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1. Introduction

Ever since the pathbreaking work of Mirrlees (1971), a government’s lack of full informa-
tion about the tax-relevant characteristics of those subject to its taxation authority has
been viewed as a fundamental constraint on the design of tax policy. In the context of
redistributive nonlinear income taxation, a government’s egalitarian intentions may be
hampered by its inability to identify the labor productivities of different taxpayers (their
“types”).1 The asymmetric information approach to taxation was originally developed
for atemporal environments. A major impediment to extending the Mirrlees model to
dynamic settings is that information revealed by taxpayers in one period can be used by
the government in subsequent periods. Aware of this possibility, rational taxpayers may
modify their behavior in early periods in an attempt to better conceal their characteris-
tics. In particular, more able taxpayers might fear the Weitzman (1980) ratchet effect,
whereby the government may use any knowledge revealed by their behavior to extract
more taxes from them in the future. The ratchet effect would not arise if the government
could commit to forgetting any information it learns at the beginning of each new tax
year. However, such a commitment is not credible.

In this article, we investigate the implications for redistributive tax policy of a gov-
ernment’s inability to commit to its future actions. We consider an economy in which
a continuum of individuals of two productivity types work and consume in each of two
periods. In order to focus on the interaction between information revelation and redis-
tribution, we set aside the social insurance motive for taxation by assuming that produc-
tivities do not change over time.2 Individuals may also transfer resources forward in time
through saving. A utilitarian government optimally chooses nonlinear taxes on income
and savings in a dynamically consistent way taking into account the budget and incentive
constraints that it faces. Thus, the government is unable to commit to its second period
tax policy in advance, and so any information about individual productivities revealed
in the first period can be used when designing second period taxes. Equivalently, the
government sets a joint tax on income and savings based on all observable variables up
to the time period in question.3 The dependence of second period taxes on information

1See Tuomala (2016) for an introduction to optimal nonlinear income taxation using the Mirrlees
framework.

2The role that taxation plays in providing social insurance has been a major focus of the “new dynamic
public finance” literature surveyed by Golosov and Tsyvinski (2015), Golosov, Tsyvinski, and Werning
(2007), and Kocherlakota (2006, 2010). With some exceptions, this literature assumes that governments
can commit in advance to their future tax policies. When there is no government commitment and
individual productivities are stochastic over time, types may never be known with certainty, thereby
attenuating the ratchet effects that are exhibited when types are unchanged over time. See, for example,
Battaglini and Coate (2008) and Golosov and Iovino (2015). If there is savings taxation, as Bisin and
Rampini (2006) show, the power of the government to take advantage of information revealed can be
somewhat mitigated if individuals have access to capital markets that prevent the government from
observing their total savings.

3Conditioning taxes on both current and past values of the variables in the tax base is a feature of
actual tax practice. For example, as Kocherlakota (2006, p. 269) notes, the alternative minimum tax and
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revealed through behavior in the first period is rationally anticipated by the taxpayers.
As is the case with the government, individuals cannot make commitments about second
period behavior in the first period.

We assume that the preferences of individuals are additively separable both across
time and between consumption and leisure. These assumptions on preferences guarantee
that everybody’s optimal marginal tax rate on savings is zero in the benchmark case in
which the government can commit to ignore information revealed in the first period when
designing second period tax policy. We show that in the absence of commitment, when it
is optimal to induce all individuals to reveal their types in the first period, supplementing
income taxation with a subsidy on the savings of the low skilled is welfare enhancing
because it relaxes an incentive compatibility constraint. However, if there is no type
revelation in period one, then there are zero marginal taxes on savings on average, and
this necessitates subsidizing some individuals’ savings and taxing the savings of others.4

Thus, our analysis identifies novel rationales for savings distortions even when preferences
are separable across time.

There are three possible kinds of optimal tax regimes. In a separating tax regime,
type information is revealed in the first period, whereas in a pooling tax regime, type
information remains hidden for all individuals after the first period. In a semi-pooling
regime, some individuals reveal their type information in the first period, while others
do not. Whether the optimal regime is separating, pooling, or semi-pooling depends on
a discrete comparison among the best tax policies for each regime. Such a comparison
requires additional assumptions about the functional form of the utility functions or
about the values of the parameters that appear in our model. We do not explore the
issue of identifying the globally optimal regime.

When types are separated in the first period, we show that it is optimal to subsidize
the savings of the low skilled. By distorting their savings upward in the first period, the
government makes additional resources available in the second period. The availability
of these additional resources induces changes in the second period tax scheme that are
more favorable to the high skilled. This, in turn, reduces the incentive for the high
skilled to conceal their productivity in the first period. As in atemporal models, in the
first period, it is optimal for high-skilled individuals to face a zero marginal income tax
rate, whereas low-skilled individuals face a positive marginal income tax rate. Because
there is complete revelation of types in the first period, personalized lump-sum taxes and
transfers are optimal in the second period.

When types are pooled in the first period, it is optimal for low-skilled individuals
to face a positive marginal rate of savings taxation, while the savings of high-skilled

the carry-forward of certain deductions introduce history dependence in the U.S. tax code. Likewise, in
Canada, information about behavior in previous tax years is used in setting limits for contributions to
tax-deferred savings schemes.

4While this result is reminiscent of the zero average capital tax result of Kocherlakota (2005), the
mechanism underlying it is quite different. An aggregate distortion is not needed in Kocherlakota’s
model because the optimal intertemporal wedge is achieved using incomplete social insurance.

3



individuals are subsidized at the margin. However, on average, there is no marginal
distortion on savings. With pooling in the first period, the second period is a standard
one-period optimal income tax problem, and so it is optimal for high-skilled individuals
to face a zero marginal income tax rate and for this rate to be positive for low-skilled
individuals. In the first period, both types of individuals are distorted in the labor market,
with low-skilled individuals facing a negative marginal income tax rate and high-skilled
individuals facing a positive marginal income tax rate. As with savings, on average, there
is no distortion in the first period labor market.

When some, but not all, of the high-skilled individuals are separated in period one,
the high skilled who reveal their type face no marginal distortion in the labor market in
either period. The high skilled who conceal their type face a positive marginal income tax
rate in the first period, but are undistorted at the margin in the second. The low skilled
face a positive marginal income tax rate in period two. In the first period, they are taxed
less on the margin than the high skilled who are pooled with them, but the sign of their
marginal income tax rate in this period is indeterminate. High-skilled individuals who
conceal their type in the first period have their savings taxed more heavily or subsidized
less at the margin than do any other individuals, but it is impossible to sign the distortions
in intertemporal consumption without making further assumptions.

The rest of this article is organized as follows. In Section 2, we discuss some of the
related literature. Section 3 describes the economy. In order to provide a benchmark
for our analysis of optimal taxation without commitment, in Section 4, we identify the
qualitative properties of the solution to the optimal tax design problem under the as-
sumption that the government can commit to a second period tax schedule before type
information is revealed. Sections 5–8 consider the optimal tax design problem without
commitment. Section 5 provides an introduction to the incentive issues that arise when
there is no commitment. In Section 6, we determine the properties of the solution to
the optimal tax design problem when it is optimal to separate the two types in the first
period. In Section 7, we analyze the second period tax design problem when some or all
of the high-skilled individuals do not truthfully reveal their type in period one. The first
period of this problem is analyzed in Section 8. We offer concluding remarks in Section 9.
The proofs of our results are gathered in Appendix A.

2. Related Literature

The question of whether it is optimal to separate or pool individuals in nonlinear income
tax models with a ratchet effect has been considered by Roberts (1984) and Berliant and
Ledyard (2014). Like us, they employ a deterministic framework to analyze dynamic
optimal nonlinear income taxation when the government cannot commit to ignore infor-
mation gathered in earlier periods. They do not consider savings taxation as a possible
instrument. Roberts shows that types are never separated in an infinite horizon economy
with a finite number of types provided that the government revenue requirement is not
so large as to bankrupt any individual, whereas Berliant and Ledyard identify sufficient
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conditions for type information to be revealed in the first period of a two-period economy
with a continuum of types.5

The work closest to our own is that of Apps and Rees (2009).6 As is the case here,
they consider a two-type, two-period model with a continuum of individuals of each type.
However, they do not allow for savings taxation. The tax distortions on labor earnings
are the same in our model as in that of Apps and Rees.

An implication of the Atkinson–Stiglitz Theorem (Atkinson and Stiglitz, 1976) is
that when consumption is separable from labor supply in individual preferences, as is
the case here, there is no value to supplementing an optimal nonlinear income tax with
savings taxation when the government can commit to its future tax policies. A number
of rationales for savings taxation have been offered when we depart from this scenario.

A number of these rationales have been developed using models in which there is gov-
ernment commitment. Browning and Burbidge (1990) show that when the government
has a different rate of time preference than does the private sector, there is a case for
distortionary savings taxation. In an overlapping generation model in which individuals
only work when young, Ordover and Phelps (1979) show that there is a role for savings
taxation whenever the marginal rate of substitution between consumption when young
and consumption when old depends on labor supply. In a similar model, Pirttilä and
Tuomala (2001) argue that distorting savings decisions can be optimal even when prefer-
ences are separable across time if future relative wages are sensitive to current savings via
their effect on capital accumulation. Golosov, Kocherlakota, and Tsyvinski (2003) show
that savings taxation enhances work incentives so as to counteract excessive insurance
against future consumption shocks.

Further rationales for savings taxation have been proposed when governments cannot
commit to future policies. In an infinite-horizon representative agent model, Benhabib
and Rustichini (1997) show that the government can use the capital stock as a device to
make some tax policies more credible. Savings distortions can influence the evolution of
the the capital stock, and so help to partially overcome its commitment problems. Other
studies have highlighted commitment problems in political economy settings. Farhi,
Sleet, Werning, and Yeltekin (2012) provide a justification for a progressive tax on the
returns to savings (a capital income tax) in a model with repeated elections in which
tax policies play a role in the probability of a political party being elected. Scheuer and
Wolitzky (2016) consider a political economy model in which a sustainable tax policy
must be immune to the formation of coalitions who would reform it. They show that
savings distortions attenuate this threat.

In our model, savings taxation help to mitigate the distortions introduced because
of the government’s lack of commitment. Other policy instruments can also serve this

5Gaube (2010) investigates the welfare ranking of the full commitment and the no commitment
regimes with a partial commitment regime in which the second period tax schedule cannot depend on
first period incomes. Dillén and Lundholm (1996) also analyze when it is optimal to separate or pool
types in a two-period model, but restrict attention to linear income taxation.

