Appendix and Supplemental material not intended for publication-Round 2

Submission Number:EB-12-00633

Supplementary proofs

Supplementary Appendix

Proof of Proposition 3 and 4: First, I explicitly define each function I give in the sketch of the proof. First, the advisor's expected life-time payoff from reporting r given the strategy η and signal received is 1 , under no commitment case, in general, is given by

$$
E(r, \eta)=1-\sum_{\omega} \operatorname{Pr}(\omega \mid 1)(\Gamma(r, \eta)-\omega)^{2}+\mathbb{I}_{r, \omega} \delta v\left(\lambda_{2}\right) .
$$

The additional payoff from truthfully reporting signal 1, i.e., $\eta=1$ under ϕ is

$$
\Upsilon(\phi)=\delta\left[\phi_{1} \gamma v\left(\Lambda_{1}\right)+\phi_{0}(1-\gamma) v\left(\Lambda_{0}\right)\right] .
$$

Here, the decision maker needs to form a belief about the advisor's type when she receives report 1, depending on the realized state. Let Λ_{0} and Λ_{1} be such beliefs given the realized state 0 and 1 , respectively. It is clear that $\Lambda_{1}>\Lambda_{0}$.

Finally, the decision maker's life-time expected payoff given the retention rule ϕ and the advisor's strategy η is

$$
\begin{aligned}
\Pi(\phi, \eta)= & \operatorname{Pr}(1,1)\left(-(\Gamma(1, \eta)-1)^{2}+\phi_{1} \cdot V\left(\Lambda_{1}\right)+\left(1-\phi_{1}\right) \cdot V\left(\lambda_{1}\right)\right) \\
& +\operatorname{Pr}(1,0)\left(-\Gamma(1, \eta)^{2}+\phi_{0} \cdot V\left(\Lambda_{0}\right)+\left(1-\phi_{0}\right) \cdot V\left(\lambda_{1}\right)\right) \\
& +\operatorname{Pr}(0,1)\left(-(\Gamma(0, \eta)-1)^{2}+V(1)\right) \\
& +\operatorname{Pr}(0,0)\left(-\Gamma(0, \eta)^{2}+V(1)\right),
\end{aligned}
$$

It is straightforward to show that, for any $\eta, \Pi(\phi, \eta)$ is a decreasing function in $\boldsymbol{\phi}$.
To characterize the set Φ_{R}, the condition (1) with specific Υ is

$$
\Phi_{R} \equiv\left\{\phi: E(0,1) \leq E(1,1)+\delta\left[\phi_{1} \gamma v\left(\Lambda_{1}\right)+\phi_{0}(1-\gamma) v\left(\Lambda_{0}\right)\right]\right\} .
$$

The right hand side of the condition is clearly increasing in ϕ_{0} and ϕ_{1}, so Φ_{R} is the upper contour set of the negatively sloped line on the (ϕ_{0}, ϕ_{1}) plane, which is give by the equality of the condition, as shown in the left panel of Figure 1. It is important to note that $E(0,1)$ depends on δ while $E(1,1)$ does not.

To characterize the set $\Phi_{P R}$, since $\Pi(\phi, \eta)$ is decreasing in both ϕ_{0} and $\phi_{1}, \Phi_{P R}$ is the lower contour set of the negatively sloped line on the $\left(\phi_{0}, \phi_{1}\right)$ plane, which is given by the equality of the condition $\Pi(\mathbf{0}, 0)=\Pi(\boldsymbol{\phi}, 1)$, as shown in the right panel of Figure 1. I call the line representing the equality of these respective conditions the boundary.

Computing with the functions defined above, the slope of the boundary of Φ_{R} is $-\frac{(1-\gamma) v\left(\Lambda_{0}\right)}{\gamma v\left(\Lambda_{1}\right)}$, and the slope of the boundary of $\Phi_{P R}$ is $-\frac{\left(1-\lambda_{1} \gamma\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{0}\right]\right.}{\left(1-\lambda_{1}+\lambda_{1} \gamma\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{1}\right]\right.}$. Rearranging terms shows that the boundary of $\Phi_{P R}$ is steeper than that of Φ_{R} if and only if

$$
\begin{aligned}
& (1-\gamma)\left(1-\lambda_{1}+\lambda_{1} \gamma\right) v\left(\Lambda_{0}\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{1}\right)\right] \\
< & \gamma\left(1-\lambda_{1} \gamma\right) v\left(\Lambda_{1}\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{0}\right)\right]
\end{aligned}
$$

But since $\Lambda_{1}>\Lambda_{0}$ and $(1-\gamma)\left(1-\lambda_{1}+\lambda_{1} \gamma\right)<\gamma\left(1-\lambda_{1} \gamma\right)$ for $\gamma>\frac{1}{2}$, the right hand side is larger. This proves Lemma 2 in the sketch of the proof.

