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Online Appendix

A Identification of the Lewbel (2012) Estimator

A.1 DMore details on identification conditions

To clarify the requirements for identification, we decompose the two error terms as follows:

e = e+ (1)

U = e+ v

where the correlation between u and € is captured by the correlated component ey, e3 so that cov(eq, ea|W) #
0 whenever pia = cov(e,u|W) # 0, while cov(vy, v2|W) = 0 and cov(e;,v;|W) = 0 for all 4,5 = 1,2.1 De-

note zo = Zo — o to simplify notation. Then, the third condition requires

E(zue) = E(z2E(us|W))
= E(z9cov(u,e|W))

= E(zcov(ey,ea|W)) 2)
= E(22p12(22)01(22)02(22)) =0

where 0; = var(e;).

To satisfy this condition, the most plausible way is to have pi2, 01 and o9 as constants not depending
on zo and taken out of the expectation. Since the covariance between u and & depends only on the
correlated components e; and es, the lack of dependence of the covariance between u and € on 29 means
that the covariance between the correlated components e; and eg should not depend on zo, which also
means that there should not be heteroscedasticity in these correlated components. Therefore, the required
heteroscedasticity should only be associated to the uncorrelated component vy in order to satisfy the third
and fourth conditions.? Another possible way is to have p12(22)01(22)02(22) a function of even-ordered
polynomial terms of z5 and so the expectation is an odd-ordered polynomial terms of zo. If 25 is symmetric
along zero, this will give a zero expectation. But this is not straightforward how to justify this case in

empirical applications, so I do not focus on this case.

A.2 Common Factor Model

In Lewbel (2012), a common factor model is used as an example. This can be represented by the setting
of this paper with e; = a160 and ey = a96 for some a1, @s. When 6 is heteroscedastic in variables in Zs,

the Lewbel estimator is also biased since 0; = a;jo7(22).

'The common factor example in Lewbel (2012) is a special case where e; = @10 and ez = @20 for some a1, as.
2This point is only explicit in Lewbel (2012) when he discusses the single factor model, where he states that z2 has to be
uncorrelated to the square of the common factor, but correlated to square of va.



Similarly, the identification condition is violated if the common factor has loadings that vary with 2o,

or equivalently, the heteroscedasticity can be expressed in terms of factor loading,

E(zE(e1e2|W)) = E(22(a1(22)0)(a2(22)0))
= E(z0a1(22)a2(22) E(6°|22)) # 0 (3)

When 6 is homoscedastic, with F(6?|z2) = 03 not depending on 29, the term E(22a1(22)az(z2)) still

involves moments of zo appear in the loadings.

A.3 A Simplified Case

To illustrate the conditions required for consistency of the Lewbel (2012) estimator, here I consider a
simplified case where there is no covariates X, and y; and yo are mean zero and the heteroscedasticity
related variable Z5 is a binary variable. We may consider y; and ys as their residuals of the regression on

other covariates. The model can be expressed in terms of variables with mean zero

y1 = y2B+e (4)

Y2 = u

Then, the probability limit of the Lewbel’s IV estimator, using (Z3 — uo)u as instruments, is given by

Bp = cov((Z2 — p2)u,y1) _ E((Z2 — po)uyr) _ E((Z2 — p2) E(uy1|Z2)) (5)
cov((Zo — p2)u,y2)  E((Z2 — p2)uy2)  E((Z2 — p2) E(uy2|Z2))

where s = E(Z3). Since Zs is a binary variable, ps = E(22) = Pr(Z2 = 1). Denoting this probability as

p, we have

E(Zy — p2)E(uyi|Z2)) = p(1 —p)E(uyi|ze = 1) + (1 — p)(—p)E(uy1|Z2 = 0) (6)
= p(1—p)[E(uyi|z2 = 1) — E(uy1|Z> = 0)]

