

Appendix and Supplemental material not intended for publication-Round 1

Submission Number: EB-17-00289

Appendices

Optimal storage under uncertainty: investigating the implications of frugality and prudence Appendices

A- Proof of Theorem 1

To prove Theorem 1, I first solve the problem recursively.

$$\max_{\{q_1,y_1\}} U(q_1) - C(y_1)$$

subject to Eqs. (1a), $q_1 \ge 0$ and $y_1 \ge 0$. The first-order necessary condition for a maximum yields:¹

$$U'(y_1 + z_1 + s) - C'(y_1) \le 0,$$

with equality for $y_1 > 0$. Let $y_1 \equiv y_1(z_1 + s)$. Given y_1 , the maximum value function for period 1 is

(1)
$$W_1(z_1, s) = U(y_1 + z_1 + s) - C(y_1).$$

The problem in period 0 is

$$\max_{\{q_0, y_0, s\}} U(q_0) - C(y_0) + \mathbb{E}\left[W_1(\tilde{z}_1, s)\right]$$

subject to (1a), and $q_0 \ge 0$, $y_0 \ge 0$, $\bar{s} \ge s$, and $s \ge 0$. The first-order necessary condition for dispatchable generation at a maximum is²

$$U'(y_0 + z_0 - \alpha s) - C'(y_0) \le 0,$$

with equality for $y_0 > 0$. Let $y_0 \equiv y_0(z_0 - \alpha s)$.

Using the maximum value function in Eq. (1) and the Envelope Theorem, the first-order condition with respect to s is

$$\mathbb{E}\left[U'(\tilde{y}_1+\tilde{z}_1)\right] - \alpha U'(y_0+z_0) \leq 0 \qquad \text{if } s=0,$$

$$\mathbb{E}\left[U'(\tilde{y}_1+\tilde{z}_1+s)\right] - \alpha U'(y_0+z_0-\alpha s) = 0 \qquad \text{if } s\in(0,\min(\bar{s},k)),$$

$$\mathbb{E}\left[U'(\tilde{y}_1+\tilde{z}_1+\min(\bar{s},k))\right] - \alpha U'(y_0+z_0-\alpha\min(\bar{s},k)) \geq 0 \quad \text{otherwise, (i.e., } s=\min(\bar{s},k)),$$

The second-order condition for a maximum is satisfied by $U''(q_1) - C''(y_1) < 0$.

²Similar to the problem in the final period, the second-order condition for a maximum is satisfied: $U''(q_0) - C''(y_0) < 0$.

where $k \equiv (y_0 + z_0)/\alpha$. Since U'(0) > C'(0), $y_0 > 0$ if $z_0 = s = 0$. Thus, $q_0 = y_0 > 0$. $s \in (0, \min(\bar{s}, k)]$ ensures that q_0 is non-negative.

Let

$$s^{+} = \underset{s}{\operatorname{arg \, max}} \ U(y_0(z_0 - \alpha s) + z_0 - \alpha s) - C(y_0(z_0 - \alpha s)) + W_1(\mu, s)$$

and

$$s = \underset{s}{\arg\max} \ U(y_0(z_0 - \alpha s) + z_0 - \alpha s) - C(y_0(z_0 - \alpha s)) + \mathbb{E}[W_1(\tilde{z}_1, s)]$$

Proof. Assume s and s^+ are interior. s^+ satisfies

$$-U'(y_0(z_0 - \alpha s^+) + z_0 - \alpha s^+) + \frac{1}{\alpha}[U'(y_1(\mu + s^+) + \mu + s^+)] = 0,$$

while s satisfies

$$-U'(y_0(z_0 - \alpha s) + z_0 - \alpha s) + \frac{1}{\alpha} \mathbb{E}[U'(y_1(\tilde{z}_1 + s) + \tilde{z}_1 + s)] = 0,$$

where $\tilde{z}_1 = \mu + \tilde{\varepsilon}$ with $\mathbb{E}[\tilde{\varepsilon}] = 0$.