To prove Proposition 3, realizing that $\Pi(\boldsymbol{\phi}, \cdot)$ is decreasing both in ϕ_{0} and ϕ_{1}, the optimal retention rule must be on the boundary of Φ_{R}. Using this result, I will show that $\Pi(\phi, \cdot)$ is decreasing in ϕ_{0} on the boundary, which implies that the decision maker is better off by reducing ϕ_{0} while increasing ϕ_{1} along the boundary. This implies the statement of the proposition. If I evaluate $\Pi(\phi, \eta)$ at $\eta=1$,

$$
\begin{aligned}
\Pi(\phi, 1)= & -\frac{1}{2} \phi_{1}\left(1-\lambda_{1}+\lambda_{1} \gamma\right)\left[V\left(\lambda_{1}\right)-V(\Lambda(1,1)]\right. \\
& -\frac{1}{2} \phi_{0}\left(1-\lambda_{1} \gamma\right)\left[V\left(\lambda_{1}\right)-V(\Lambda(1,0)]\right. \\
& +\left(1+\frac{1}{2}\left(2-\lambda_{1}\right)\right) V\left(\lambda_{1}\right)+\frac{\lambda_{1}}{2} V(1) .
\end{aligned}
$$

The boundary of Φ_{R} is given by

$$
\phi_{1}=-\frac{(1-\gamma) v\left(\Lambda_{0}\right)}{\gamma v\left(\Lambda_{1}\right)} \phi_{0}+\frac{E(0,1)-E(1,1)}{\delta v\left(\Lambda_{1}\right)} .
$$

Substituting this equation into $\Pi(\boldsymbol{\phi}, 1)$ and differentiating with respect to ϕ_{0} gives

$$
\frac{\partial \Pi\left(\phi_{0}, 1\right)}{\partial \phi_{0}}=\frac{1}{2}\left[\frac{(1-\gamma) v\left(\Lambda_{0}\right)}{\gamma v\left(\Lambda_{1}\right)}\left(1-\lambda_{1}+\lambda_{1} \gamma\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{1}\right)\right]-\left(1-\lambda_{1} \gamma\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{0}\right]\right] .\right.
$$

Since the term $\gamma v\left(\Lambda_{1}\right)$ is positive, multiplying the above equation by $\gamma v\left(\Lambda_{1}\right)$, I get

$$
\begin{aligned}
\operatorname{sign} \frac{\partial \Pi\left(\phi_{0}, 1\right)}{\partial \phi_{0}}=\operatorname{sign}\{ & (1-\gamma)\left(1-\lambda_{1}+\lambda_{1} \gamma\right) v\left(\Lambda_{0}\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{1}\right)\right] \\
& \left.-\gamma\left(1-\lambda_{1} \gamma\right) v\left(\Lambda_{1}\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{0}\right)\right]\right\}
\end{aligned}
$$

As shown before, the right hand side is negative, which completes the proof for Proposition 3.

To prove Proposition 4, for the problem to be well-defined, assume that $\Phi_{P R}$ is a nonempty proper subset of $[0,1]^{2}$. Moreover, if $\delta=\bar{\delta}, \Phi_{R}=[0,1]^{2}$. Therefore for any $\left(\lambda_{1}, \gamma\right)$, if δ is sufficiently small, Ω is nonempty. However, as δ increases, the boundary of Φ_{R} shifts outward, which decreases the size of Ω. To construct the threshold value of δ, let $\underline{\phi}_{1}$ denote the minimum of 1 and the intercept of the boundary of Φ_{R} on ϕ_{1}-axis, that is,

$$
\phi_{1} \equiv \min \left\{\frac{E(0,1)-E(1,1)}{\delta \gamma v\left(\Lambda_{1}\right)}, 1\right\} .
$$

and ϕ_{0} denote the maximum of 0 and the ϕ_{0}-coordinate of the boundary evaluated at $\phi_{1}=1$, that is,

$$
\underline{\phi}_{0} \equiv \max \left\{0, \frac{E(0,1)-E(1,1)-\delta \gamma v\left(\Lambda_{1}\right)}{\delta(1-\gamma) v\left(\Lambda_{0}\right)}\right\} .
$$

Similarly, let $\bar{\phi}_{1}$ denote the minimum of 1 and the intercept of the boundary of $\Phi_{P R}$ on ϕ_{1}-axis, that is,

$$
\bar{\phi}_{1} \equiv \min \left\{\frac{\frac{1}{2}+\left(2+\lambda_{1}\right) V\left(\lambda_{1}\right)-\lambda_{1} V(1)}{\left(1-\lambda_{1}+\lambda_{1} \gamma\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{1}\right)\right]}, 1\right\}
$$

and $\bar{\phi}_{0}$ denote the maximum of 0 and the ϕ_{0}-coordinate of the boundary evaluated at $\phi_{1}=1$, that is,

$$
\bar{\phi}_{0} \equiv \max \left\{0, \frac{\frac{1}{2}+\left(1-\lambda_{1}+\lambda_{1} \gamma\right) V\left(\Lambda_{1}\right)+\left(1+2 \lambda_{1}-\lambda_{1} \gamma\right) V\left(\lambda_{1}\right)-\lambda_{1} V(1)}{\left(1-\lambda_{1} \gamma\right)\left[V\left(\lambda_{1}\right)-V\left(\Lambda_{0}\right)\right]}\right\}
$$

There are two cases: one is where $\bar{\phi}_{1}<1$ and $\bar{\phi}_{0}=0$, and the other is where $\bar{\phi}_{1}=1$ and $\bar{\phi}_{0}>0$. In the former, $\delta_{\lambda_{1}, \gamma}$ is a unique solution to the equation $\bar{\phi}_{1}=\phi_{1}$. In the latter, $\delta_{\lambda_{1}, \gamma}$ is a unique solution to the equation $\bar{\phi}_{0}=\underline{\phi}_{0}$.

