


Supplementary Appendix

Proof of Proposition 3 and 4: First, I explicitly define each function I give in the

sketch of the proof. First, the advisor’s expected life-time payoff from reporting r

given the strategy η and signal received is 1, under no commitment case, in general,

is given by

E(r, η) = 1−
∑
ω

Pr(ω|1)(Γ(r, η)− ω)2 + Ir,ωδv(λ2).

The additional payoff from truthfully reporting signal 1, i.e., η = 1 under φ is

Υ(φ) = δ[φ1γv(Λ1) + φ0(1− γ)v(Λ0)].

Here, the decision maker needs to form a belief about the advisor’s type when she

receives report 1, depending on the realized state. Let Λ0 and Λ1 be such beliefs

given the realized state 0 and 1, respectively. It is clear that Λ1 > Λ0.

Finally, the decision maker’s life-time expected payoff given the retention rule φ

and the advisor’s strategy η is

Π(φ, η) = Pr(1, 1)
(
− (Γ(1, η)− 1)2 + φ1 · V (Λ1) + (1− φ1) · V (λ1)

)
+ Pr(1, 0)

(
−Γ(1, η)2 + φ0 · V (Λ0) + (1− φ0) · V (λ1)

)
+ Pr(0, 1)

(
− (Γ(0, η)− 1)2 + V (1)

)
+ Pr(0, 0)

(
−Γ(0, η)2 + V (1)

)
,

It is straightforward to show that, for any η, Π(φ, η) is a decreasing function in φ.

To characterize the set ΦR, the condition (1) with specific Υ is

ΦR ≡ {φ : E(0, 1) ≤ E(1, 1) + δ[φ1γv(Λ1) + φ0(1− γ)v(Λ0)]}.

The right hand side of the condition is clearly increasing in φ0 and φ1, so ΦR is the

upper contour set of the negatively sloped line on the (φ0, φ1) plane, which is give by

the equality of the condition, as shown in the left panel of Figure 1. It is important

to note that E(0, 1) depends on δ while E(1, 1) does not.

To characterize the set ΦPR, since Π(φ, η) is decreasing in both φ0 and φ1, ΦPR

is the lower contour set of the negatively sloped line on the (φ0, φ1) plane, which is

given by the equality of the condition Π(0, 0) = Π(φ, 1), as shown in the right panel

of Figure 1. I call the line representing the equality of these respective conditions

the boundary.

Computing with the functions defined above, the slope of the boundary of ΦR is

− (1−γ)v(Λ0)
γv(Λ1)

, and the slope of the boundary of ΦPR is − (1−λ1γ)[V (λ1)−V (Λ0]
(1−λ1+λ1γ)[V (λ1)−V (Λ1]

. Rear-

ranging terms shows that the boundary of ΦPR is steeper than that of ΦR if and

only if

(1− γ)(1− λ1 + λ1γ)v(Λ0)[V (λ1)− V (Λ1)]

< γ(1− λ1γ)v(Λ1)[V (λ1)− V (Λ0)]



But since Λ1 > Λ0 and (1− γ)(1− λ1 + λ1γ) < γ(1− λ1γ) for γ > 1
2
, the right hand

side is larger. This proves Lemma 2 in the sketch of the proof.

To prove Proposition 3, realizing that Π(φ, ·) is decreasing both in φ0 and φ1, the

optimal retention rule must be on the boundary of ΦR. Using this result, I will show

that Π(φ, ·) is decreasing in φ0 on the boundary, which implies that the decision

maker is better off by reducing φ0 while increasing φ1 along the boundary. This

implies the statement of the proposition. If I evaluate Π(φ, η) at η = 1,

Π(φ, 1) =− 1

2
φ1(1− λ1 + λ1γ)[V (λ1)− V (Λ(1, 1)]

− 1

2
φ0(1− λ1γ)[V (λ1)− V (Λ(1, 0)]

+ (1 +
1

2
(2− λ1))V (λ1) +

λ1

2
V (1).

The boundary of ΦR is given by

φ1 = −(1− γ)v(Λ0)

γv(Λ1)
φ0 +

E(0, 1)− E(1, 1)

δv(Λ1)
.

Substituting this equation into Π(φ, 1) and differentiating with respect to φ0 gives

∂Π(φ0, 1)

∂φ0

=
1

2

[
(1− γ)v(Λ0)

γv(Λ1)
(1−λ1+λ1γ)[V (λ1)−V (Λ1)]−(1−λ1γ)[V (λ1)−V (Λ0]

]
.

Since the term γv(Λ1) is positive, multiplying the above equation by γv(Λ1), I get

sign
∂Π(φ0, 1)

∂φ0

= sign
{

(1− γ)(1− λ1 + λ1γ)v(Λ0)[V (λ1)− V (Λ1)]

− γ(1− λ1γ)v(Λ1)[V (λ1)− V (Λ0)]
}
.

As shown before, the right hand side is negative, which completes the proof for

Proposition 3.

To prove Proposition 4, for the problem to be well-defined, assume that ΦPR is

a nonempty proper subset of [0, 1]2. Moreover, if δ = δ̄, ΦR = [0, 1]2. Therefore

for any (λ1, γ), if δ is sufficiently small, Ω is nonempty. However, as δ increases,

the boundary of ΦR shifts outward, which decreases the size of Ω. To construct

the threshold value of δ, let
¯
φ1 denote the minimum of 1 and the intercept of the

boundary of ΦR on φ1-axis, that is,

¯
φ1 ≡ min

{
E(0, 1)− E(1, 1)

δγv(Λ1)
, 1

}
.

and
¯
φ0 denote the maximum of 0 and the φ0-coordinate of the boundary evaluated

at φ1 = 1, that is,

¯
φ0 ≡ max

{
0,
E(0, 1)− E(1, 1)− δγv(Λ1)

δ(1− γ)v(Λ0)

}
.



Similarly, let φ̄1 denote the minimum of 1 and the intercept of the boundary of ΦPR

on φ1-axis, that is,

φ̄1 ≡ min

{ 1
2

+ (2 + λ1)V (λ1)− λ1V (1)

(1− λ1 + λ1γ) [V (λ1)− V (Λ1)]
, 1

}
,

and φ̄0 denote the maximum of 0 and the φ0-coordinate of the boundary evaluated

at φ1 = 1, that is,

φ̄0 ≡ max

{
0,

1
2

+ (1− λ1 + λ1γ)V (Λ1) + (1 + 2λ1 − λ1γ)V (λ1)− λ1V (1)

(1− λ1γ) [V (λ1)− V (Λ0)]

}
.

There are two cases: one is where φ̄1 < 1 and φ̄0 = 0, and the other is where φ̄1 = 1

and φ̄0 > 0. In the former, δλ1,γ is a unique solution to the equation φ̄1 =
¯
φ1. In the

latter, δλ1,γ is a unique solution to the equation φ̄0 =
¯
φ0. �


