)  
U '(C)

U '(C ')
 R  F '(k ')  Rm 1 f '(Rmm ' g)  

 Since any steady state allocation must satisfy (31) there is a difficulty in achieving 

the first best. The problem is in the choice of the real interest rate . If the policy-maker 

chooses R  1
 , the representative agent’s choice (that satisfies [31]) will satisfy the first 

equality in the planner’s first order conditions (29) but not the second. If the policy-

maker chooses R  1, the representative agent’s choice will satisfy the second equality in 

(29) but not the first.  

 The reason for the difficulty is in the external effect problem discussed above: 

Agents fail to take the positive effect that their accidental bequest have on their heirs into 

account. Paying a subsidy of (1
 )1  per unit of harvest will solve the problem. A market 

for accidental bequest may also internalize the externality if its operation does not take 

too much resources.  
 
 
  



Vanderbilt University Department of Economics Working Papers, VUECON-SUB-12-00011

27 

5. CONCLUDING REMARKS 

 

 I have examined the implementation of the Friedman rule under the assumption 

that age specific lump sum transfers are possible. This was done both for an infinitely 

lived agents ( IL ) model and for an overlapping generations (OG ) model.  

 Heterogeneity with imperfect capital markets pose problems for satiating agents 

with money. A lump sum transfer or a government loan program can usually solve these 

problems.   

The crowding out of private lending and borrowing is an important by product of 

the optimal policy. Lucas (2000) estimates the welfare gain from reducing the nominal 

interest rate from 4% to zero at around 1% of GDP. Mehra, Piguillem and Prescott (2011) 

estimate a cost of private intermediation that is as at least 3.4% of GDP. It thus seems 

that the government transfer/loan component of the optimal liquidity policy is more 

important than the zero nominal interest rate component. The relative importance of the 

zero nominal interest will decline as cash becomes less important.  

The crowding out result is different from Friedman (1969) who envisions an 

active market for default free bonds even in the optimal steady state. My first inclination 

was to look for ideological reasons to explain this difference. Being a champion of free 

markets, I thought that Friedman could not entertain the idea of a government run loan 

program. This is not the case. In his celebrated book, Capitalism and Freedom, Friedman 

argues that the government has an advantage in enforcing uncollateralized loan contracts 

and advocates a government loan program for financing education. It is not clear to me 

why Friedman insists on the use of government loans to finance education and not for 

smoothing consumption.  

 The reason for the difference between the model here and Friedman’s (1969) 

model is in the assumption about the cost of intermediation. Friedman implicitly assumes 

no cost of private intermediation and no cost for creating private riskless assets. The 
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assumption that money yields liquidity services in what seems to be a frictionless world 

is problematic. The Appendix elaborates.  

 I also attempted the broader question of the role of government in the financial 

sector. I argue that operating a market for accidental nominal bequests is a waste of 

resources from the social point of view because trading in contingent claims on money 

does not change the equilibrium amount of real balances.  

 Markets for contingent claims on money may be important when the nominal 

interest rate is zero and agents hold large amounts of money. The problem may be more 

severe when implementing the Friedman rule by an initial transfer rather than a loan. In 

the initial transfer scheme young agents get a large amount from the government and they 

pay taxes that cover the interest payments (explicit or implicit) on the initial transfers. 

But they have full ownership of the transfer and can therefore sell it in the accidental 

bequests market. In the loan implementation, agents pay the interest on money during 

their lifetime but they cannot sell the principle that is owned by the government. This 

speaks in favor of the loan implementation.  
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Appendix A: The money in the utility function approach and the crowding out result 

 To better understand the crowding out result, I now turn to a discussion of the 

micro foundations of the money (and bonds) in the utility function approach. Baumol 

(1952) and Tobin (1956) were an early important contribution to the micro foundations 

literature. They stressed the fixed cost of trading in bonds.  

 The fixed cost is an important component in the cost of intermediation. But since 

fixed costs complicate the model many authors abstracted from it. To capture the 

difference between money and bonds it became customary to divide each period into sub-

periods assuming that the amount of money holdings can be costlessly changed from one 

sub-period to another but the amount of bond holding can be changed only at the end of 

the period. The early attempt by Patinkin (1965, chapter 5.2) may serve as an example.  