Similarly, the denominator can also be expressed as

E((Z2 — p2)E(uys|Z2)) p(1 —p) [E(uye|Zs = 1) — E(uy2|Z2 = 0)]

= Var(u|Z1 = 1) — Var(u|Z1 = 0) (7)

since u = 2.
As a result, the Lewbel estimator has a probability limit
E(uyi1|Zy =1) — E(uy1|Z2 =0)  E(uy1|Z2 = 1) — E(uy1|Z2 = 0)

Prs = E(uya)Zy = 1) — B(uya|Z2 = 0)  Var(u|Zy = 1) — Var(u|Z; = 0) (8)

which is the ratio of the differences in covariance between two groups for u and y and difference in variance



of u between the two groups defined by Zy. Further, putting y; = y25 + €, the numerator becomes

E(uyi|Z2 =1) — E(uy1|Z2 =0) = [E(uyz2|Z2 =1) — E(uyz2|Z2 = 0)|8 (9)
+E(ue|Zy = 1) — E(ue|Zy = 0)
= [Var(ulZy =1)—Var(u|Z; =0)]5
+E(e1e2|Zs = 1) — E(e1ea|Z2 = 0)

The last equality holds because conditional on Zs, cov(vi,v2) = 0 and cov(e;,v;) = 0 for all 4,j = 1,2.

On the other hand, the denominator becomes

Var(u|Zy =1) = Var(u|Z1 =0) = Var(ex+v2|Z2 =1) — Var(ea + v2|Z2 = 0)
= [Var(es|Zos =1) — Var(ez|Zs = 0)] (10)
+[Var(ve|Z1 = 1) — Var(ve|Z = 0)]
= [Var(ea|Zo =1) — Var(ez|Zs = 0)]

If we require the covariance between e; and ey to be independent of Zs, then it is very unlikely we can
have heteroscedasticity in eq itself. Therefore, the difference in variance has to be driven by any difference
in conditional variance in vq.
Therefore, the probability limit can be expressed as
E(uyi|Z2 = 1) — E(uy1|Z2 = 0)

fre = Var(u|Zy =1) — Var(u|Z, = 0) =6+

E(6162’ZQ = 1) — E(€1€2‘Z2 = 0)
Var(ve|Zs = 1) — Var(va|Zy = 0)

(11)

This expression shows that for counsistency of the estimator, the variances of the first-stage error u for the
two groups defined by Zs have to be different, with the difference driven by the idiosyncratic component
v9, while at the same time, the covariances between the correlated components e; and ey have to be the
same for the two groups.

We may also assess the direction of bias with (11) if there is a violation of the identification condition.

The numerator of the bias is given by
E(eie2|Zy = 1) — E(ere2|Zo =0) = p10¢;,10ey,1 — P20¢1,00e5,0 (12)

where the second subscript represents the group defined by value of z3. The denominator of the bias is

given by

Var(u|Zy =1) = Var(u|Zy =0) = Var(ex+v2|Z2 =1) — Var(ea + v2|Z2 = 0)
= (02,1 = 02,0) + (05,1 = 05,0) (13)
As a whole, the sign of the bias depends on how the variances of correlated and idiosyncratic components
are correlated to z. Under the assumptions of the Klein and Vella (2010) estimator, that p is a constant,

then the numerator of the bias term becomes p(0¢, 10¢,,1 — Te;,00¢,,0) and if the standard deviation of e;



and ey are both correlated to Zs in the same direction, then the sign of the numerator of bias is given by
the sign of the product of p and the correlation between o, and Z;. However, since e and v are under the
same form of heteroscedasticity, the sign of the denominator is given by the sign of correlation between o,
and Z5. As a result, in this case, the bias is of the same sign as p. Since the sign of p is also the sign of bias
for the OLS estimator, the bias is then in the same direction as the OLS. However, if the heteroscedasticity
in e; are correlated to Zs in a different direction from that for eo, the sign of bias will then depend on the

resulting sign of the difference in (12). Therefore in general, we cannot sign the direction of bias.