6The first version of our article was completed before we learned of their research.
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purpose. For example, Boadway, Marceau, and Marchand (1996) show that mandating a
minimum amount of time spent in publicly-observable education is such an instrument.
For further discussion of optimal education policies, see Boadway (2012) and Golosov
and Tsyvinski (2015).7

3. The Model

The economy lasts for two time periods. There is a continuum of individuals with unit
measure. There are two types of individuals, i = 1, 2, who differ in labor productivity,
with the skill level of an individual of type i given by the parameter wi, where w1 < w2.
An individual’s skill is the same in both periods. Thus, the low skilled are of type 1
and the high skilled are of type 2. An individual is low skilled with probability α, where
0 < α < 1. An individual of type i supplies lti units of labor and consumes cti units of a
single consumption good in period t, t = 1, 2.8 Individuals may transfer wealth between
the two periods by saving the amount si of the consumption good. In keeping with the
literature on optimal nonlinear income taxation, skill is interpreted as an enhancement to
effective labor, so that effective labor in period t is yti = wil

t
i. The production technology

exhibits constant returns to scale. In each period, one unit of effective labor is required to
produce one unit of the consumption good. Each unit of the consumption good stored in
the first period produces 1+r units of the consumption good in the second period, where
r > 0. As in Boadway, Marceau, and Marchand (1996), individuals may not borrow
against future income. The labor market is perfectly competitive in each period, so that
an individual’s effective labor supply equals his labor income before taxes.

The government designs a redistributive tax system. It cannot observe an individual’s
labor supply or skill level, but it can observe before-tax income and savings. Moreover,
it knows the distribution of types. The total tax paid by an individual in either period
can be made contingent on the amount he saves, his current income, and, in the case of
period 2, his income in the previous period. Thus, the after-tax income xti of a person of
type i in period t, the difference between effective labor supply and the total tax paid,
depends on the values of his current and past incomes and of his savings. Individuals are
free to divide their first period after-tax incomes between consumption and savings. Each
unit of savings affords a consumer an additional 1+ r units of consumption in the second
period over and above his second period after-tax income.9 Therefore, consumption in
each period is given by

c1i = x1i − si, c2i = x2i + (1 + r)si, i = 1, 2. (3.1)

7Using a model similar to ours, Krause (2009) investigates skill formation when there is learning-by-
doing.

8Subscripts index individuals, while superscripts index time periods.
9Although strictly speaking, in period 2, person i’s before- and after-tax incomes are y2i + rsi and

x2

i + rsi, respectively, henceforth when we speak of before- and after tax income, we shall not include
the interest income.
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Individuals have identical preferences over consumption and labor supply, additive in
all goods and across time, and represented by the utility function

U(c1i , l
1
i , c

2
i , l

2
i ) = u(c1i )− g(l1i ) + v(c2i )− h(l2i ), i = 1, 2. (3.2)

The functions u(·) and v(·) are increasing, strictly concave, and twice continuously differ-
entiable, while the functions g(·) and h(·) are increasing, strictly convex, and twice contin-
uously differentiable. An allocation for an individual of type i is a vector (x1i , y

1
i , x

2
i , y

2
i , si).

These are the variables that the government can observe. Preference over allocations are
given by

u(x1i − si)− g

(

y1i
wi

)

+ v(x2i + (1 + r)si)− h

(

y2i
wi

)

, i = 1, 2. (3.3)

The marginal rate of substitution between before-tax income and after-tax income in
the first period for a person of type i is

MRSy1
i
,x1

i
=

g′
( y1

i

wi

)

wiu′(c1i )
, (3.4)

while that person’s marginal rate of substitution between before-tax income and after-tax
income in the second period is

MRSy2
i
,x2

i
=

h′
( y2

i

wi

)

wiv′(c2i )
. (3.5)

Holding incomes and consumption levels constant, the marginal rates of substitution
between before-tax and after-tax income are decreasing in the skill level because high-
skilled individuals must work fewer additional hours for each additional unit of before-
tax income than do low-skilled individuals. Thus, it takes a smaller increase in after-tax
income to compensate a high-skilled individual for increases in before-tax income than
it does to compensate a low-skilled individual.

The marginal rate of substitution between after-tax income in period 1 and after-tax
income in period 2 for a person of type i is

MRSx1

i
,x2

i
= −

u′(c1i )

v′(c2i )
. (3.6)

This intertemporal marginal rate of substitution does not depend explicitly upon the
skill level. Because of their common preferences over consumption and labor supply, all
individuals have the same willingness to trade consumption across time periods. The
additive nature of preferences implies that the marginal rate of substitution between
period 1 consumption and period 2 consumption does not depend on the amount of
labor supplied in either period.
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The government may also engage in saving by storing an amount sG of the consump-
tion good. The storage technology available to the government is exactly the same as
the storage technology for the private sector.

We assume that the government has a utilitarian objective function. Thus, it evaluates
outcomes using the social welfare function

W(x11,x
1
2, y

1
1, y

1
2, x

2
1, x

2
2, y

2
1, y

2
2, s1, s2) = α

[

u(x11 − s1)− g

(

y11
w1

)

+ v(x21 + (1 + r)s1)

− h

(

y21
w1

)]

+ (1− α)

[

(x12 − s2)− g

(

y12
w2

)

+ v(x22 + (1 + r)s2)− h

(

y22
w2

)]

.

(3.7)

4. Optimal Taxation with Commitment

First-best taxation is infeasible in this economy because the government cannot distin-
guish ex ante between the two types of individuals. In order to provide a benchmark for
our analysis of the tax design problem without commitment, in this section, we assume
that the government can commit to an anonymous tax schedule that specifies an individ-
ual’s after-tax incomes in the two time periods as a function of his before-tax incomes in
both periods and of his savings. An implication of this assumption is that the government
is able to credibly commit not to use information about the skill levels of the individuals
revealed in the first period to adjust taxes in the second period. By the Taxation Prin-
ciple of Hammond (1979) and Guesnerie (1995) for continuum economies, having each
individual choose a utility-maximizing allocation given such a tax schedule is equivalent
to having the government choose the allocations directly using an incentive-compatible
allocation mechanism, the same for everyone, that specifies each individual’s before- and
after-tax incomes and savings as a function of his type. With full commitment, incentive
compatibility is the requirement that each individual weakly prefers the entire allocation
(over both periods) designed for him to the allocations designed for the other individuals.
Formally,

u(x11 − s1)−g

(

y11
w1

)

+ v(x21 + (1 + r)s1)− h

(

y21
w1

)

≥ u(x12 − s2)− g

(

y12
w1

)

+ v(x22 + (1 + r)s2)− h

(

y22
w1

) (4.1)

and

u(x12 − s2)−g

(

y12
w2

)

+ v(x22 + (1 + r)s2)− h

(

y22
w2

)

≥ u(x11 − s1)− g

(

y11
w2

)

+ v(x21 + (1 + r)s1)− h

(

y21
w2

)

.

(4.2)
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We assume that only the incentive compatibility condition (4.2) might potentially
bind, what Stiglitz (1982) calls the normal case.10 Given its utilitarian objective, the
government wishes to redistribute income from the high skilled to the low skilled. The
natural limit on this redistribution is that, if taken too far, such redistribution might
induce a high-skilled individual to pretend to be low-skilled. Imposing (4.2) prevents
this type of mimicking.11

Given the storage technology available to both individuals and the government, the
materials balance constraints for the economy are

αx11 + (1− α)x12 + sG ≤ αy11 + (1− α)y12 (4.3)

and
αx21 + (1− α)x22 ≤ αy21 + (1− α)y22 + (1 + r)sG. (4.4)

Thus, the problem faced by the government can be specified as follows:

Second-Best Tax Design Problem with Commitment. The government chooses
an allocation (x11, x

1
2, y

1
1, y

1
2, x

2
1, x

2
2, y

2
1, y

2
2, s1, s2, sG) to maximize the social welfare function

(3.7) subject to the materials balance constraints (4.3) and (4.4) and the two-period
incentive compatibility constraint (4.2).12

The second-best tax design problem with commitment is a standard one-dimensional
screening problem. Because there are five components to each individual’s allocation, the
government has more instruments than the minimum required to achieve separation.13

Given the adverse selection problem faced by the government, some distortions to be-
havior are inevitable. Proposition 1 describes the pattern of distortions at a solution to
the government’s full-commitment problem.

Proposition 1. At a solution to the second-best tax design problem with commitment:

(i) MRSy1
2
,x1

2

= 1, MRSy2
2
,x2

2

= 1 and MRSx1

2
,x2

2

= −(1 + r).

(ii) MRSy1
1
,x1

1

< 1, MRSy2
1
,x2

1

< 1 and MRSx1

1
,x2

1

= −(1 + r).

In order to interpret Proposition 1, it is useful to determine its implications for optimal
marginal tax rates. Optimal income tax schedules may be nondifferentiable. The implicit
marginal income tax rate in period t for an individual of type i is 1−MRSyt

i
,xt

i
. Because

10We also assume that low-skilled individuals do not face a binding incentive compatibility condition
when we consider the no commitment case in the next section.

11Indeed, at a solution to the first-best taxation problem for this economy, the government wishes to
equalize the consumption of all individuals in each time period and to require the high-skilled individuals
to work more. Thus, (4.2) is violated at the first-best allocation, while (4.1) is slack.

12In all of our tax design problems, we assume that the omitted nonnegativity constraints do not bind.
We also assume that each of these problems has a solution.

13Separation is possible in two-good worlds when there is asymmetric information in one dimension.
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MRSyt
i
,xt

i
> 0, marginal income tax rates are bounded above by 1. Similarly, because

MRSx1

i
,x2

i
< 0, the implicit marginal tax rate on first period consumption for an individual

of type i is (1 + r) − |MRSx1

i
,x2

i
| = (1 + r) + MRSx1

i
,x2

i
. Hence, his implict marginal tax

rate on savings is −(1 + r)−MRSx1

i
,x2

i
.

The first two equalities in part (i) of Proposition 1 show that the high skilled are not
distorted at the margin in the labor market. That is, in both periods, they face a zero
marginal income tax rate. The inequalities in part (ii) describe the distortions to the
labor supply decisions of the low skilled caused by the asymmetric information. Because
the first-best solution is not incentive compatible, constraint (4.2) must bind at a solution
to the second-best problem with commitment. It follows from Brito, Hamilton, Slutsky,
and Stiglitz (1990, Proposition 5) that the marginal rate of substitution for low-skilled
individuals is distorted only for those pairs of goods for which the two types of individuals
have a different marginal rate of substitution at the low-skilled allocation. Because the
marginal rates of substitution between before-tax income and after-tax income vary by
skill level, the effective labor-consumption margin is distorted for the low skilled. They
face a positive marginal income tax rate in both periods so as to relax the high-skilled
incentive constraint. On the other hand, all individuals have the same intertemporal
preferences. In particular, both (a) the low skilled and (b) the high skilled when they
mimic the low skilled are willing to trade consumption across time at the same implicit
prices. Thus, there is no informational advantage to be had by changing the intertemporal
relative price of consumption. Therefore, as shown by the last equalities in parts (i) and
(ii) of Proposition 1, savings decisions are not distorted, and hence not taxed, at the
margin.

5. Optimal Taxation Without Commitment

The government’s ability to commit in the first period to the second-period tax schedule
is not credible, nor is it credible for individuals to commit to their second-period labor
supply decisions in period 1. The optimal two-period schedule with commitment offers
different allocations to the two types of individuals in the first period. With full knowledge
of the structure of the economy, this allows the government to infer the identities of all
individuals at the end of the first period. The information asymmetry between the
government and the private sector disappears, and there is no need to distort behavior in
the second period. Because the optimal second-best schedule with commitment features
a distortion in the period 2 labor supply of low-skilled individuals, it would not be chosen
by a government that has the ability to re-optimize after the first period. Furthermore,
because savings decisions have already been fixed in the first period, the government
has an incentive to increase the tax on savings of high-skilled individuals beyond what
is optimal with commitment in order to further its redistributional goals. Hence, the
optimal tax schedule with commitment is time inconsistent.