 In the Patinkin model, contracts are signed at the beginning of the period 

(Monday) and are executed during the period (week). Patinkin divides the week into 

many sub-periods (hours). Contracts are drawn randomly at the beginning of each sub-

period and individuals are called upon to make and receive payments. Money is held to 

avoid the inconvenience associated with not being able to make a payment. Bond 

payments are not random and occur at the end of the period.   

 I now turn to a partial model that builds on the Patinkin model and uses elements 

from shopping time models and search models.6 As a byproduct the discussion here 

provides an explanation for the relationship between the beginning of period real 

balances and “liquidity services” (the function f ).  

 I consider the problem of an agent who gets an endowment of G 1  goods: 

x  (x1,..., xG ) . The agent starts the period with M b  dollars in his checking account and 

Bb  dollars in his savings account (after interest payments were made). He plans to carry

                                                 
6 See for example, Brock (1974), Jones (1976), McCallum and Goodfriend (1987) and Kiyotaki and Wright 

(1989). 
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M dollars and B dollars worth of bonds to the next period. He thus plans to spend a total 

of I  Pixii  Mb  M  Bb  B  dollars, where P  (P1,...,PG )  are dollar prices.  

 As in the Patinkin model the consumer chooses the consumption vector, 

x  (x1,..., xG ) , at the beginning of the period and then execute transactions during the 

period. There are many subperiods or rounds of trade. In each round pairs are formed in a 

random manner and each pair can trade either goods for goods or goods for money. 

Exchanging goods for bonds directly is not allowed. I start with the assumption that the 

cost of a trip to the bank during the period is prohibitive.  

 In this environment having money at the beginning of the period may cut on the 

number of rounds that are required to execute trades that were chosen at the beginning of 

the period. This is because having “enough” money at the beginning of the period allows 

the agent to buy goods before he sells goods.  

 To illustrate, I consider the case in which there are three types of agents and three 

goods. The prices of all goods are the same. Agents type 1 want to buy a unit of good 1 

and sell a unit of good 2. Agents type 2 want to buy a unit of good 2 and sell a unit of 

good 3. Agents type 3 want to buy a unit of good 3 and sell a unit of good 1. Suppose 

now that an agent type 1 meets an agent type 3. If the agent type 1 has enough money, he 

may buy a unit of good 1. Otherwise, he will have to pass this trading opportunity and 

wait until he sell good 2 before he can buy good 1.  

In general, the time (measured by the number of rounds) that the agents will 

spend in the market depends on the state (history of the meetings in the rounds of trade), 

the shopping list (or the excess demand vector), x  x  (x1  x1,..., xG  xG ) , nominal 

prices and the beginning of period nominal balances, Mb . It also depends on the 

beginning of period money balances held by others. For example, it is possible that the 

individual agent will meet someone who wants to buy what he has for sale but does not 

have enough money.  
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Taking the amount of money held by others as given, I assume that from the 

individual agent’s point of view the time spent in the market in state s  is:  

ls (x  x,P, Mb ) . The function ls  is weakly decreasing in M b : The more money you have 

at the beginning of the period the less time you have to spend in the market because 

having “enough” money allows buying before selling.  

The number of rounds required to complete trade will not change if we double the  

beginning of period money and prices. I therefore assume: 

(A1)  ls (x  x ,P, Mb )  ls (x  x ,P,Mb )  for all   0 .  

  I now choose   1
P1

 and write (1) as: 

(A2)  ls (x  x;1, p2,..., pG;mb ) , 

where pi 
Pi

P1
 is the price of good i  in terms of good 1 and mb 

Mb
P1

 is the value of the 

beginning of period money in terms of good 1.  

 The agent’s single period utility function, U(x,l) , is increasing in x  and 

decreasing in l . Assuming expected utility and using s  to denote the probability of 

state s , we can now write the indirect utility: 

(A3)  V (I , x,P,mb )  maxx sU x,ls (x  x , p,mb ) 
s    s.t. Pixii  I  

Since any vector x that satisfies Pixii  I  also satisfies Pixii  I , the indirect 

utility function is also homogeneous:  

(A4)  V (I , x,P,mb ) V (I , x ,P,mb )  for all   0 .  

Again, I choose   1
P1

, and write: 

(A5)  V (Y , x , p,mb ) V (I , x ,P,mb ) , 

where Y  I
P1

 is spending in terms of good 1 and p  (1, p2,..., pG )  are relative prices.  