B Details of Implementation for Klein and Vella (2010) Estimator

Following Farre, Klein and Vella (2013), the two-step approach in this paper is estimated in the following
steps:

1. Use OLS on the first-stage regression and obtain the residuals .

2. Regress In(42) on X (and Z if available) and obtain the coefficient 4,. Construct S, = exp(Z2dy).
3

3. To improve efficiency, we may repeat step 1 and 2 using FGLS with S, obtained above.

4. Estimate non-linearly the parameters 31, 82, p and 6. by choosing 81, B2 and p to minimize

n Vexp(Zh;0.)
> |y — Bryzi — XiB2 — p | 2 (14)
i=1 exp(Z5;04)

and for each set of (B1,82,p), we regress In(¢?) on X, where &; = y1; — f1y2i — X!z to obtain S

Then, put back into the expression (14) to calculate the value of the objective function. *

5. Use the minimized value of 81 and 32 to obtain the residual term, calculate 5. and to construct the
control function term. Then perform an OLS by regressing y1; on yo;, X; and the control function
(\/exp(X{é;)/\/e:cp(X{SuO 1; to obtain the final estimate.’

In this paper, this estimator is called the two-step estimator because we estimate the first-stage equation
first and then the structural equation separately. Although not considered by Klein and Vella (2010), it
is straight-forward to include excluded instruments Z in steps 1 and 2 above. One may also freely include

this Z in the variance functions for the two error terms.

3The constant term is not used in constructing S, here, because it is not consistently estimated by the log-linear re-
gression, while the functional form assumption implies that the constant term is multiplicative, allowing the constant terms
to be combined with p. We follow this functional form because it allows for log linear regression in estimation, which is
straightforward and stable.

“The constant term is again omitted and combined with p. A computational point to note is that, since some residuals
are likely to be close to zero, I find that the calculated log squared residuals are rather sensitive to the parameter values and
the objective function is not smooth. I smooth the objective function by using In(€;> +1/n) to avoid logarithm of very small
numbers.

5This step is recommended by Farre, Klein and Vella (2013).



C Implementation of Lewbel (2012) Estimator

Originally, T use the ivlewbel package in R to perform the estimation of the original Lewbel (2012)
estimator. However, an issue is discovered in the process of the simulation exercises for this paper. The
issue is that, using the two commonly available packages for the Lewbel estimators, I find that they tend
to give an actual rejection rate (or actual size) of the J test for over-identifying restrictions under the null
lower than the nominal one, and this under-rejection does not diminish when the sample size increases.
The results are shown in Table 1 below. The specification of the data generating process is the same as
the Lewbel case specified in the main text, so the rejection rate should be the same as the size of test
besides simulation errors and approximation error from the asymptotic distribution to the finite sample.
I have only shown a few cases with K = 3, but it also applies to cases of other numbers of regressors and
heteroscedastic related variables.

The first column shows the case using the ivlewbel package in R, using the default (with robust turned
TRUE). The second column uses the ivreg2h module with option robust and gmm2s. The third and fourth
columns show the results of two modified implementation I have tried coded in R. Both of them estimate
all parameters using all four sets of moment conditions in (3) in this paper (or Lewbel, 2012, Corollary 4).
Modification 1 uses the coefficients estimated from GMM with identity weight matrix to form the optimal
weight matrix®, while Modification 2 uses the coefficients from the two-stage least squares approach to
construct the optimal weight matrix”.

The results in Table 1 show that even when sample size increases to 10000, the rejection rates using
the specific package for the Lewbel (2012) estimator in R and Stata do not converge to the desired nominal
value of 5%, but are only about 3%. The results from the modifications I have tried are instead close to the
nominal value. As can be seen from the source code for ivlewbel package in R®, it uses the estimated first
stage residuals and mean of variables used to construct Lewbel instruments before fitting them into the
GMM system. It is likely that these pre-estimation procedures have distorted the distribution of the final
J statistics, something analogous to the reduction of degree of freedom of the quadratic form when some of
the parameters are estimated within the system.? To have a more accurate size of the over-identification
test, it is better to estimate all parameters together in the GMM system (or to adjust the J statistics in
some ways that accounts for pre-estimated quantities, which is not explored here.)