Individuals are aware that the government is able to use information gleaned in the
first period when setting second-period taxes. In particular, a high-skilled individual
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understands that if his type is revealed in the first period, then it will be easier to
redistribute income from him to low-skilled individuals in the second period because
it is no longer necessary to worry about incentive compatibility constraints. This can
be accomplished by transferring more of a high-skilled individual’s savings and interest
income to the low-skilled or by providing an incentive for him to work more so that there
is more of his labor income available to redistribute. Thus, there is an increased incentive
for high-skilled individuals to conceal information in the first period.

For its part, the government is aware of the added incentive to hide information in the
first period. It realizes that the full-commitment tax schedule may need to be modified
in order to induce information revelation in the first period. As pointed out by Freixas,
Guesnerie, and Tirole (1985) in a more general planning context and by Dillén and
Lundholm (1996) for linear income taxes, such modifications may be sufficiently costly
to lead the government to prefer not to separate types in the first period. In order to
determine whether first-period separation is optimal, the government needs to compare
the gains accruing from the use of first-best taxation in the second period to the costs
incurred in the first period of extracting the information it needs to implement the second
period first-best allocation.

A high-skilled individual successfully conceals his type only if he chooses the same
before-tax income, after-tax income, and savings in the first period as do low-skilled
individuals. If all high-skilled individuals conceal their type information, we have a
pooling outcome. A high-skilled individual reveals his type if the first-period allocation
that he chooses differs in any component from that chosen by the low skilled. If every
high-skilled individual reveals his type, we have a separating outcome. If high-skilled
individuals are indifferent between concealing their type information and revealing it,
then it is possible that some of them reveal their identities while others do not. The
outcome is then semi-pooling. The tax schedule offered in the first period and the
anticipated tax schedule for the second period shape the choices of the two types of
individuals and implicitly determine whether there is pooling, semi-pooling, or separation
in the first period. The first period revelation outcome is discrete; there is either pooling
or separation or semi-pooling. Deciding which of the three configurations is best requires
a comparison among the maximized values of social welfare in the three cases. In general,
such a comparison depends on the exact form of the utility function and on the values of
the parameters in our model. Before making this comparison, it is necessary to determine
the optimal separating, pooling, and semi-pooling solutions. The properties of these
solutions are the focus of our analysis.

6. The No-Commitment Tax Design Problem with First Period

Separation

If the two types of individuals make different choices in the first period, then the gov-
ernment has sufficient information to carry out lump-sum taxation in the second pe-
riod. These taxes can be paid out of an individual’s second period labor income and his
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interest-augmented savings. Second period social welfare is

W2(x21, x
2
2,y

2
1, y

2
2, s1, s2) = α

[

v(x21 + (1 + r)s1)− h

(

y21
w1

)]

+ (1− α)

[

v(x22 + (1 + r)s2)− h

(

y22
w2

)]

.

(6.1)

The problem faced by the government in the second period is:

Second Period First-Best Problem. Given (s1, s2, sG), the government chooses a sec-
ond period allocation (x21, x

2
2, y

2
1, y

2
2) to maximize the second period social welfare function

(6.1) subject to the the second period materials balance constraint (4.4).

The second period first-best problem problem has a strictly concave objective function
and a single linear constraint, which can easily be shown to bind at the solution to
this problem. Each of the four components of this solution depends on the vector s =
(s1, s2, sG) of predetermined savings levels. Because this problem is so well-behaved, its
comparative static properties with respect to each component of the savings vector can
be derived using standard methods from consumer theory. The properties most pertinent
to a characterization of the optimal first period distortions when types are separated in
this period are collected in the following lemma.

Lemma 1. For a given savings vector s, the second period first-best problem has a unique

solution. Moreover, the solution functions x21(s), x
2
2(s), y

2
1(s), and y

2
2(s) are continuously

differentiable and satisfy the following conditions:

(i) v′(x21(s) + (1 + r)s1) = v′(x22(s) + (1 + r)s2) =
1

w1

h′
(

y21(s)

w1

)

=
1

w2

h′
(

y22(s)

w2

)

.

(ii) α
∂x21(s)

∂si
+ (1− α)

∂x22(s)

∂si
− α

∂y21(s)

∂si
− (1− α)

∂y22(s)

∂si
= 0, i = 1, 2.

(iii)
∂y21(s)

∂s1
−
∂x21(s)

∂s1
>
∂y22(s)

∂s1
−
∂x22(s)

∂s1
.

(iv)
∂y21(s)

∂s2
−
∂x21(s)

∂s2
<
∂y22(s)

∂s2
−
∂x22(s)

∂s2
.

With separation, in the second period, we have a full information planning problem in
which the government has access to the interest-augmented savings from the first period
to distribute as it wishes. Part (i) of Lemma 1 summarizes the marginal conditions for
a first-best utilitarian optimum in the second period. The government wishes to equate
the marginal utilities of consumption and of income for all individuals. Given identical
additively separable preferences, equality of the marginal utilities of consumption implies
equal consumption for all individuals. Because the marginal utility of consumption equals
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the marginal disutility of income, the marginal rate of substitution between labor and
consumption equals the wage rate for each individual.

Because high-skilled individuals have a higher wage rate, they also have a higher
marginal disutility of labor at the first-best optimum. Given identical preferences with
increasing marginal disutility of labor, high-skilled individuals must work more than
do low-skilled individuals. Because agreeing to work more than someone else for equal
consumption is not incentive compatible, the government must make use of the skill
information revealed in the first period in order to implement this scheme using person-
specific lump sum taxes and transfers.

Part (ii) of Lemma 1 follows directly from the second period materials balance con-
straint. This does not mean that optimal second period before-tax and after-tax incomes
are insensitive to individual wealth holdings. Indeed, it is feasible for the government to
tax away all first-period savings. Instead, part (ii) simply says that changes in aggregate
before-tax income are offset by changes in aggregate after-tax income.

Savings, regardless of who generates them, represent goods that the government may
allocate as it sees fit. An increase in anyone’s savings increases wealth in the second
period. The government optimally responds by increasing consumption equally and de-
creasing before-tax incomes. The wealth generated by an increase in the savings of one of
the skill types is partly redistributed to the other type and so, as as shown in parts (iii)
and (iv) of Lemma 1, a marginal increase in someone’s savings has a larger impact on
the tax collected from him than it does from the tax collected from someone of the other
skill type.

All decision makers in the economy, both private and public, recognize that the gov-
ernment is unable to commit to any second period taxation scheme apart from the one
that is the second period optimum, given first period savings. Private individuals take
this lack of commitment into account when deciding on their first period courses of action,
notably when making their savings decisions. Furthermore, individuals cannot credibly
commit to second period labor supply decisions that are not optimal for them when
the time comes for them to supply this labor. Moreover, in order to achieve complete
separation, the government must provide sufficient incentive for high-skilled individuals
to reveal their type in the first period. Such an incentive is provided if the following
condition is met:

u(x12 − s2)−g

(

y12
w2

)

+ v(x22(s) + (1 + r)s2)− h

(

y22(s)

w2

)

≥ u(x11 − s1)− g

(

y11
w2

)

+ v(x21(s) + (1 + r)s1)− h

(

y21(s)

w2

)

.

(6.2)

Because there is a continuum of individuals, if a high-skilled individual lies about his
type in period 1, he does not change the fraction of individuals who reveal themselves to
be high skilled. Thus, he anticipates that the allocation on offer in period 2 is the one
that solves the second period first-best problem. Moreover, he knows that it would be
better in period 2 for him to mimic the low skilled if he has not revealed his own type
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in period 1 because, by Lemma 1, both types have the same second-period consumption,
but the low skilled work less. Thus, the right-hand side of (6.2) is the largest two-period
utility possible for a high-skilled individual if he mimics the low-skilled in period 1.

The government designs its first period tax system fully aware of how it will respond
in the second period to its own first period actions and to the savings decisions of the
private individuals. Its first period objective function, which includes the social welfare
accruing in the second period, is

Wsep(x11,x
1
2, y

1
1, y

1
2, s) = α

[

u(x11 − s1)− g

(

y11
w1

)

+ v(x21(s) + (1 + r)s1)− h

(

y21(s)

w1

)]

+ (1− α)

[

u(x12 − s2)− g

(

y12
w2

)

+ v(x22(s) + (1 + r)s2)− h

(

y22(s)

w2

)]

.

(6.3)

Because both the incentive compatibility condition (6.2) and the objective function (6.3)
include the solution functions to the second period first-best problem, the materials
balance constraint in period 2 is accounted for. However, the government must take
account of the first period materials balance constraint. Thus, it faces the following tax
design problem in period 1.

First Period No-Commitment Tax Design Problem with Separation. The gov-
ernment chooses a first period allocation (x11, x

1
2, y

1
1, y

1
2, s1, s2, sG) to maximize the objec-

tive function (6.3) subject to the first period materials balance constraint (4.3) and the
incentive compatibility constraint (6.2).

The pattern of unambiguous distortions to labor supply and savings behavior arising
at a solution to the first period no-commitment tax design problem with separation are
given in the following proposition.

Proposition 2. At a solution to the first period no-commitment tax design problem with

separation:

(i) MRSy1
1
,x1

1

< 1 and MRSy1
2
,x1

2

= 1.

(ii) MRSx1

1
,x2

1

< −(1 + r).

Part (i) of Proposition 2 indicates that, at a solution to the no-commitment tax design
problem with separation, low-skilled individuals face a positive first period marginal
income tax rate, whereas high-skilled individuals face a zero first period marginal income
tax rate. In this respect, the qualitative features of the second-period tax schedule
are the same as in a static economy. Separability of preferences across time implies
that the marginal rate of substitution between first period before-tax income and first
period after-tax income is independent of the second period allocation. Therefore, the
existence of a future period has no effect on the type of labor supply distortions needed
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to induce type revelation. The magnitude of the marginal tax rate on the income of
low-skilled individuals may, however, differ from the corresponding marginal tax rate in
a one-period economy. Anticipated future events help to shape savings decisions, which
directly affect first period consumption and an individual’s marginal rate of substitution
between consumption and labor supply in the first period.

