

Appendix and Supplemental material not intended for publication-Round 3

Submission Number: EB-18-00997

Appendix

A. Appendix

Let y, q, q^* , ϵ , and ν' be $N \times 1$ vectors, and x be a $N \times 2$ vector (includes the unity). Let γ_1 be a 2×1 vector containing γ_0 and γ_1 , and M_x be the $N \times N$ complementary projection matrix of $x(x^Tx)^{-1}x^T$. Using the FWL theorem, the OLS estimator of γ_2 can be expressed as:

$$\hat{\gamma}_2 = (q^{*T} M_x q^*)^{-1} (q^{*T} M_x y) \tag{1}$$

$$\hat{\gamma}_2 = (q^{*T} M_x q^*)^{-1} (q^{*T} M_x (x \gamma_1 + q \gamma_2 + \epsilon)).$$
(2)

Using $q = x\beta_1' + q^*\beta_2' + \nu'$ and considering that $M_x x = 0$:

$$\hat{\gamma}_2 = (q^{*T} M_x q^*)^{-1} (q^{*T} M_x ((q^* \beta_2' + \nu') \gamma_2 + \epsilon))$$
(3)

$$\hat{\gamma}_2 = \gamma_2 \beta_2' + (q^{*T} M_x q^*)^{-1} (q^{*T} M_x (\mathbf{v}' \gamma_2 + \epsilon)). \tag{4}$$

In summation notation:

$$\hat{\gamma}_{2} = \gamma_{2} \beta_{2}' + \left(n^{-1} \sum_{j} \sum_{i} q_{j}^{*} M_{x_{ij}} q_{j}^{*} \right)^{-1} n^{-1} \sum_{j} \sum_{i} q_{j}^{*} M_{x_{i}j} (\gamma_{2} \nu_{ij}' + \epsilon_{ij}).$$
 (5)

Taking the probability limit of $\hat{\gamma}_2$ as $n \to \infty$:

$$plim(\hat{\gamma}_{2}) = \gamma_{2}\beta_{2}' + plim\left(\left(n^{-1}\sum_{j}\sum_{i}q_{j}^{*}M_{x_{ij}}q_{j}^{*}\right)^{-1}\right)plim\left(n^{-1}\sum_{j}\sum_{i}q_{j}^{*}M_{x_{i}j}(\gamma_{2}\nu_{ij}' + \epsilon_{ij})\right)$$
(6)

$$plim(\hat{\gamma_{2}}) = \gamma_{2}\beta_{2}^{'} + \gamma_{2} \underbrace{plim\left(n^{-1}\sum_{j}\sum_{i}q_{j}^{*}M_{x_{ij}}q_{j}^{*}\right)^{-1}plim\left(n^{-1}\sum_{j}\sum_{i}q_{j}^{*}M_{x_{i}j}\nu_{ij}^{'}\right)}_{(*)}$$

$$+ \underbrace{plim\left(n^{-1}\sum_{j}\sum_{i}q_{j}^{*}M_{x_{ij}}q_{j}^{*}\right)^{-1}plim\left(n^{-1}\sum_{j}\sum_{i}q_{j}^{*}M_{x_{i}j}\epsilon_{ij}\right)}_{(*)}$$

$$(7)$$

$$plim(\hat{\gamma_2}) = \gamma_2 \beta_2', \tag{8}$$

where (*) uses $cov(q_{j}^{*}, \nu'_{ij}) = cov(q_{j}^{*}, \epsilon_{ij}) = 0$, and $cov(x_{ij}, \nu'_{ij}) = cov(x_{ij}, \epsilon_{ij}) = 0$.

Similarly, let M_{q^*} be the complementary projection matrix of $q^*(q^{*T}q^*)^{-1}q^{*T}$. Using the FWL theorem, the OLS estimator of vector γ_1 is:

$$\hat{\gamma_1} = (x^T M_{q^*} x)^{-1} (x^T M_{q^*} y) \tag{9}$$

$$\hat{\gamma}_1 = (x^T M_{q^*} x)^{-1} (x^T M_{q^*} (x \gamma_1 + q \gamma_2 + \epsilon)). \tag{10}$$

Using $q = x\beta_1' + q^*\beta_2' + \nu'$, and considering that $M_{q^*}q^* = 0$:

$$\hat{\gamma_1} = \gamma_1 + \beta_1' \gamma_2 + (x^T M_{q^*} x)^{-1} (x^T M_{q^*} (\nu' \gamma_2 + \epsilon)). \tag{11}$$

In summation notation:

$$\hat{\gamma_1} = \gamma_1 + \beta_1' \gamma_2 + \left(n^{-1} \sum_j \sum_i x_{ij} M_{q_j^*} x_{ij} \right)^{-1} n^{-1} \sum_j \sum_i x_{ij} M_{q_j^*} (\gamma_2 \nu_{ij}' + \epsilon_{ij}).$$
 (12)

Taking the probability limit of $\hat{\gamma}_1$ as $n \to \infty$:

$$plim(\hat{\gamma}_{1}) = \gamma_{1} + \beta'_{1}\gamma_{2} + plim\left(\left(n^{-1}\sum_{j}\sum_{i}x_{ij}M_{q_{j}^{*}}x_{ij}\right)^{-1}\right)plim\left(n^{-1}\sum_{j}\sum_{i}x_{ij}M_{q_{j}^{*}}(\gamma_{2}\nu'_{ij} + \epsilon_{ij})\right)$$

$$plim(\hat{\gamma}_{1}) = \gamma_{1} + \beta'_{1}\gamma_{2} + \gamma_{2} \underbrace{plim\left(n^{-1}\sum_{j}\sum_{i}x_{ij}M_{q_{j}^{*}}x_{ij}\right)^{-1}plim\left(n^{-1}\sum_{j}\sum_{i}x_{ij}M_{q_{j}^{*}}\nu'_{ij}\right)}_{(*)}$$

$$+ \underbrace{plim\left(n^{-1}\sum_{j}\sum_{i}x_{ij}M_{q_{j}^{*}}x_{ij}\right)^{-1}plim\left(n^{-1}\sum_{j}\sum_{i}x_{ij}M_{q_{j}^{*}}\epsilon_{ij}\right)}_{(*)}$$

$$(14)$$

$$plim(\hat{\gamma_1}) = \gamma_1 + \beta_1' \gamma_2, \tag{15}$$

where (*) uses $cov(x_{ij}, \nu'_{ij}) = cov(x_{ij}, \epsilon_{ij}) = 0$, and $cov(q_{ij}^*, \nu'_{ij}) = cov(q_{ij}^*, \epsilon_{ij}) = 0$.

A.1 Spatial Aggregation Bias in Presence of Omitted Variables

Previous results hold under the assumption that $cov(q_{ij}^*, \epsilon_{ij}) = 0$. When this assumption fails, and relevant variables affecting the outcome variable y_{ij} and related at the geographical level are omitted from the analysis, there is an additional source of bias. Let the regression of ϵ_{ij} on x_{ij} and q_i^* be as follows:

$$\epsilon_{ij} = x_{ij} \alpha_1 + \alpha_2 q_j^* + \mu_{ij}. \tag{16}$$

When the assumption $cov(q_{ij}^*, \epsilon_{ij}) = 0$ fails, then $\alpha_2 \neq 0$ and so $plim(\hat{\gamma}_2) = \gamma_2 \beta_2' + \alpha_2$. Whether the omitted variable bias raises the magnitude of the estimated coefficient depends on the sign of α_2 .