Economics Bulletin

Appendix and Supplemental material not intended for publication-Round 2

Submission Number:EB-12-00633

Supplementary proofs

This paper is based on Chapter 1 of my Ph.D. thesis submitted to the University of Toronto. I thank Ettore Damiano and Li, Hao for their support. I also thank my advisor Shouyong Shi for detailed comments. **Submitted:** Aug 31 2012. **Revised:** December 21, 2012.

Supplementary Appendix

Proof of Proposition 3 and 4: First, I explicitly define each function I give in the sketch of the proof. First, the advisor's expected life-time payoff from reporting r given the strategy η and signal received is 1, under no commitment case, in general, is given by

$$E(r,\eta) = 1 - \sum_{\omega} \Pr(\omega|1)(\Gamma(r,\eta) - \omega)^2 + \mathbb{I}_{r,\omega} \delta v(\lambda_2).$$

The additional payoff from truthfully reporting signal 1, i.e., $\eta = 1$ under ϕ is

$$\Upsilon(\boldsymbol{\phi}) = \delta[\phi_1 \gamma v(\Lambda_1) + \phi_0(1-\gamma)v(\Lambda_0)].$$

Here, the decision maker needs to form a belief about the advisor's type when she receives report 1, depending on the realized state. Let Λ_0 and Λ_1 be such beliefs given the realized state 0 and 1, respectively. It is clear that $\Lambda_1 > \Lambda_0$.

Finally, the decision maker's life-time expected payoff given the retention rule ϕ and the advisor's strategy η is

$$\Pi(\phi, \eta) = \Pr(1, 1) \left(- (\Gamma(1, \eta) - 1)^2 + \phi_1 \cdot V(\Lambda_1) + (1 - \phi_1) \cdot V(\lambda_1) \right) + \Pr(1, 0) \left(-\Gamma(1, \eta)^2 + \phi_0 \cdot V(\Lambda_0) + (1 - \phi_0) \cdot V(\lambda_1) \right) + \Pr(0, 1) \left(- (\Gamma(0, \eta) - 1)^2 + V(1) \right) + \Pr(0, 0) \left(-\Gamma(0, \eta)^2 + V(1) \right),$$

It is straightforward to show that, for any η , $\Pi(\phi, \eta)$ is a decreasing function in ϕ .

To characterize the set Φ_R , the condition (1) with specific Υ is

$$\Phi_R \equiv \{ \phi : E(0,1) \le E(1,1) + \delta[\phi_1 \gamma v(\Lambda_1) + \phi_0(1-\gamma)v(\Lambda_0)] \}.$$

The right hand side of the condition is clearly increasing in ϕ_0 and ϕ_1 , so Φ_R is the upper contour set of the negatively sloped line on the (ϕ_0, ϕ_1) plane, which is give by the equality of the condition, as shown in the left panel of Figure 1. It is important to note that E(0, 1) depends on δ while E(1, 1) does not.

To characterize the set Φ_{PR} , since $\Pi(\phi, \eta)$ is decreasing in both ϕ_0 and ϕ_1 , Φ_{PR} is the lower contour set of the negatively sloped line on the (ϕ_0, ϕ_1) plane, which is given by the equality of the condition $\Pi(\mathbf{0}, 0) = \Pi(\phi, 1)$, as shown in the right panel of Figure 1. I call the line representing the equality of these respective conditions the *boundary*.

Computing with the functions defined above, the slope of the boundary of Φ_R is $-\frac{(1-\gamma)v(\Lambda_0)}{\gamma v(\Lambda_1)}$, and the slope of the boundary of Φ_{PR} is $-\frac{(1-\lambda_1\gamma)[V(\lambda_1)-V(\Lambda_0]}{(1-\lambda_1+\lambda_1\gamma)[V(\lambda_1)-V(\Lambda_1]]}$. Rearranging terms shows that the boundary of Φ_{PR} is steeper than that of Φ_R if and only if

$$(1 - \gamma)(1 - \lambda_1 + \lambda_1\gamma)v(\Lambda_0)[V(\lambda_1) - V(\Lambda_1)]$$

< $\gamma(1 - \lambda_1\gamma)v(\Lambda_1)[V(\lambda_1) - V(\Lambda_0)]$

But since $\Lambda_1 > \Lambda_0$ and $(1 - \gamma)(1 - \lambda_1 + \lambda_1 \gamma) < \gamma(1 - \lambda_1 \gamma)$ for $\gamma > \frac{1}{2}$, the right hand side is larger. This proves Lemma 2 in the sketch of the proof.