Because the government has the same intertemporal preferences as the individuals,
it has no desire to distort savings merely to transfer resources between periods. As we
show in the proofs of Lemma 1 and Proposition 2, due to a wealth effect, an increase in
anyone’s savings induces the government to reduce the second-period labor supply of the
low skilled. By single-crossing, this reduction is more valuable to the truly low skilled
than it is to their potential mimickers. Through this channel, a marginal increase in
anyone’s savings relaxes the incentive-compatibility constraint. In addition, savings have
an impact on tax payments, which also affect this constraint. As shown in Lemma 1, an
increase in low-skilled savings reduces the taxes paid by low-skilled individuals by less
than it reduces the taxes paid by the high skilled. This makes the prospect of mimicking
in the second period less attractive to the high-skilled individuals and so reduces the two-
period value of concealing their type in the first period. Thus, for the low skilled, the
wealth and tax revenue effects of marginally increasing their savings reinforce each other.
Hence, as shown in part (ii) of Proposition 2, the government’s lack of commitment to
a second period tax scheme results in the savings of the low skilled being subsidized. If,
on the other hand, the savings of the high skilled are increased, as shown in Lemma 1,
an increase the taxes paid by low-skilled individuals are reduced by more than the taxes
paid by the high skilled. This tax revenue effect countervails the wealth effect, with
the consequence that the sign of the optimal savings distortion for the high skilled is
ambiguous.

In summary, it is the extra benefit of relaxing the incentive constraint (compared to
the full information solution) that accounts for the upward distortion of savings for the
low skilled. We thus have another instance of the observation made by Boadway (2012)
that distortionary policy instruments that would not be used in the absence of asymmetric
information are valuable when there is private information if these instruments can relax
an incentive compatibility constraint.

7. The Second Period No-Commitment Tax Design Problem with

First Period Pooling or Semi-Pooling

The government may not be able to infer the identities of all individuals after the first
period. Some, or potentially all, high-skilled individuals might not reveal their type.
Suppose that some positive proportion π of the high skilled mimic the low skilled in
the first period. The government is then faced with a second-best problem in period 2.
There is semi-pooling if 0 < π < 1 and pooling if π = 1. In the semi-pooling case, there
are three types of individuals. In addition to the low-skilled individuals, there are high-
skilled individuals who have not revealed themselves to be high skilled in the first period,
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denoted by the second-period type 2p, and there are high-skilled individuals who have
revealed themselves to be high skilled in the first period, denoted by the second-period
type 2s.14

In this section, we consider the second period tax design problem without commitment
when there is pooling or semi-pooling in the first period. To simply the exposition, we
consider the pooling and semi-pooling cases simultaneously, that is, by simply assuming
that π > 0. The analysis for the pooling case is obtained by setting π = 1 and omitting
the variables pertaining to type 2s.

The materials balance constraint in the second period is now

αx21 +(1−α)
[

πx22p + (1− π)x22s
]

≤ αy21 +(1−α)
[

πy22p + (1− π)y22s
]

+(1+ r)sG. (7.1)

Because savings is observable, any individual of type 2 can successfully conceal his
type in the first period only if his before-tax income and savings are identical to those
of an individual of type 1. Social welfare in the second period, which is affected by
individual savings, is given by

W2,pool(x21, x
2
2s, x

2
2p, y

2
1, y

2
2s, y

2
2p, s1, s2) = (1− α)(1− π)

[

v(x22s + (1 + r)s2)− h

(

y22s
w2

)]

+ (1− α)π

[

v(x22p + (1 + r)s1)− h

(

y22p

w2

)]

+ α

[

v(x21 + (1 + r)s1)− h

(

y21
w1

)]

.

(7.2)

Because the government enters the second period without being able to distinguish
between individuals of types 1 and 2p, but knowing that everybody else is of type 2 when
π 6= 1, its tax design problem is constrained by the incentive compatibility requirement

v(x22p + (1 + r)s1)− h

(

y22p

w2

)

≥ v(x21 + (1 + r)s1)− h

(

y21
w2

)

. (7.3)

The problem faced by the government in the second period is:

Second Period Tax Design Problem with Pooling or Semi-Pooling. Given π > 0
and (s1, s2, sG), the government chooses a second period allocation (x21, x

2
2p, x

2
2s, y

2
1, y

2
2p, y

2
2s)

to maximize the objective function (7.2) subject to the second period materials balance
constraint (7.1) and the incentive compatibility constraint (7.3). There is semi-pooling
if 0 < π < 1 and pooling if π = 1.

Let (x21, x
2
2p, x

2
2s, y

2
1, y

2
2p, y

2
2s) denote a solution to this second period tax design problem

and let W2,pool(s1, s2, sG, π) denote its value function. The function describing the utility
level attained by an individual of type i in the solution to this problem in terms of the
parameters of the problem is denoted by V i(s1, s2, sG, π), for i = 1, 2p, 2s.

14In order to avoid confusion, in the subsequent discussion, we refer to individuals as being of type 1,
2, 2p, or 2s, rather than as being either low or high skilled.
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The second period tax design problem with semi-pooling is a hybrid of a first-best
allocation problem and a standard optimal nonlinear income taxation problem. Given
the utilitarian nature of the objective function, the problem is strictly redistributive in
the sense of Guesnerie (1995, p. 224). Hence, the optimal second period allocation fea-
tures the usual distortion for individuals of type 1, namely a positive marginal income
tax rate. Type 2p individuals are analogous to the the highest type individuals in a stan-
dard optimal nonlinear income tax problem — potential mimickers but not potentially
mimicked. Hence, the standard arguments of optimal nonlinear income tax theory can
be used to show that these individuals face a zero marginal income tax rate. Because
type 2s individuals have already revealed their tax-relevant characteristics, there is no
need to distort their second period labor-leisure decisions, and their marginal income tax
rate is also zero. This pattern of distortions is summarized in Proposition 3.

Proposition 3. At a solution to the second period no-commitment tax design problem

with pooling or semi-pooling, MRSy2
1
,x2

1

< 1, MRSy2
2p,x

2

2p
= 1, and MRSy2

2s,x
2

2s
= 1.

In addition to the within-period marginal distortions arising at a solution to the
second period tax design problem with pooling or semi-pooling, the levels of consump-
tion, before-tax income, and utility in the second period allocated to the three types
of individuals are important in shaping decisions in the first period. If, for example,
the government uses the information it has about individuals of type 2s when there is
semi-pooling in order to increase their tax burden, then they must be compensated in
the first period for revealing their type. Proposition 4 gives the relative magnitudes of
consumption and before-tax income for individuals of the three second period types, as
well as the utility of the type 2p individuals relative to the utilities of the other types.

Proposition 4. At a solution to the second period no-commitment tax design problem

with pooling or semi-pooling,

(i) x21 + (1 + r)s1 < x22s + (1 + r)s2 < x22p + (1 + r)s1.

(ii) y21 < y22p < y22s.

(iii) V2p(s1, s2, sG, π) > V1(s1, s2, sG, π) and V2p(s1, s2, sG, π) > V2s(s1, s2, sG, π).

Part (i) of Proposition 4 orders the consumptions of the three types of individuals,
while part (ii) orders their incomes. As is the case in the standard optimal nonlinear
income tax model, type 1 individuals have the lowest consumption and the lowest before-
tax income. Individuals of type 2s have both a lower consumption and a higher before-tax
income than do individuals of type 2p. Thus, when there is semi-pooling, it is optimal
for the government to use the information it gains in the first period about the type
2s individuals to increase their tax burdens. Because it is optimal in period 2 for the
incentive compatibility constraint to bind, as in an atemporal Mirrlees model, the type
2p individuals must be better off in period 2 than those of type 1, as indicated by the first
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inequality in part (iii). Because the government taxes type 2s individuals more heavily
than it does type 2p individuals, revealing one’s type in the first period is costly in terms
of second period utility, as indicated by the second inequality in part (iii).

8. The First Period No-Commitment Tax Design Problem with

Pooling or Semi-Pooling

The government foresees the impact of second period decisions when choosing the optimal
first period allocation with pooling or semi-pooling. Thus, given that a proportion π > 0
of the type 2 individuals pool in the first period, its objective function is

Wpool(x11,x
1
2, y

1
1, y

1
2, s1, s2, sG)

= α

[

u(x11 − s1)− g

(

y11
w1

)]

+ (1− α)π

[

u(x11 − s1)− g

(

y11
w2

)]

+ (1− α)(1− π)

[

u(x12 − s2)− g

(

y12
w2

)]

+W2,pool(s1, s2, sG, π).

(8.1)

The objective function of the first period no-commitment tax design problem with
pooling or semi-pooling depends on first period savings in two ways. There is a depen-
dence due to the direct effects of private savings on consumption in each period. There
are also indirect effects that depend on how the components of the optimal second pe-
riod allocation depend on public and private savings. While the exact comparative static
responses of the optimal second period allocations to savings are difficult to determine,
as we shall see, it is nevertheless possible to sign most of the marginal distortions in the
first period.

Because the objective function (8.1) incorporates the second period decisions of the
government, it takes account of the second period materials balance constraint (7.1) and
the incentive compatibility condition (7.3). However, the first period tax design problem
is constrained by a materials balance constraint for period 1, namely

[α + (1− α)π]x11 + (1− α)(1− π)x12 + sG ≤ [α + (1− α)π]y11 + (1− α)(1− π)y12. (8.2)

If there is pooling, the variables x12, y
1
2, and s2 are omitted from (8.1) and (8.2) because

there are no type 2s individuals.
If there is semi-pooling (i.e., when 0 < π < 1), individuals of type 2 must be indifferent

between revealing their type in the first period and hiding their private information by
mimicking type 1 individuals in period 1. Individuals of type 2s rationally anticipate that
revealing their type is costly to them in the next period, and so they must be compensated
in period 1. Thus, the bundles offered to the type 2 individuals must satisfy

u(x12−s2)−g

(

y12
w2

)

+V2s(s1, s2, sG, π) = u(x11−s1)−g

(

y11
w2

)

+V2p(s1, s2, sG, π). (8.3)

We consider the pooling and semi-pooling cases separately.
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8.1. Pooling

When there is pooling, the government’s first period decision problem is described as
follows:

First Period No-Commitment Tax Design Problem with Pooling. The govern-
ment chooses a first period allocation (x11, y

1
1, s1, sG) to maximize the objective function

(8.1) subject to the first period materials balance constraint (8.2).

Proposition 5 describes the pattern of distortions to first period labor supply and
savings when there is pooling.

Proposition 5. At a solution to the first period no-commitment tax design problem with

pooling:

(i) MRSy1
1
,x1

1

> 1 > MRSy1
2p,x

1

2p
.

(ii) MRSx1

1
,x2

1

> −(1 + r) > MRSx1

2p,x
2

2p
.15

(iii) αMRSy1
1
,x1

1

+ (1− α)MRSy1
2p,x

1

2p
= 1.

(iv) αMRSx1

1
,x2

1

+ (1− α)MRSx1

2p,x
2

2p
= −(1 + r).

With pooling and no commitment, individuals of type 2p face a higher implicit
marginal income tax rate than do type 1 individuals in period 1, which is the reverse
of what occurs in the standard nonlinear income tax problem and in the full commit-
ment case. Interestingly, individuals of type 1 face a negative marginal income tax rate
and individuals of type 2p face a positive marginal income tax rate.16 Nevertheless, as
part (iii) shows, on average, there is no marginal distortion to first period labor supply
decisions. Turning now to savings, individuals of type 1 are subsidized on the margin,
whereas individuals of type 2p are taxed. However, on average, there is no marginal
distortion to the savings decisions.

