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A The geometric Brownian motion process

In this section, we sketch the main characteristics of the GBM process. Let {Pt}t≥0 be an
asset price at time t. The GBM is defined as:

dPt = µPtdt+ σPtWt, (5)

where P0 > 0. In equation (5), µ ∈ R is the drift parameter, and σ > 0 measures volatility.
Additionally, Wt is the standard increment of a Wiener process.

Now, define yt = ln(Pt). Applying Ito’s lemma and using equation (5), we get:

dyt =

✓
µ− 1

2
σ2

◆
dt+ σWt. (6)

Equation (6) implies that yt follows an arithmetic Brownian process with drift equal to(
µ− 1

2
σ2
)

and volatility σ. By choosing a discrete time interval ∆t = t− q with q < t, and
letting Xt = yt − yq be the log price increments (continuously compounded returns) over a
time period of ∆t, we can derive a discrete-time version of equation (6). This is:

Xt =

✓
µ− 1

2
σ2

◆
∆t+ (Wt −Wq)σ. (7)

The properties of the standard Brownian motion let us rewrite equation (7) as7

Xt =

✓
µ− 1

2
σ2

◆
∆t+ σε

√
∆t, ε ∼ N (0, 1).

Then, it is easy to conclude that

Xt ∼ N
✓

µ− 1

2
σ2

]
∆t,∆tσ

◆
, (8)

which implies that both the mean and volatility of Xt increase proportionally to the length
of time over which the asset is held.

The parameters of a GBM process can easily be found by maximum likelihood estimation.
By fixing ∆t = 1, and taking into account that the log returns follow a normal distribution,
we can compute the sample mean and variance as

x =
1

n

TX

t=1

xi, s2 =
1

n− 1

TX

t=1

(xi − x)2.

Hence, from equation (8),

bσ2 = s2, bµ = x+
s2

2
. (9)

7See Venegas-Martínez (2006), for instance.



B Comparison of the GBM and VG process densities

We show in Figure 3 how GBM and VG process densities compare to empirical density
function. As we can see, none of the distributions adjust well the peak of the empirical
distribution, but the variance-gamma density function is closer to the empirical mean value.
It is also true that the variance-gamma distribution adjusts better in both tales compared
to normal distribution. This is also evident from the log-density function in Figure 3.
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Figure 3: Empirical density function of fuel energy index log returns compared to estimated
densities.
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Figure 4: QQ-Plots, normal and variance-gamma distributions.

We can also see the performance of both processes by looking at the qq-plots in Figure
4. Again, it is clear that the variance-gamma distribution shows a better fit to data. This is
particularly true for higher quantiles.



C Augmented Dickey-Fuller Test and Autocorrelation Functions

We show in Table IV that the IMF’s fuel energy index is stationary as the hyphotesis of unit
root is always rejected.

Table IV: p-values for augmented Dickey-Fuller test for several lags.

p-values

Lag Actual Returns Filtered Returns

1 <0.01 <0.01
2 <0.01 <0.01
3 <0.01 <0.01
4 <0.01 <0.01
5 <0.01 <0.01
6 <0.01 <0.01

In Figure 5 we show the autocorrelation function for both X2

t and bY 2

t . We can see that
the former is autocorrelated and the later is not.
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Figure 5: Autocorrelation function for the squared log-returns of actual data (left) and the
squared returns of filtered data (right).