 Assuming that the endowment and relative prices do not change over time, we can 

write (A5) with some abuse of notation as: 

(A6)  V (Y ,mb )  
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In previous sections I simplified by assuming a pair of functions U  and f  such that7  

(A7)  U Y  f (mb ) V(Y ,mb ) . 

As was shown above this simplification yields a demand for money that depends only on 

the rate of return on money and not on income. But since income was held constant this 

simplification may be justified.8 

 

Allowing for a trade between bonds and money during the period: I now allow 

withdrawals from the savings account during the period but getting a loan can be done 

only at the end of the period at some cost. To withdraw funds from the savings account 

requires a trip to the bank and the time spent on making the trip cannot be used to execute 

transactions. But nevertheless an agent who is short of cash may choose to make the trip 

to the bank because the expected time he saves by having more money is greater than the 

time it takes to make the trip. I therefore assume that the time spent in the market in state 

s  is given by: ls (x  x , p,mb ,bb ) , where:  

(A8)  ls (x  x , p,mb ,bb )
mb


ls (x  x , p,mb ,bb )

bb

 0  

                                                 
7 The above description leads to a function f  that is increasing up to the satiation level and then it 

becomes flat. That is, there exists  such that f '(m)  0  when  and f '(m)  0  when 
. Friedman assumes that holding more money than the satiation level reduces utility because of 

the need to employ “body guards” to protect large amount of cash. This argument may also apply to debit 
cards that may be stolen. In any case, most of Friedman’s argument does not require the assumption of a 
unique satiation level. I have also neglected the amount of money held by others. If the agent meets 
someone who wants to buy what he wants to sell but does not have enough money the agent will have to 
give up this trading opportunity. This market externality was discussed in Diamond (xx) and others. But 
this externality will not change the main result. Welfare increases when we move to a steady state in 
which everyone has more money. 

8 When income changes over time, the specification Ct  Yt Yt f mtb
Yt  will yield a demand for money 

that is proportional to income in the steady state. The velocity will depend on the real rate of return on 
money in the steady state.  
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Abstracting from negative marginal products (non-pecuniary returns), this assumption is 

perfectly consistent with the assumptions made by Friedman. It implies that if 
ls (x  x , p,mb ,bb )

mb

 0  then ls (x  x , p,mb ,bb )
bb

 0 .  

I now define the indirect utility function:  
(A9)  V (Y , x , p,mb ,bb )  maxx sU x,ls (x  x , p,mb ,bb ) 

s     s.t.   pii xi  Y  

Since when agents are satiated with money they will never make a trip to the bank during 

the period, it follows that: 

(A10)  V (Y , x , p,m,bb ) V (Y , x , p,m,0)  for all bb  

I assume that making a loan (creating a private bond) is costly. Since at the optimal 

steady state bonds do not yield any services no one will pay the cost for creating a private 

bond and there will be no trade in private bonds.  

 

Appendix B: Proof of Claim 4  

To show that there exists a steady state with R  1
 , note that in the steady state real 

balances do not change over time. Corn consumption must therefore satisfy the budget 
constraint: R t

t1

 Yt
j  b0

j Y R t

t1

 . Substituting R  1
  leads to: 

 t

t1

 Yt
j  b0

j Y  t

t1

 . Since b0
j  z j  m  z j  (1

J) zi

i , summing over j  leads to 

b0
j  0

j  and to (7). Thus, the choice R  1
  is feasible and leads to market clearing. 

The accidental bequest received by the newly born is: 
z j

j   t (Rbt
j

jt0

 m)  mJ R  tbt
j

jt0

 . Since the present value of the 

balances held in the savings account is zero (if it is positive the agent can increase his 

consumption; if it is negative the constraint on the size of the loan is violated) we have: 
Rtbt

j   tbt
j 

t0

t0

 0  and z j

j  mJ .  Thus the average accidental bequest is 

equal to the amount of money held in the steady state.  
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To show that there exists a steady state with R  1
 , note that in this case agents 

will choose smooth consumption paths: Yt
j  Y  rb0

j . Summing over j  leads to 

Yt
j  JY

j  and Summing over t  leads to (7).  

The choice R  1
  leads to smooth consumption paths. But this choice is not optimal. 

Only the choice R  1
  leads to an outcome that satisfies the first order condition (10) for 

the planner’s problem.  
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