Because the utility function is additively separable in labor supply and consumption,
equal consumption in the first period implies equal marginal utility of consumption in
that period. Equal incomes in period 1 imply that individuals of type 2p have a smaller
marginal disutility of labor in period 1 than do persons of type 1. The monotonicity of sec-
ond period consumption in type implies that individuals of type 2p have a lower marginal
utility of consumption in the second period than do individuals of type 1. The require-
ments that MRSy1

1
,x1

1

> MRSy1
2p,x

1

2p
in part (i) of Proposition 5 and MRSx1

1
,x2

1

> MRSx1

2p,x
2

2p

15Recall that marginal rates of substitution between consumption in the two periods are negative, so
in absolute value, individuals of type 1 have a smaller intertemporal marginal rate of substitution than
individuals of type 2p.

16Dillén and Lundholm (1996) have found in their model of dynamic linear income taxation without
commitment that pooling with a negative first period marginal income tax rate may be optimal.
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in part (ii) then follow from the definitions of these marginal rates of substitution in (3.4)
and (3.6). Because there is no incentive constraint in the first period no-commitment tax
design problem with pooling, on average, there is no need to distort first period labor
supply or savings decisions on the margin. Thus, it is optimal to marginally subsidize
the labor supply and savings decisions of type 1 individuals and to marginally tax these
decisions for type 2p individuals.

Further intuition for the signs of these distortions may be obtained by considering the
implications of perturbing some of the decision variables. At an optimal allocation with
first-period pooling, it is possible to infinitesimally decrease the common first period
consumption of individuals of types 1 and 2p and before-tax incomes of types 1 and
2p by the same amount holding savings fixed without violating the materials balance
constraints in either period. Because savings are held constant, this change has no effect
on the second period incentive compatibility constraint (7.3). If MRSy1

2p,x
1

2p
≥ 1 and,

hence, MRSy1
1
,x1

1

> 1, this change is a Pareto improvement. Hence, it must be optimal to

have MRSy1
2p,x

1

2p
< 1.17 By reversing the direction of change in first period consumption

and before-tax income, it follows that it is also optimal to have MRSy1
1
,x1

1

> 1.
As we have seen, at an optimal allocation with first-period pooling, it is necessary for

individuals of type 1 to have the smaller intertemporal marginal rate of substitution in
absolute value. Suppose that MRSx1

1
,x2

1

≤ −(1 + r) and, hence, MRSx1

2p,x
2

2p
< −(1 + r).

Consider modifying the optimal allocation by having each individual of type 1 or 2p
transfer a common infinitesimally small amount from savings into first period consump-
tion and then decreasing second period consumption by −MRSx1

1
,x2

1

for individuals of
type 1 and by −MRSx1

2p,x
2

2p
for individuals of type 2p. This composite change has no

effect on the variables that appear in the first period materials balance constraint (8.2),
but it relaxes the second-period materials balance constraint (7.1); that is, it is resource
saving. Furthermore, this reallocation is a matter of indifference for each individual.
From the definition of the intertemporal marginal rate of substitution (3.6), we see that
second period utility has decreased by u′(c12p) for those of type 2p and by u′(c11) for those
of type 1. Because c12p = c11 when there is pooling in period 1, u′(c12p) = u′(c11). Hence,
this composite change does not violate the incentive compatibility constraint (7.3). The
resource savings can now be used to increase everybody’s second period consumption
without violating any of the constraints of the tax design problem with pooling, con-
tradicting the optimality of the initial allocation. Thus, it must be optimal to have
MRSx1

1
,x2

1

> −(1 + r). A similar argument can be used to show that is also optimal
to have MRSx1

2p,x
2

2p
< −(1 + r), for otherwise it would be possible to obtain a Pareto

improvement by transferring consumption from the first period to the second.

17Except in the borderline case in which MRSy1

2
,x1

2

= 1, both types benefit from this change. In the
borderline case, this change is a matter of indifference to individuals of type 2p, but strictly benefits
individuals of type 1.
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8.2. Semi-Pooling

When there is semi-pooling, the government’s first period decision problem is described
as follows:

First Period No-Commitment Tax Design Problem with Semi-Pooling. The
government chooses a first period allocation (x11, x

1
2, y

1
1, y

1
2, s1, s2, sG) to maximize the

objective function (8.1) subject to the first period materials balance constraint (8.2) and
the indifference condition (8.3).

The pattern of the first period distortions are summarized in Proposition 6.

Proposition 6. At a solution to the first period no-commitment tax design problem with

semi-pooling:

(i) MRSy1
1
,x1

1

> MRSy1
2p,x

1

2p
, 1 > MRSy1

2p,x
1

2p
, and MRSy1

2s,x
1

2s
= 1.

(ii) MRSx1

1
,x2

1

> MRSx1

2p,x
2

2p
and MRSx1

2s,x
2

2s
> MRSx1

2p,x
2

2p
.

As in the pooling case, with semi-pooling, the type 1 individuals have their labor
supply and savings decisions taxed less at the margin than the type 2p individuals. The
intuition for these findings is exactly the same as when there is pooling. As in the
standard optimal nonlinear income tax problem, there is no need to distort the labor
supply decisions of the type 2s individuals because there is no higher type from which
information rents can be extracted. Individuals of type 2s have a higher consumption in
the first period and lower consumption in the second period than do individuals of type
2p. The requirement that MRSx1

2s,x
2

2s
> MRSx1

2p,x
2

2p
in part (ii) follows directly from these

observations. Thus, the marginal tax rate on savings for individuals of type 2s is smaller
than that for type 2p. In combination with a positive first period marginal income tax
rate for type 2p individuals, this is what allows the government to separate the type 2s
individuals from the rest of the type 2 population. In general, it is not possible to sign
any of the marginal distortions on savings.

The formulae in Proposition 7 help provide insight into why it is not possible to sign
some of the tax distortions when there is semi-pooling.

Proposition 7. At a solution to the first period no-commitment tax design problem with

semi-pooling, there exist γ ∈ (0, α + (1− α)π) and φ ∈ (0, α) such that:

(i)
[

α
α+(1−α)π−γ

]

MRSy1
1
,x1

1

+
[

(1−α)π−γ

α+(1−α)π−γ

]

MRSy1
2p,x

1

2p
= 1.

(ii)
[

α
α+(1−α)π

]

MRSy1
1
,x1

1

+
[

(1−α)π
α+(1−α)π

]

MRSy1
2p,x

1

2p
< 1.

(iii) MRSx1

1
,x2

1

= −(1 + r)

(

α− φ

α

)

−
γ

[α + (1− α)π]v′(c21)

[

u′(x11 − s1) +
∂V2s

∂s1
−
∂V2p

∂s1

]

.
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(iv) MRSx1

2p,x
2

2p
= −(1 + r)

(

(1− α)π + φ

(1− α)π

)

−
γ

[α + (1− α)π]v′(c22p)

[

u′(x11 − s1) +
∂V2s

∂s1
−
∂V2p

∂s1

]

.

(v) MRSx1

2s,x
2

2s
= −(1 + r) +

γ

(1− α)(1− π)v′(c22s)

[

u′(x12 − s2) +
∂V2p

∂s2
−
∂V2s

∂s2

]

.

The parameter γ is the multiplier on the indifference condition (8.3) in the Lagrangian
for the first period no-commitment tax design problem with semi-pooling. A priori, γ
can be of either sign, but at a solution to the first period problem, it must be in the
interval (0, α+(1−α)π). The parameter φ is the multiplier on the incentive compatibil-
ity constraint (7.3) in the Lagrangian for the second period no-commitment tax design
problem with semi-pooling (or pooling). At the solution to this problem, φ is in the
interval (0, α).

If γ < (1 − α)π, then the weights on the marginal rates of substitution in part (i)
of Proposition 7 are both positive and less than 1. When this inequality is satisfied, it
follows from part (i) that MRSy1

1
,x1

1

> 1 > MRSy1
2p,x

1

2p
, as in the case of pooling. That is,

in period 1, the marginal income tax rate for type 1 individuals is negative, whereas it is
positive for individuals of type 2p. However, if γ ≥ (1−α)π, then the weight on MRSy1

1
,x1

1

is at least 1 and the weight on MRSy1
2p,x

1

2p
is nonpositive. Consequently, it is possible to

have MRSy1
1
,x1

1

≤ 1 (i.e., a nonnegative marginal income tax rate for type 1 individuals)
even though MRSy1

2p,x
1

2p
< 1. Hence, if the resource cost of satisfying the indifference

condition (8.3) is sufficiently high, it may be desirable to tax the labor supply of the type
1 individuals at the margin.

Part (ii) of Proposition 7 shows that on average the individuals that are pooled in the
first period face a positive marginal tax rate on their labor incomes. When considering
changes in the consumptions and incomes in the first period, the second period terms
in the indifference condition (8.3) play no role. Hence, this condition has the same
implications as a binding incentive compatibility constraint in a static Mirrlees model.
Thus, the argument establishing an optimal downward distortion of labor supply in the
static nonlinear income tax model applies for the pooled individuals here.

Let ∆1 denote the last term in square brackets on the right-hand sides of the equations
in parts (iii) and (iv) of Proposition 7. ∆1 is the change in the utility over both periods of a
type 2p individual if the savings of those individuals who are pooled together is marginally
decreased. To preserve the indifference condition (8.3) following such a change, the utility
of type 2s individuals must also change by ∆1. In general, the sign of ∆1 is indeterminate.
If ∆1 = 0, the terms relating to the indifference condition in parts (iii) and (iv) vanish.
Hence, because 0 < φ < α, MRSx1

1
,x2

1

> −(1 + r) > MRSx1

2p,x
2

2p
and, therefore, on the

margin, type 1 individuals have their savings subsidized and type 2p individuals have their
savings taxed, as in the pooling case. For i = 1, 2p, the value of MRSx1

i
,x2

i
is decreasing

(i.e., increasing in absolute value) in the value of ∆1. Thus, if ∆1 < 0 (increasing his
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savings is detrimental to a type 2p individual), it is optimal to decrease the marginal tax
rate on savings for type 2p individuals and to increase the marginal subsidy on savings
for type 1 individuals compared to when ∆1 = 0. If this effect is sufficiently strong, type
2p individuals could also have their savings subsidized on the margin. Similar reasoning
shows that if ∆1 > 0, then it is possible for both type 1 and type 2p individuals to face
a positive marginal tax on savings. Analogous reasoning using part (v) shows why the
marginal distortion on the savings of type 2s individuals may differ from 0 (as is the
case when there is complete separation in period 1) and why the sign of this tax rate is
indeterminate when there is semi-pooling.18

9. Conclusion

Our analysis suggests that a government’s inability to commit to its future tax policy
provides a rationale for distortions in savings behavior. Extending our analysis to more
than two types of individuals is not straightforward. It is easy to construct models
of static nonlinear income taxation that exhibit considerable pooling of types (see, for
example, Weymark, 1986). Dynamic extensions of such models would invariably uncover
cases of pooling, semi-pooling, and separation, each with its own distinct pattern of
savings distortions. Our fundamental insight—that the inability to commit to future tax
schedules necessitates the use of savings taxation when taxes are set optimally—is likely
to carry over to economies with any number of types. This article can be seen as a step
toward incorporating dynamic consistency constraints into normative approaches to tax
theory alongside the familiar budget and incentive constraints.
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Appendix A. Proofs

Proof of Proposition 1. The Lagrangian associated with the second-best tax design prob-
lem with commitment is

α

[

u(x11 − s1)− g

(

y11
w1

)

+ v(x21 + (1 + r)s1)− h

(

y21
w1

)]

+ (1− α)

[

u(x12 − s2)− g

(

y12
w2

)

+ v(x22 + (1 + r)s2)− h

(

y22
w2

)]

+ λ1
[

α(y11 − x11) + (1− α)(y12 − x12)− sG
]

+ λ2
[

α(y21 − x21) + (1− α)(y22 − x22) + (1 + r)sG
]

+ µ

[

u(x12 − s2)− g

(

y12
w2

)

+ v(x22 + (1 + r)s2)− h

(

y22
w2

)

− u(x11 − s1) + g

(

y11
w2

)

− v(x21 + (1 + r)s1) + h

(

y21
w2

)]

.