Between modification 1 and modification 2, modification 2 seems to perform better. Further investiga-
tion can be done to determine whether iteration on or continuously updating the weight matrix can give
more desirable finite sample results. In the main text of this paper, I have used the Modification 2 for the

Lewbel GMM method.

b1t is implemented by the default of gnm package in R with vcov=""1id”’

"The weight matrix is constructed by calculating the inverse of the empirical variance of the moment conditions based on
the two-stage least squares parameters, first stage parameters and means of heteroscedasticity related variables and then I
feed the weight matrix into the gmm command by using vcov="TrueFixed" option in gmm.

8The source code can be found at https://github.com/cran/ivlewbel/blob/master/R/lewbel.est.R

°I have no information about the procedures used for the Stata module, but based on the results in the table, it is plausible
that pre-estimated values are also used.




Table 1: Simulated Actual Rejection Rate of the J Test With 5% Nominal Size Under Various Estimators

n K 0y1 Ouz 01 Oeo Rejection Rate of J Test at 5% Level
ivlewbel in R ivreg2h in Stata Modification 1 Modification 2

500 3 03 03 03 0 0.0461 0.0468 0.0223 0.0687
2000 0.0353 0.0354 0.0440 0.0561
5000 0.0306 0.0322 0.0475 0.0520
10000 0.0327 0.0294 0.0510 0.0530
500 3 05 03 03 0 0.0339 0.0390 0.0457 0.0588
2000 0.0317 0.0328 0.0484 0.0512
5000 0.0331 0.0315 0.0522 0.0532
10000 0.0308 0.0321 0.0473 0.0479
500 3 08 08 03 0 0.0341 0.0380 0.0565 0.0561
2000 0.0360 0.0350 0.0528 0.0529
5000 0.0371 0.0353 0.0526 0.0529
10000 0.0333 0.0360 0.0471 0.0469

Note: Please refer to the text for specification details. Number of repetition is at least 10000.

D Details of Maximum Likelihood Estimator

We also consider the maximum likelihood method for estimation of the two setups. Assuming the two
error terms follow bivariate normal distribution under the variance functions assumed, the log-likelihood

function is given by

n

1 1 . N -
where
i — Y2 — X
5 = Y1i — Y2iP1 B2 (16)
Se,i
i — Zim — X
i = Y2 7 V2 (17)
Su,i
Sei = fE(Zéi(sE) (18)
Suji = fu(Zézéu) (19)

where the scale of single index is fixed by taking 1 as the coefficient first variable in Zs.
There are some computation issues. First, notice that under a free function of heteroscedasticity, an
unboundedness likelihood problem may occur, similar to the case of likelihood of a mixture distribution

110

model'”. The problem is that for a tail observation of the single index Z!§ with no or few observations

nearby, it is possible to give this observation very low error variances and a very high correlation, leading

10T that case, one component of the mixture may fit one point exactly, leading to an unbounded likelihood, while the
other components fit other points as if there is no first component.



to a spuriously high likelihood value for this observation. As the correlation is set closer and closer to 1,
the likelihood value will become larger and larger. To avoid this spuriously high likelihood value, T have
adopted a few measures.

(1) Instead of directly using a fourth order polynomial of the single index, I apply a bounded trans-

formation before forming the polynomial. In particular,

fi(w) = P(®(w),;)

where ® is the normal distribution function, evaluated at mean and variance of the empirical value of
w = ¢§'29. P represents a fourth order polynomial that is applied to the transformed value. In this way,
the tail values will not be very far away from other observations, which can substantially reduce the
possibility of fitting a very small variance value for a small number of observations. This may not be
needed if Z5 variables are discrete or do not have a long tail.

