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Supplementary Appendix

Proof of Proposition 3 and 4: First, I explicitly define each function I give in the
sketch of the proof. First, the advisor’s expected life-time payoff from reporting r
given the strategy n and signal received is 1, under no commitment case, in general,
is given by

E(r,n)=1-— Z Pr(w|1)(T(r,n) — w)? + L.,0v(Az).

The additional payoff from truthfully reporting signal 1, i.e., » = 1 under ¢ is
T(¢) = d[p1yv(Ar) + do(1 — 7)v(Ao)]-

Here, the decision maker needs to form a belief about the advisor’s type when she
receives report 1, depending on the realized state. Let Ay and A; be such beliefs
given the realized state 0 and 1, respectively. It is clear that Ay > Ay.

Finally, the decision maker’s life-time expected payoff given the retention rule ¢
and the advisor’s strategy 7 is

(¢, n) =Pr(1,1) (= (T(L,n) = 1)* + g1 - V(A1) + (1 = 1) - V (A1)
+ Pr(1,0) (—F(17U)2 + o V(Ao) + (1 —¢o) -V (Al))
+Pr(0,1) (= (T(0,n) — 1)* + V(1))

+ Pr(0,0) (=L(0,n)* +V (1)),

It is straightforward to show that, for any 7, II(¢,n) is a decreasing function in ¢.
To characterize the set ®p, the condition (1) with specific T is

Op={¢: E0,1) < E(1,1) + [d17v(Ar) + do(1 — 7)v(Ao)]}-

The right hand side of the condition is clearly increasing in ¢g and ¢, so ®g is the
upper contour set of the negatively sloped line on the (¢, ¢1) plane, which is give by
the equality of the condition, as shown in the left panel of Figure 1. It is important
to note that F(0,1) depends on § while £(1,1) does not.

To characterize the set ®pg, since II(¢,n) is decreasing in both ¢g and ¢1, Ppgr
is the lower contour set of the negatively sloped line on the (¢g, ¢1) plane, which is
given by the equality of the condition I1(0,0) = II(¢, 1), as shown in the right panel
of Figure 1. I call the line representing the equality of these respective conditions
the boundary.

Computing with the functions defined above, the slope of the boundary of ®y is
_ (1=9)v(Ao) A=Ay [V (A1) =V (Ao]

yo(A1) A=A+ [V (A)-V (A
ranging terms shows that the boundary of ®pp is steeper than that of &g if and

, and the slope of the boundary of ®pg is — 7 Rear-

only if

(1= = A+ My)v(Ao) V(M) = V(Ay)]
< (1= Ay)o(A)[V (A1) = V(Ao)]



But since A; > Ag and (1 —7)(1 — A 4+ A7) < v(1 = A7) for v > 3, the right hand
side is larger. This proves Lemma 2 in the sketch of the proof.

To prove Proposition 3, realizing that I1(¢, -) is decreasing both in ¢y and ¢, the
optimal retention rule must be on the boundary of ®z. Using this result, I will show
that II(¢,-) is decreasing in ¢y on the boundary, which implies that the decision
maker is better off by reducing ¢, while increasing ¢; along the boundary. This
implies the statement of the proposition. If I evaluate I1(¢,n) at n =1,

1(g.1) = — 5611~ M+ M)V (h) = V(A(L 1)

— 5001~ AMIV(A) ~ V(AL O)]
+(1+ %(2 — M)V () + %V(l).
The boundary of @5 is given by
o _(1 _7)U(AO) E<071) _E(171)
=TT T T Ay

Substituting this equation into I1(¢, 1) and differentiating with respect to ¢y gives
Ol (¢o, 1) 1 {(1 — 7)v(Ao)

(1—A1+m)[V(Al)—V(Al)]—(1—m)[V(A1)—V(Ao]]-

Do 21 (M)
Since the term yv(A;) is positive, multiplying the above equation by yv(Ay), I get
. OI(¢y, 1 ,
&gn% = s1gn{(1 — (1 = A+ M)o(Ao) [V (A) = V(Ay)]
0

= (1= M)AV () = V(o) .

As shown before, the right hand side is negative, which completes the proof for
Proposition 3.

To prove Proposition 4, for the problem to be well-defined, assume that ®pg is
a nonempty proper subset of [0,1]%2. Moreover, if § = 0, & = [0,1]2. Therefore
for any (A1,7), if ¢ is sufficiently small,  is nonempty. However, as § increases,
the boundary of & shifts outward, which decreases the size of 2. To construct
the threshold value of 9, let ¢; denote the minimum of 1 and the intercept of the
boundary of ®r on ¢;-axis, that is,

4y = min { E(O’517)U_(AE1)(L 1) 1} |

and ¢y denote the maximum of 0 and the ¢p-coordinate of the boundary evaluated
at ¢ = 1, that is,

E0,1) — E(1,1) — dyv(Ay) }

G0 = max {0’ 51— )o(Ao)



Similarly, let ¢; denote the minimum of 1 and the intercept of the boundary of ®pp
on ¢p-axis, that is,

- % + 2+ M)V (A1) — V(1)
$1 = min { 0 M) VO - VA 1} ’

and ¢ denote the maximum of 0 and the ¢-coordinate of the boundary evaluated
at ¢ = 1, that is,

Fo = max {0 3 H =M+ M)V (A) + (1 4+ 20 = M)V (A1) — /\1V(1)}
o | (L= X9 VW) = V(A |

There are two cases: one is where ¢; < 1 and ¢y = 0, and the other is where ¢; = 1
and ¢ > 0. In the former, ), - is a unique solution to the equation & = ¢1. In the
latter, dy, 4 is a unique solution to the equation b = ®o- 0]