(A.1)

The associated first-order conditions for an interior solution are:

x11 : αu
′(c11)− λ1α− µu′(c11) = 0; (A.2)

x12 : (1− α)u′(c12)− λ1(1− α) + µu′(c12) = 0; (A.3)

y11 : −
α

w1

g′
(

y11
w1

)

+ λ1α +
µ

w2

g′
(

y11
w2

)

= 0; (A.4)

y12 : −
(1− α)

w2

g′
(

y12
w2

)

+ λ1(1− α)−
µ

w2

g′
(

y12
w2

)

= 0; (A.5)

x21 : αv
′(c21)− λ2α− µv′(c21) = 0; (A.6)

x22 : (1− α)v′(c22)− λ2(1− α) + µv′(c22) = 0; (A.7)

y21 : −
α

w1

h′
(

y21
w1

)

+ λ2α +
µ

w2

h′
(

y21
w2

)

= 0; (A.8)

y22 : −
(1− α)

w2

h′
(

y22
w2

)

+ λ2(1− α)−
µ

w2

h′
(

y22
w2

)

= 0; (A.9)

s1 : α
[

−u′(c11) + (1 + r)v′(c21)
]

+ µu′(c11)− (1 + r)µv′(c21) = 0; (A.10)

s2 : (1− α)
[

−u′(c12) + (1 + r)v′(c22)
]

− µu′(c12) + (1 + r)µv′(c22) = 0; (A.11)

sG : − λ1 + (1 + r)λ2 = 0. (A.12)

The first equality of part (i) follows from solving each of (A.3) and (A.5) for λ1(1−α)
and rearranging the resulting equality. Similar algebra applied to (A.7) and (A.9) yields
the second equality. From (A.11),

(1− α + µ)u′(c12) = (1− α + µ)(1 + r)v′(c22), (A.13)

from which the final equality of part (i) follows.
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By (A.2) and (A.4),

(α− µ)u′(c11) =
α

w1

g′
(

y11
w1

)

−
µ

w2

g′
(

y11
w2

)

= λ1α. (A.14)

Because w1 < w2 and g(·) is strictly convex,

α

w1

g′
(

y11
w1

)

−
µ

w2

g′
(

y11
w2

)

>
(α− µ)

w1

g′
(

y11
w1

)

. (A.15)

Combining (A.14) and (A.15) yields

(α− µ)u′(c11) >
(α− µ)

w1

g′
(

y11
w1

)

. (A.16)

Because the multiplier on the resource constraint, λ1, is positive, (A.14) implies that
(α−µ) is positive. Dividing both sides of (A.16) by (α−µ)u′(c11) and rearranging yields
the first inequality of part (ii). The second inequality follows from a similar argument
applied to (A.6) and (A.8). From (A.10),

(α− µ)u′(c11) = (α− µ)(1 + r)v′(c21), (A.17)

from which the final equality of part (ii) follows.

Proof of Lemma 1. The objective function of the second period first-best problem is
strictly concave and the constraint set is convex. Hence, by Sundaram (1996, Theo-
rem 7.14), the problem has a unique solution. The associated Lagrangian is

α
[

v(x21 + (1 + r)s1) −h

(

y21
w1

)]

+ (1− α)

[

v(x22 + (1 + r)s2)− h

(

y22
w2

)]

+ λ
[

α(y21 − x21) + (1− α)(y22 − x22) + (1 + r)sG
]

.

(A.18)

The first-order conditions for an optimum are:

x21 : α
[

v′(c21)− λ
]

= 0; (A.19)

x22 : (1− α)
[

v′(c22)− λ
]

= 0; (A.20)

y21 : α

[

−
1

w1

h′
(

y21
w1

)

+ λ

]

= 0; (A.21)

y22 : (1− α)

[

−
1

w2

h′
(

y22
w2

)

+ λ

]

= 0; (A.22)

λ : α(y21 − x21) + (1− α)(y22 − x22) + (1 + r)sG = 0. (A.23)

Part (i) of the lemma follows from solving each of (A.19)–(A.22) for λ.
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The bordered Hessian matrix for this problem is

A =















αv′′(c21) 0 0 0 −α
0 (1− α)v′′(c22) 0 0 −(1− α)

0 0 −
αh′′(l2

1
)

(w1)2
0 α

0 0 0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

−α −(1− α) α (1− α) 0















. (A.24)

Its determinant is

|A| = α2(1− α)2v′′(c21)v
′′(c22)

[

(1− α)
h′′(l21)

(w1)2
+ α

h′′(l22)

(w2)2

]

− α2(1− α)2
h′′(l21)

(w1)2
h′′(l22)

(w2)2
[

(1− α)v′′(c21) + αv′′(c22)
]

.

(A.25)

Because 0 < α < 1, the strict convexity of h(·) implies that the term inside the first
square bracket in (A.25) is positive. It then follows from the strict concavity of v(·)
that the first term on the right-hand side of (A.25) is positive. On the other hand, the
strict concavity of v(·) implies that the sum inside the second square bracket is negative.
Because h(·) is strictly convex, this sum is multiplied by a positive number. Thus, (A.25)
expresses |A| as a positive quantity minus a negative quantity. Hence, |A| > 0 and A

is invertible. It then follows from the Implicit Function Theorem (see Sundaram, 1996,
Theorem 1.77) that the solution functions are continuously differentiable.

Part (ii) of the lemma follows directly from differentiating the materials balance con-
straint, which is also the first-order condition (A.23), with respect to s1 and s2.

We now prove part (iii). Implicitly differentiating (A.19)–(A.23) with respect to the
endogenous variables (x21, x

2
2, y

2
1, y

2
2, λ) and the parameter s1, we obtain

A













dx21
dx22
dy21
dy22
dλ













=













−α(1 + r)v′′(c21)
0
0
0
0













ds1. (A.26)

Because A is invertible, we can now use Cramer’s Rule to compute the derivatives of
the allocation functions with respect to s1. For x

2
1, we have

|A|
∂x21
∂s1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−α(1 + r)v′′(c21) 0 0 0 −α
0 (1− α)v′′(c22) 0 0 −(1− α)

0 0 −
αh′′(l2

1
)

(w1)2
0 α

0 0 0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

0 −(1− α) α (1− α) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (A.27)
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Computing the determinant by expanding along the first column,

|A|
∂x21
∂s1

= −α(1 + r)v′′(c21)











(1− α)v′′(c22)

∣

∣

∣

∣

∣

∣

∣

−
αh′′(l2

1
)

(w1)2
0 α

0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

α (1− α) 0

∣

∣

∣

∣

∣

∣

∣

+ (1− α)

∣

∣

∣

∣

∣

∣

∣

0 0 −(1− α)

−
αh′′(l2

1
)

(w1)2
0 α

0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

∣

∣

∣

∣

∣

∣

∣











(A.28)

or, equivalently,

|A|
∂x21
∂s1

= −α2(1− α)2(1 + r)v′′(c21)

×

[

(1− α)v′′(c22)
h′′(l21)

(w1)2
+ αv′′(c22)

h′′(l22)

(w2)2
− (1− α)

h′′(l21)

(w1)2
h′′(l22)

(w2)2

]

.

(A.29)

For x22, we have

|A|
∂x22
∂s1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αv′′(c21) −α(1 + r)v′′(c21) 0 0 −α
0 0 0 0 −(1− α)

0 0 −
αh′′(l2

1
)

(w1)2
0 α

0 0 0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

−α 0 α (1− α) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (A.30)

Computing the determinant by expanding along the second column,

|A|
∂x22
∂s1

= α(1 + r)v′′(c21)α

∣

∣

∣

∣

∣

∣

∣

0 0 −(1− α)

−
αh′′(l2

1
)

(w1)2
0 α

0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

∣

∣

∣

∣

∣

∣

∣

(A.31)

or, equivalently,

= −α3(1− α)2(1 + r)v′′(c21)
h′′(l21)

(w1)2
h′′(l22)

(w2)2
. (A.32)

For y21, we have

|A|
∂y21
∂s1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αv′′(c21) 0 −α(1 + r)v′′(c21) 0 −α
0 (1− α)v′′(c22) 0 0 −(1− α)
0 0 0 0 α

0 0 0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

−α −(1− α) 0 (1− α) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (A.33)
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Computing the determinant by expanding along the third column,

|A|
∂y21
∂s1

= −α(1 + r)v′′(c21)α

∣

∣

∣

∣

∣

∣

∣

0 (1− α)v′′(c22) 0

0 0 −
(1−α)h′′(l2

2
)

(w2)2

−α −(1− α) (1− α)

∣

∣

∣

∣

∣

∣

∣

(A.34)

or, equivalently,

= −α3(1− α)2(1 + r)v′′(c21)v
′′(c22)

h′′(l22)

(w2)2
. (A.35)

Finally, for y22, we have

|A|
∂y22
∂s1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αv′′(c21) 0 0 −α(1 + r)v′′(c21) −α
0 (1− α)v′′(c22) 0 0 −(1− α)

0 0 −
αh′′(l2

1
)

(w2)1
0 α

0 0 0 0 (1− α)
−α −(1− α) α 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (A.36)

Computing the determinant by expanding along the fourth column,

|A|
∂y22
∂s1

= α(1 + r)v′′(c21)(1− α)

∣

∣

∣

∣

∣

∣

∣

0 (1− α)v′′(c22) 0

0 0 −
α)h′′(l2

1
)

(w1)2

−α −(1− α) α

∣

∣

∣

∣

∣

∣

∣

(A.37)

or, equivalently,

|A|
∂y22
∂s1

= −α3(1− α)2(1 + r)v′′(c21)v
′′(c22)

h′′(l21)

(w1)2
. (A.38)

Combining (A.29)–(A.38) yields

|A|

[

∂x21
∂s1

−
∂x22
∂s1

−
∂y21
∂s1

+
∂y22
∂s1

]

= −α2(1− α)3(1 + r)v′′(c21)v
′′(c22)

h′′(l21)

(w1)2

− α3(1− α)2(1 + r)v′′(c21)v
′′(c22)

h′′(l22)

(w2)2
+ α2(1− α)3(1 + r)v′′(c21)

h′′(l21)

(w1)2
h′′(l22)

(w2)2

+ α3(1− α)2(1 + r)v′′(c21)
h′′(l21)

(w1)2
h′′(l22)

(w2)2
+ α3(1− α)2(1 + r)v′′(c21)v

′′(c22)
h′′(l22)

(w2)2

− α3(1− α)2(1 + r)v′′(c21)v
′′(c22)

h′′(l21)

(w1)2
.