(2) I have essentially restricted the value of parameters so that the variances of errors are not below
0.15 while the correlation coefficients of all observations are not above 0.90 in absolute value. These two
parameters should be set according to what values are likely to be valid and what values are unlikely in

the actual situation. I impose this by adding a large penalty term for any violations:

n n n
Ly = L+10000 > (min(0, s¢;; — 0.15))% + 10000 > _(min(0, sy — 0.15))% + 10000 > _(maz(0, |p;] — 0.9))
i=1 i=1 i=1

Since these restrictions are sometimes binding, numerical hessian sometimes fails to be negative definite.
For inference, bootstrap standard errors and tests are more appropriate.

The use of Akaike Information Criteria (AIC) for model selection can also be extended to the choice
of complexity of the approximating functions, such as the degree of polynomial, or comparing with other
forms of approximating functions (such as splines.) Here I focus on the selection between Klein-Vella and
Lewbel models and fix the order of polynomial at 4.

Though no formal proof is provided here, similar to the usual LIML, when the model is basically
identified by the first two moments, the normality assumption in the likelihood is probably not lead-
ing to substantial bias when the true error terms are non-normal. Simulation results with asymmetric

distributions, under the normalized chi-square errors and common factor, that is if x? ~ x?(p),
X2 -p

RARRVG

with p = 5 are presented in the last part of the appendix, and the finite sample medians are similar to the

case of normal errors.

E Extra Tables of Results

Here T present the results for the case where the error terms are Chi-square distributed with 5 degrees of

freedom, normalized to mean zero and variance one.



Table A.1: Simulation Results for Data from the Klein and Vella Form of Heteroscedasticity, Chi-square(5)

Errors

n K 6u1 Ou2 0c1 BoLs BLB,amm J Brv,2-step BLB, ML Brv,mL Barc AIC

median median median median median median median  correct

(q10,990) (q10,990) (% p < 0.05) (ql0,q90) (q10,990) (q10,990) (q10,990) rate

500 3 04 0.4 0.3 0.4353 0.2632 2.560 0.0215 0.2860 0.0256 0.1205 0.630
(0.373,0.496) (0.151,0.373)  (0.161)  (-0.351,0.237) (0.175,0.388) (-0.270,0.239) (-0.219,0.327)

500 3 04 0.4 -0.3 04116 0.1516 2.567 0.0134 0.1635 -0.0066 0.0366 0.689
(0.356,0.468) (0.058,0.238)  (0.159)  (-0.191,0.150) (0.055,0.262) (-0.181,0.136) (-0.158,0.198)

500 3 0.250.25 0.3 0.4827 0.3246 2.672 0.0420 0.3355 0.0819 0.1641 0.598
(0.418,0.545) (0.157,0.495)  (0.176)  (-0.509,0.402) (0.123,0.523) (-0.546,0.484) (-0.452,0.473)

500 3 0.7 0 0.3 0.4458 0.3205 1.545 0.0367 0.3430 0.0527 0.2511 0.493
(0.385,0.507) (0.199,0.439)  (0.056)  (-0.495,0.358) (0.221,0.448) (-0.523,0.389) (-0.369,0.422)

500 100.250.25 0.3 0.4100 0.2320 11.01 0.0364 0.2545 0.0387 0.1723 0.514
(0.350,0.467) (0.139,0.325)  (0.140)  (-0.167,0.195) (0.163,0.345) (-0.193,0.223) (-0.142,0.316)

500 10 0.7 0 0.3 0.4445 0.3303 9.449 0.0943 0.3458 0.2045 0.2928 0.361
(0.384,0.505) (0.213,0.446)  (0.066)  (-0.213,0.384) (0.237,0.451) (-0.205,0.522) (0.021,0.460)