To prove Proposition 3, realizing that $\Pi(\phi, \cdot)$ is decreasing both in ϕ_0 and ϕ_1 , the optimal retention rule must be on the boundary of Φ_R . Using this result, I will show that $\Pi(\phi, \cdot)$ is decreasing in ϕ_0 on the boundary, which implies that the decision maker is better off by reducing ϕ_0 while increasing ϕ_1 along the boundary. This implies the statement of the proposition. If I evaluate $\Pi(\phi, \eta)$ at $\eta = 1$,

$$\Pi(\phi, 1) = -\frac{1}{2}\phi_1(1 - \lambda_1 + \lambda_1\gamma)[V(\lambda_1) - V(\Lambda(1, 1))] -\frac{1}{2}\phi_0(1 - \lambda_1\gamma)[V(\lambda_1) - V(\Lambda(1, 0))] + (1 + \frac{1}{2}(2 - \lambda_1))V(\lambda_1) + \frac{\lambda_1}{2}V(1).$$

The boundary of Φ_R is given by

$$\phi_1 = -\frac{(1-\gamma)v(\Lambda_0)}{\gamma v(\Lambda_1)}\phi_0 + \frac{E(0,1) - E(1,1)}{\delta v(\Lambda_1)}$$

Substituting this equation into $\Pi(\phi, 1)$ and differentiating with respect to ϕ_0 gives

$$\frac{\partial \Pi(\phi_0, 1)}{\partial \phi_0} = \frac{1}{2} \left[\frac{(1-\gamma)v(\Lambda_0)}{\gamma v(\Lambda_1)} (1-\lambda_1+\lambda_1\gamma) [V(\lambda_1)-V(\Lambda_1)] - (1-\lambda_1\gamma) [V(\lambda_1)-V(\Lambda_0)] \right].$$

Since the term $\gamma v(\Lambda_1)$ is positive, multiplying the above equation by $\gamma v(\Lambda_1)$, I get

$$\operatorname{sign} \frac{\partial \Pi(\phi_0, 1)}{\partial \phi_0} = \operatorname{sign} \Big\{ (1 - \gamma)(1 - \lambda_1 + \lambda_1 \gamma) v(\Lambda_0) [V(\lambda_1) - V(\Lambda_1)] \\ - \gamma (1 - \lambda_1 \gamma) v(\Lambda_1) [V(\lambda_1) - V(\Lambda_0)] \Big\}.$$

As shown before, the right hand side is negative, which completes the proof for Proposition 3.

To prove Proposition 4, for the problem to be well-defined, assume that Φ_{PR} is a nonempty proper subset of $[0,1]^2$. Moreover, if $\delta = \overline{\delta}$, $\Phi_R = [0,1]^2$. Therefore for any (λ_1, γ) , if δ is sufficiently small, Ω is nonempty. However, as δ increases, the boundary of Φ_R shifts outward, which decreases the size of Ω . To construct the threshold value of δ , let ϕ_1 denote the minimum of 1 and the intercept of the boundary of Φ_R on ϕ_1 -axis, that is,

$$\underline{\phi}_1 \equiv \min\left\{\frac{E(0,1) - E(1,1)}{\delta\gamma v(\Lambda_1)}, 1\right\}.$$

and ϕ_0 denote the maximum of 0 and the ϕ_0 -coordinate of the boundary evaluated at $\phi_1 = 1$, that is,

$$\phi_0 \equiv \max\left\{0, \frac{E(0,1) - E(1,1) - \delta\gamma v(\Lambda_1)}{\delta(1-\gamma)v(\Lambda_0)}\right\}.$$

Similarly, let $\bar{\phi}_1$ denote the minimum of 1 and the intercept of the boundary of Φ_{PR} on ϕ_1 -axis, that is,

$$\bar{\phi}_1 \equiv \min\left\{\frac{\frac{1}{2} + (2 + \lambda_1)V(\lambda_1) - \lambda_1V(1)}{(1 - \lambda_1 + \lambda_1\gamma)\left[V(\lambda_1) - V(\Lambda_1)\right]}, 1\right\},\$$

and $\bar{\phi}_0$ denote the maximum of 0 and the ϕ_0 -coordinate of the boundary evaluated at $\phi_1 = 1$, that is,

$$\bar{\phi}_0 \equiv \max\left\{0, \frac{\frac{1}{2} + (1 - \lambda_1 + \lambda_1 \gamma) V(\Lambda_1) + (1 + 2\lambda_1 - \lambda_1 \gamma) V(\lambda_1) - \lambda_1 V(1)}{(1 - \lambda_1 \gamma) \left[V(\lambda_1) - V(\Lambda_0)\right]}\right\}.$$

There are two cases: one is where $\bar{\phi}_1 < 1$ and $\bar{\phi}_0 = 0$, and the other is where $\bar{\phi}_1 = 1$ and $\bar{\phi}_0 > 0$. In the former, $\delta_{\lambda_1,\gamma}$ is a unique solution to the equation $\bar{\phi}_1 = \underline{\phi}_1$. In the latter, $\delta_{\lambda_1,\gamma}$ is a unique solution to the equation $\bar{\phi}_0 = \underline{\phi}_0$.