(A.39)

The second and fifth terms on the right-hand side of (A.39) cancel. Factoring common
elements, grouping the first term with the sixth, and the third with the fourth yields

∂x21
∂s1

−
∂x22
∂s1

−
∂y21
∂s1

+
∂y22
∂s1

=
α2(1− α)2(1 + r)v′′(c21)

|A|

[

h′′(l21)

(w1)2
h′′(l22)

(w2)2
− v′′(c22)

h′′(l21)

(w1)2

]

.

(A.40)
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We have already established that |A| is positive. Thus, curvature properties of v(·) and
h(·) imply that ther right-hand side of (A.40) is negative. Therefore, the left-hand side
of (A.40) is also negative, which establishes part (iii) of the lemma.

Turning now to part (iv) for i = 2, in Appendix B, we show that the analog to (A.40)
is

∂x21
∂s1

−
∂x22
∂s1

−
∂y21
∂s1

+
∂y22
∂s1

= −
α2(1− α)2(1 + r)v′′(c22)

|A|

[

h′′(l21)

(w1)2
h′′(l22)

(w2)2
− v′′(c21)

h′′(l22)

(w2)2

]

.

(A.41)
This expression is positive, from which part (iv) of the lemma follows.

Proof of Proposition 2. The Lagrangian associated with the first-period no-commitment
tax design problem with separation is

α

[

u(x11 − s1)− g

(

y11
w1

)

+ v(x21(s) + (1 + r)s1)− h

(

y21(s)

w1

)]

+ (1− α)

[

u(x12 − s2)− g

(

y12
w2

)

+ v(x22(s) + (1 + r)s2)− h

(

y22(s)

w2

)]

+ η
[

α(y11 − x11) + (1− α)(y12 − x12)− sG
]

+ ψ

[

u(x12 − s2)− g

(

y12
w2

)

+ v(x22(s) + (1 + r)s2)− h

(

y22(s)

w2

)

− u(x11 − s1) + g

(

y11
w2

)

− v(x21(s) + (1 + r)s1) + h

(

y21(s)

w2

)]

.

(A.42)

The associated first-order equations include:

x11 : αu
′(c11)− ηα− ψu′(c11) = 0; (A.43)

x12 : (1− α)u′(c12)− η(1− α) + ψu′(c12) = 0; (A.44)

y11 : −
α

w1

g′
(

y11
w1

)

+ ηα +
ψ

w2

g′
(

y11
w2

)

= 0; (A.45)

y12 : −
(1− α)

w2

g′
(

y12
w2

)

+ η(1− α)−
ψ

w2

g′
(

y21
w2

)

= 0; (A.46)

s1 : − αu′(c11) + αv′(c21)

[

∂x21
∂s1

+ (1 + r)

]

−
α

w1

h′
(

y21
w1

)

∂y21
∂s1

+ (1− α)v′(c22)
∂x22
∂s1

−
(1− α)

w2

h′
(

y22
w2

)

∂y22
∂s1

+ ψ

[

u′(c11) + v′(c22)
∂x22
∂s1

−
1

w2

h′
(

y22
w2

)

∂y22
∂s1

− v′(c21)

[

∂x21
∂s1

+ (1 + r)

]

+
1

w2

h′
(

y21
w2

)

∂y21
∂s1

]

= 0;

(A.47)
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s2 : αv
′(c21)

∂x21
∂s2

−
α

w1

h′
(

y21
w1

)

∂y21
∂s2

− (1− α)u′(c12)

+ (1− α)v′(c22)

[

∂x22
∂s2

+ (1 + r)

]

−
(1− α)

w2

h′
(

y22
w2

)

∂y22
∂s2

+ ψ

[

−u′(c12) + v′(c22)

[

∂x22
∂s2

+ (1 + r)

]

−
1

w2

h′
(

y22
w2

)

∂y22
∂s2

− v′(c21)
∂x21
∂s2

+
1

w2

h′
(

y21
w2

)

∂y21
∂s2

]

= 0.

(A.48)

Equations (A.43)–(A.46) are identical to equations (A.2)–(A.5), except that λ1 is replaced
by η and µ is replaced by ψ. Thus, the arguments used in the proof of Proposition 1 may
be repeated to prove part (i) of the proposition.

By part (i) of Lemma 1, (A.47) is equivalent to

−αu′(c11) + α(1 + r)v′(c21) + v′(c21)

[

α
∂x21
∂s1

+ (1− α)
∂x22
∂s1

− α
∂y21
∂s1

− (1− α)
∂y22
∂s1

]

+ψu′(c11) + ψv′(c21)

[

−
∂x21
∂s1

+
∂x22
∂s1

+
∂y21
∂s1

−
∂y22
∂s1

]

− ψv′(c21)(1 + r)

+ ψ

[

1

w2

h′
(

y21
w2

)

−
1

w1

h′
(

y21
w1

)]

∂y21
∂s1

= 0.

(A.49)

By part (ii) of Lemma 1, the first term in square brackets on the left-hand side of (A.49)
is zero, so that

−αu′(c11) + (α− ψ)(1 + r)v′(c21) + ψu′(c11)

+ ψv′(c21)

[

−
∂x21
∂s1

+
∂x22
∂s1

+
∂y21
∂s1

−
∂y22
∂s1

]

+ ψ

[

1

w2

h′
(

y21
w2

)

−
1

w1

h′
(

y21
w1

)]

∂y21
∂s1

= 0,

(A.50)

which is equivalent to

(α− ψ)u′(c11) + ψv′(c21)

[

∂x21
∂s1

−
∂x22
∂s1

−
∂y21
∂s1

+
∂y22
∂s1

]

+ ψ

[

1

w1

h′
(

y21
w1

)

−
1

w2

h′
(

y21
w2

)]

∂y21
∂s1

= (α− ψ)(1 + r)v′(c21).

(A.51)

Because both u(·) and v(·) are increasing, it follows from (A.43) that (α − ψ) > 0.
Rearranging (A.51) yields

u′(c11)

v′(c21)
+

(

ψ

α− ψ

)[

∂x21
∂s1

−
∂x22
∂s1

−
∂y21
∂s1

+
∂y22
∂s1

]

+

(

ψ

α− ψ

)

1

v′(c21)

[

1

w1

h′
(

y21
w1

)

−
1

w2

h′
(

y21
w2

)]

∂y21
∂s1

= (1 + r).

(A.52)
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By part (iii) of Lemma 1, the second term on the left-hand side of (A.52) is negative. The
final term on the left-hand side of (A.52) is also negative. The part in square brackets is
positive because w1 < w2 and h(·) is convex; the derivative is negative by (A.35). The
inequality in part (ii) of the proposition follows from these observations.

In Appendix B, we show that the sign of the left-hand side of the analog of (A.52)
for s2 is indeterminate.

Proof of Proposition 3. The Lagrangian associated with the second period no-commitment
tax design problem with pooling or semi-pooling is

α

[

v(x21 + (1 + r)s1)− h

(

y21
w1

)]

+ (1− α)π

[

v(x22p + (1 + r)s1)− h

(

y22p

w2

)]

+ (1− α)(1− π)

[

v(x22s + (1 + r)s2)− h

(

y22s
w2

)]

+ ζ
[

α(y21 − x21) + (1− α)π(y22p − x22p)

+ (1− α)(1− π)(y22s − x22s) + (1 + r)sG
]

+ φ
[

v(x22p + (1 + r)s1)− h

(

y22p

w2

)

− v(x21 + (1 + r)s1) + h

(

y21
w2

)

]

.

(A.53)

The associated first-order conditions include:

x21 : αv
′(c21)− αζ − φv′(c21) = 0; (A.54)

y21 : −
α

w1

h′
(

y21
w1

)

+ αζ +
φ

w2

h′
(

y21
w2

)

= 0; (A.55)

x22p : (1− α)πv′(c22p)− ζ(1− α)π + φv′(c22p) = 0; (A.56)

y22p : −
(1− α)π

w2

h′
(

y22p

w2

)

+ ζ(1− α)π −
φ

w2

h′
(

y22s
w2

)

= 0; (A.57)

x22s : (1− α)(1− π)v′(c22s)− ζ(1− α)(1− π) = 0; (A.58)

y22s : −
(1− α)(1− π)

w2

h′
(

y22s
w2

)

+ ζ(1− α)(1− π) = 0. (A.59)

The three relations in the statement of the proposition follow from combining (A.54)
with (A.55), (A.56) with (A.57), and (A.58) with (A.59) and using definition (3.5).

Proof of Proposition 4. Rearranging equations (A.54), (A.56), and (A.58) yields:

(

α− φ

α

)

v′(c21) = v′(c22s) =

(

(1− α)π + φ

(1− α)π

)

v′(c22p) = ζ. (A.60)

The multiplier φ is positive, so

v′(c21) > v′(c22s) > v′(c22p). (A.61)
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But v is strictly concave. Thus,
c21 < c22s < c22p, (A.62)

and part (i) of the proposition then follows. Note that (A.60) implies that φ < α.
By standard arguments from the optimal nonlinear income tax literature, y22p > y21.

Equations (A.57) and (A.59) imply

1

w2

h′
(

y22s
w2

)

=

(

(1− α)π + φ

(1− α)π

)

1

w2

h′
(

y22p

w2

)

= ζ. (A.63)

Because φ > 0,

h′
(

y22s
w2

)

> h′
(

y22p

w2

)

. (A.64)

But h is strictly convex. Thus,
y22s > y22p. (A.65)

Part (ii) then follows.
Because the incentive constraint (7.3) binds, w2 > w1, and h is strictly convex, the

first inequality in part (iii) of the proposition holds. The second inequality in this part
follows directly from parts (i) and (ii).

Proof of Propositions 5, 6, and 7. The Lagrangian associated with the first period no-
commitment tax design problem with semi-pooling is

α

[

u(x11 − s1)− g

(

y11
w1

)]

+ (1− α)π

[

u(x11 − s1)− g

(

y11
w2

)]

+ (1− α)(1− π)

[

u(x12 − s2)− g

(

y12
w2

)]

+W2,pool(s1, s2, sg, π)

+ γ

[

u(x12 − s12)− g

(

y12
w2

)

+ V2s(s1, s2, sG, π)

− u(x11 − s1) + g

(

y11
w2

)

− V2p(s1, s2, sG, π)

]

+ σ
[

(α + (1− α)π)(y11 − x11) + (1− α)(1− π)(y12 − x12)− sG
]

.

(A.66)

If there is pooling, the third and fifth terms in this sum are omitted. The multiplier
σ is non-negative, but the multiplier γ is a priori of indeterminate sign because it is
associated with an equality constraint.