1000 3 0.3 0.3 0.3 0.4680 0.2993 3.975 0.0160 0.3166 0.0103 0.0562 0.749
(0.426,0.511) (0.199,0.399)  (0.305)  (-0.324,0.226) (0.203,0.411) (-0.281,0.227) (-0.255,0.321)

1000 3 0.7 0 0.3 0.4429 0.3171 1.490 0.0047 0.3463 0.0143 0.1817 0.562
(0.400,0.489) (0.234,0.401)  (0.049)  (-0.411,0.251) (0.265,0.424) (-0.280,0.248) (-0.212,0.389)

The number of repetitions is 2000. The correlation between the first stage and structural error is set at about
0.5. d41 is the coefficient for the variance function of the first stage error for the first variable of X, while §,2
is the coefficient for all remaining X variables. Similar for d.; and .o and I set d.o = 0. The J statistic is the
corresponding statistic under the Lewbel GMM method. S47¢ reports the estimate when the one with higher AIC

is chosen between the two ML estimators.



Table A.2: Simulation Results for Data from the Lewbel Form of Heteroscedasticity, Chi-square(5) Errors

n K 6u10u2 91 Pors Bre,aMmM J Brv2-step  PLBML BrV,ML Barc AIC
median median median median median median median  correct
(q10,q90)  (q10,990) (% p < 0.05) (q10,9q90) (q10,q90) (q10,q90) (q10,q90)  rate
500 3 0.5 0.5 0.3 0.4081 0.0105 1.550 -0.5397 -0.0004 -0.5504 -0.0343 0.820
(0.343,0.475) (-0.154,0.157)  (0.063)  (-1.254,-0.096) (-0.164,0.153) (-1.199,0.527) (-0.620,0.146)
500 3 0.5 0.5-0.3 0.4124 0.0122 1.545 -0.2961 0.0186 -0.3041 -0.0714 0.611
(0.350,0.475) (-0.143,0.147)  (0.060)  (-0.864,-0.001) (-0.141,0.161) (-0.694,-0.039) (-0.512,0.117)
500 3 0.3 0.3 0.3 0.4671 0.0604 1.575 -0.2195 -0.0087 0.0776 -0.0131 0.675
(0.404,0.526) (-0.254,0.306)  (0.077)  (-1.032,1.395) (-0.303,0.330) (-1.175,2.114) (-0.553,1.276)
500 3 0.8 0 0.3 0.4223 0.0174 1.522 -0.5775 -0.0184 -0.6978 -0.0405 0.766
(0.355,0.487) (-0.174,0.183)  (0.065)  (-1.417,1.156) (-0.217,0.171) (-1.259,2.180) (-0.823,0.311)
500 10 0.3 0.3 0.3 0.3918 0.0418 9.992 -0.2448 0.0395 -0.2641 0.0113 0.813
(0.330,0.458) (-0.092,0.173)  (0.100)  (-0.552,-0.021) (-0.082,0.166) (-0.717,0.097) (-0.297,0.153)
500 100.8 0 0.3 0.4235 0.0731 10.109 -0.2594 0.0798 -0.0961 0.0394 0.829
(0.359,0.488) (-0.099,0.240)  (0.113)  (-0.609,0.861) (-0.152,0.258) (-0.958,1.401) (-0.170,0.298)
1000 3 0.5 0.5 0.3 0.4420 0.0038 1.520 -0.6243 -0.0132 -0.7847 -0.0372 0.881
(0.396,0.484) (-0.111,0.108)  (0.056)  (-1.369,-0.072) (-0.194,0.138) (-1.268,1.406) (-0.450,0.130)
1000 3 0.8 0 0.3 0.4203 0.0089 1.487 -0.8255 -0.0266 -1.1570 -0.0498 0.876
(0.374,0.468) (-0.127,0.127)  (0.058)  (-1.727,-0.285) (-0.195,0.113) (-1.287,2.194) (-0.383,0.111)

Refer to the notes for Table A.1.