Given the concavity of the problem (i.e., U is a concave function and C is a convex function), $s \ge s^+$ if and only if

$$-U'(y_0(z_0 - \alpha s^+) + z_0 - \alpha s^+) + \frac{1}{\alpha} \mathbb{E}[U'(y_1(\mu + \tilde{\varepsilon} + s^+) + \mu + \tilde{\varepsilon} + s^+)] \ge 0.$$

This condition comes down to

(2)
$$\mathbb{E}[U'(y_1(\mu + \tilde{\varepsilon} + s^+) + \mu + \tilde{\varepsilon} + s^+)] \ge U'(y_1(\mu + s^+) + \mu + s^+).$$

From Jensen's inequality, Eq. (2) holds if and only if

$$z \mapsto U'(y_1(z+s)+z+s)$$

is a convex function:

(3)
$$\frac{\partial^2 U'(q_1)}{\partial z^2} = U'''(q_1) \left(\frac{\partial y_1}{\partial z} + 1\right)^2 + U''(q_1) \frac{\partial^2 y_1}{\partial z^2} \ge 0.$$

Observe that

(4)
$$\frac{\partial y_1}{\partial z} = \frac{U''(q_1)}{C''(y_1) - U''(q_1)} < 0,$$

and

(5)
$$\frac{\partial^2 y_1}{\partial z^2} = \frac{\left(C''(y_1)\right)^2 U'''(q_1) - \left(U''(q_1)\right)^2 C'''(y_1)}{\left(C''(y_1) - U''(q_1)\right)^3},$$

³The second-order condition for a maximum gives $\alpha^2 U''(q_0) + \mathbb{E}[U''(q_1)] < 0$.

Substituting (4) and (5) in (3) gives

(6)
$$\frac{\left(C''(y_1)\right)^3}{\left(C''(y_1) - U''(q_1)\right)^3} U'''(q_1) + \frac{\left(-U''(q_1)\right)^3}{\left(C'''(y_1) - U''(q_1)\right)^3} C'''(y_1) \ge 0.$$

Consider the corner solutions. Suppose $s^+ = \min(\bar{s}, k)$ $(k \equiv (y_0 + z_0)/\alpha)$. Following the same steps as before, it can be shown that

$$\mathbb{E}[U'(y_1(\mu + \tilde{\varepsilon} + \min(\bar{s}, k)) + \mu + \tilde{\varepsilon} + \min(\bar{s}, k))] \ge U'(y_1(\mu + \min(\bar{s}, k)) + \mu + \min(\bar{s}, k))$$

if and only if (6) holds. But $s^+ = \min(\bar{s}, k)$. Therefore, $s^* = s^+ = \min(\bar{s}, k)$.

Suppose now $s^+ = 0$. Given $s^+ = 0$,

$$\mathbb{E}[U'(y_1(\mu + \tilde{\varepsilon}) + \mu + \tilde{\varepsilon})] \ge U'(y_1(\mu) + \mu)$$

if and only if (6) holds. Therefore, $s^* \ge s^+ = 0$.

This completes the proof of the Theorem 1.

B- Comparative statics

Theorem 1 indicates that $s \ge s^+$ if and only if (6) is satisfied. Given that

$$\frac{\partial y_0}{\partial s} = \frac{-\alpha U''(q_0)}{C'''(y_0) - U''(q_0)} > 0$$

and $q_0 = y_0 + z_0 - \alpha s$, I can calculate

$$\frac{\partial q_0}{\partial s} = \frac{-\alpha C''(y_0)}{C''(y_0) - U''(q_0)} < 0.$$

Furthermore, since

$$\frac{\partial y_1}{\partial s} = \frac{U''(q_1)}{C''(y_1) - U''(q_1)} < 0,$$

and $q_1 = y_1 + z_1 + s$, I get

$$\frac{\partial q_1}{\partial s} = \frac{C''(y_1)}{C''(y_1) - U''(q_1)} > 0.$$