The associated first-order conditions include:

x11 : (α + (1− α)π)u′(c11)− (α + (1− α)π)σ − γu′(c11) = 0; (A.67)

y11 : −
α

w1

g′
(

y11
w1

)

−
(1− α)π

w2

g′
(

y11
w2

)

+ (α + (1− α)π)σ +
γ

w2

g′
(

y11
w2

)

= 0; (A.68)

x12 : (1− α)(1− π)u′(c12)− (1− α)(1− π)σ + γu′(c12) = 0; (A.69)
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y12 : −
(1− α)(1− π)

w2

g′
(

y12
w2

)

+ (1− α)(1− π)σ −
γ

w2

g′
(

y12
w2

)

= 0. (A.70)

s1 : − [α + (1− α)π]u′(c11) +
∂W2,pool

∂s1
+ γ

[

u′(c11) +
∂V2s

∂s1
−
∂V2p

∂s1

]

= 0. (A.71)

s2 : − (1− α)(1− π)u′(c12) +
∂W2,pool

∂s2
+ γ

[

−u′(c12) +
∂V2s

∂s2
−
∂V2p

∂s2

]

= 0. (A.72)

Single crossing implies that

MRSy1
1
,x1

1

> MRSy1
2p,x

1

2p
, (A.73)

which is the first inequality in part (i) of Proposition 6. The equality in this part follows
directly from (A.69) and (A.70).

Using either (A.67) or (A.69), it is easy to show that σ > 0. Equations (A.67) and
(A.68) imply

[α+(1−α)π−γ]u′(c11) = [α+(1−α)π]σ =
α

w1

g′
(

y11
w1

)

+
(1− α)π − γ

w2

g′
(

y11
w2

)

. (A.74)

Because σ > 0 and utility is increasing in consumption, [α+ (1−α)π− γ] > 0. Dividing
the extreme right-hand side of (A.74) by its extreme left-hand side and using (3.4) yields

α

α + (1− α)π − γ
MRSy1

1
,x1

1

+
(1− α)π − γ

α + (1− α)π − γ
MRSy1

2p,x
1

2p
= 1, (A.75)

which is the equation in part (i) of Proposition 7. Setting γ = 0 and π = 1 in (A.75) shows
that part (iii) of Proposition 5 holds when there is pooling. Part (i) of this proposition
then follows from (A.73).

By (A.73), the left-hand side of (A.75) is strictly larger than MRSy1
2p,x

1

2p
. Hence,

1 > MRSy1
2p,x

1

2p
, which is the second inequality in part (i) of Proposition 6.

Part (i) of Proposition 4 and definition (3.6) imply that

MRSx1

1
,x2

1

> MRSx1

2p,x
2

2p
, (A.76)

which is the first inequality in part (ii) of Proposition 6.
Equations (A.67) and (A.69) imply that

σ =

[

1−
γ

α + (1− α)π

]

u′(c11) =

[

1 +
γ

(1− α)(1− π)

]

u′(c12), (A.77)

so that
c12 ≤ c11 ↔ γ ≤ 0. (A.78)

We shall now show that γ > 0 when there is semi-pooling. Suppose, by way of
contradiction, that γ ≤ 0. Then c12 ≤ c11. But type 2s individuals are worse off in the
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second period than are their type 2p counterparts, so they must be better off in period
1. Hence, it must be the case that y12 < y11. Now, (A.68) and (A.70) imply

1

w2

g′
(

y12
w2

)[

(1− α)(1− π) + γ

(1− α)(1− π)

]

=
(1− α)π − γ

[α + (1− α)π]w2

g′
(

y11
w2

)

+
α

[α + (1− α)π]w1

g′
(

y11
w1

)

.

(A.79)

Because w2 > w1, (A.79) implies

1

w2

g′
(

y12
w2

)[

(1− α)(1− π) + γ

(1− α)(1− π)

]

>
1

w2

g′
(

y11
w2

)[

α + (1− α)π − γ

α + (1− α)π

]

. (A.80)

Because [α + (1 − α)π − γ] > 0, the right-hand side of (A.80) is positive. Therefore,
the left-hand side is also positive. Because y12 < y11 and g is strictly convex, a necessary
condition for (A.80) to hold is

(1− α)(1− π) + γ

(1− α)(1− π)
>
α + (1− α)π − γ

α + (1− α)π
. (A.81)

But (A.81) holds if and only if

γ

(1− α)(1− π)
> −

γ

α + (1− α)π
(A.82)

or, equivalently,
γ > 0, (A.83)

which contradicts the initial assumption that γ ≤ 0. Thus, it must be the case that
γ > 0. We have already shown that [α+ (1− α)π − γ] > 0. Thus, γ ∈ (0, α+ (1− α)π).
We have also shown in the proof of Proposition 3 that φ < α. Thus, the parameter
restrictions for γ and φ in Proposition 7 are satisfied.

Because γ > 0, part (ii) of Proposition 7 follows from part (i) of this proposition and
the first inequality in part (i) of Proposition 6.

It follows from (A.78) and (A.83) that c12 > c11. In light of the strict concavity of both
u and v, combining this inequality with part (i) of Propostion 4 implies

u′(c12)

v′(c22s)
<

u′(c11)

v′(c22p)
. (A.84)

The second inequality of part (ii) of Proposition 6 now follows from (3.6).
Applying the Envelope Theorem to (A.53) yields

∂W2,pool

∂s1
= (α− φ)(1 + r)v′(c21) + [(1− α)π + φ](1 + r)v′(c22p). (A.85)
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Substituting (A.54) and (A.56) into (A.85) yields

∂W2,pool

∂s1
= (1 + r)ζ[α + (1− α)π]. (A.86)

Substituting (A.86) into (A.71) and rearranging yields

u′(c11) = (1 + r)ζ +
γ

α + (1− α)π

[

u′(c11) +
∂V2s

∂s1
−
∂V2p

∂s1

]

. (A.87)

Solving (A.54) for ζ and substituting the resulting expression into (A.87) gives

u′(c11) =
(1 + r)(α− φ)

α
v′(c21) +

γ

α + (1− α)π

[

u′(c11) +
∂V2s

∂s1
−
∂V2p

∂s1

]

. (A.88)

Part (iii) of Proposition 7 follows from dividing both sides of (A.88) by −v′(c21).
Solving (A.56) for ζ and substituting the resulting expression into (A.87) gives

u′(c11) = (1+r)

(

(1− α)π + φ

(1− α)π

)

v′(c22p)+
γ

α + (1− α)π

[

u′(c11) +
∂V2s

∂s1
−
∂V2p

∂s1

]

. (A.89)

Part (iv) of Proposition 7 follows from dividing both sides of (7) by −v′(c22p).
When there is pooling, the expressions corresponding to parts (iii) and (iv) of Proposi-

tion 7 are obtained by setting γ = 0. Taking population weighted sums of these marginal
rates of substitution yields the equation in part (iv) of Proposition 5. Part (ii) of this
proposition then follows from (A.76).

Applying the Envelope Theorem to (A.53) yields

∂W2,pool

∂s2
= (1− α)(1− π)(1 + r)v′(c22s). (A.90)

Substituting (A.90) into (A.72) and rearranging yields

u′(c12) = (1 + r)v′(c22s) +
γ

(1− α)(1− π)

[

−u′(c12) +
∂V2s

∂s2
−
∂V2p

∂s2

]

. (A.91)

Part (v) of Proposition 7 follows from dividing both sides of (A.91) by −v′(c22s).
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Appendix B. Supplementary File

Derivation of (A.41). We implicitly differentiate (A.19)–(A.23) with respect to the en-
dogenous variables (x21, x

2
2, y

2
1, y

2
2, λ) and the parameter s2 to obtain

A













dx21
dx22
dy21
dy22
dλ













=













0
−(1− α)(1 + r)v′′(c22)

0
0
0













ds2. (B.1)

Because A is invertible, we can now use Cramer’s Rule to compute the derivatives of
the allocation functions with respect to s2. For x

2
1, we have

|A|
∂x21
∂s2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 −α
−(1− α)(1 + r)v′′(c22) (1− α)v′′(c22) 0 0 −(1− α)

0 0 −
αh′′(l2

1
)

(w1)2
0 α

0 0 0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

0 −(1− α) α (1− α) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(B.2)
Computing the determinant by expanding along the first column,

|A|
∂x21
∂s2

= (1− α)(1 + r)v′′(c22)(1− α)

∣

∣

∣

∣

∣

∣

∣

0 0 −α

−
αh′′(l2

1
)

(w1)2
0 α

0 −
(1−α)h′′(l2

2
)

(w2)2
(1− α)

∣

∣

∣

∣

∣

∣

∣

(B.3)

or, equivalently,

|A|
∂x21
∂s2

= −α2(1− α)3(1 + r)v′′(c22)
h′′(l21)

(w1)2
h′′(l22)

(w2)2
. (B.4)

For x22, we have

|A|
∂x22
∂s2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αv′′(c21) 0 0 0 −α
0 −(1− α)(1 + r)v′′(c22) 0 0 −(1− α)
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αh′′(l2

1
)
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0 α
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(1−α)h′′(l2

2
)
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−α 0 α (1− α) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (B.5)
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Computing the determinant by expanding along the second column,

|A|
∂x22
∂s2

= −(1− α)(1 + r)v′′(c22)


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




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(B.6)

or, equivalently,

|A|
∂x22
∂s2

= −α2(1− α)2(1 + r)v′′(c22)

×
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(B.7)

For y21, we have
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(B.8)
Computing the determinant by expanding along the third column,
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or, equivalently,

|A|
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Finally, for y22, we have
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Computing the determinant by expanding along the fourth column,

|A|
∂y22
∂s2
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(B.12)

or, equivalently,

|A|
∂y22
∂s2

= −α2(1− α)3(1 + r)v′′(c21)v
′′(c22)

h′′(l21)

(w1)2
. (B.13)

Combining (B.7)–(B.13) yields

|A|

[
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∂s2

−
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+
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(w1)2
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(w2)2
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(w1)2
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(w2)2
+ α2(1− α)3(1 + r)v′′(c21)v
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(w1)2
.

(B.14)

The first and sixth terms on the right-hand side of (B.14) cancel. Factoring common
elements, grouping the second term with the fifth, and the third with the fourth yields
(A.41).

The analog of (A.52) for s2. An argument similar to the one used to establish (A.52)
may be used to show that (A.48) is equivalent to

u′(c12)

v′(c22)
+

(

ψ

1− α + ψ

)[

∂x21
∂s2

−
∂x22
∂s2

−
∂y21
∂s2

+
∂y22
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]

+

(

ψ

1− α + ψ

)

1

v′(c22)

[

1

w1

h′
(

y21
w1

)

−
1

w2

h′
(

y21
w2

)]

∂y21
∂s2

= (1 + r).

(B.15)

By part (iv) of Lemma 1, the second term on the left-hand side of (B.15) is positive.
In the discussion following (A.52), we have shown that the term in square brackets in
the third term is positive. It then follows from (B.10) that the third term is negative.
Because the second and third terms have opposite signs, the sign of the savings distortion
for the high skilled is indeterminate.
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