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Mathematical Appendix

“How to Add Apples and Pears: Non-Symmetric Nash
Bargaining and the Generalized Joint Surplus”

Samuel Danthine and Noemi Navarro

Lemma 1 Let the functions a and b be concave in R™. Then the function f is
concave in a(R™).

Proof of Lemma 1. We show that for any u and i in a(R™) and any ¢ in
[0, 1] we have that f(tu+ (1 —t)i) > tf(u)+ (1 —1t)f(ii). Let us denote by x(u)
and x(i7) the solutions of the constraint maximization problem in (2) where
the level of a(x) is fixed equal to u and i, respectively. Since the constraint
is binding, it has to be that

a(x(u)) = u and a(x(it)) = .
Recall that function a is concave, which means that
tu+ (1 —t)i = ta(x(u)) + (1 — Ha(x(@)) < a (tx(u) + (1 — t)x(i1)) .

This indicates that the vector tx(u) + (1 — t)x(i7) in R™ belongs to the set {x €
R"™ such that b(x) > tu+ (1 —1t)ii}, or, alternatively, satisfies the constraint in
the maximization problem (2) where the utility level of a is being fixed at
tu+ (1 —t)ii. Hence, f(tu + (1 —t)it) > b (tx(u) + (1 — t)x(i7)) as it is the value
function of the constraint maximization problem (2) where the utility level
of a is being fixed at fu + (1 — t)ii. Given that b is also a concave function,

b (tx(u) + (1 = t)x(i)) > tb(x(u)) + (1 — H)b(x(i1)) = tf(u) + (1 — t) f (D),

as, by definition, x(1) and x(#i) maximize b subject to the corresponding
constraints, i.e., b(x(1)) = f(u) and b(x(i)) = f(i1). Hence, f(tu + (1 — t)ii) >
tf(u)+ (1 —t)f(ii).m

Lemma 2 Let f(u) be, as defined before, the value function of the maximization
problem in (2), with u € a(R™). If f is twice differentiable with f'(u) < 0 and

f""(u) < Oforall u, then the generalized Nash product, N(u) = (u — da)* (f(u) — dB)l_“

as a function of u, is strictly concave in a(R"™).



Proof of Lemma 2. Taking the derivative of N(u) with respect to u,
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N'(u) = N(u)[

and
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Rearranging terms,
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Since f'(u) <0, @ € (0,1), and f”(u) < 0 we know that N”(1) < 0. Hence,
the generalized Nash product is a strictly concave function in u. m

Proof of Proposition 1

By Lemma 2, if f”(u) < 0 then any u" satisfying the first-order condition
of the maximization of N(u) is a maximizer (and not a minimizer). Fur-
thermore, we know by essentiality of S that the optimal solution u* to the
maximization problem satisfies that u* > d4 and f(u*) > dp, and that it
belongs to the frontier F. These two aspects imply two things. First, the
tirst order condition of the maximization problem has to be satisfied with
equality. Hence, u* is a non-symmetric Nash bargaining solution if and
only if u* solves:
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Second, since the non-symmetric Nash bargaining solution belongs to

the frontier F we know there is an x* € R™ such that u* = a(x*) and f(u*) =
b(x*). Recall then that, for any issue i, f'(u*) = Zg;, where a(x*) = u* > dy,
given that x* solves the maximization problem in (2), and by the envelope
theorem, the derivative of the value function with respect to u, whenever
it exists, is equal to the derivative of the Lagrangian function associated to

the problem in (2) with respect to u. With all this we can rewrite the first

(' —da)* (Fu) — dg)' ™ = 0. (A1)




order condition in (A1) as:

a;(x")
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+(1-a); bix') 0, (A2

() —dg) -
for any issue i. By essentiality of our bargaining problem there is at least
one x € R™ such that a(x) > d4 and b(x) > dp. This implies that u* > d4 and
f(u*) > dp, otherwise u* cannot maximize the generalized Nash product.
All this indicates that equation (A2) is true if and only if:

aa;(x") (b(x") = dp) + (1 — a) bi(x") (a(x") — da) =0,

for any issue i. Rearranging terms, we obtain the formula in Proposition
1. m



