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Abstract

In this note we introduce an egalitarian solution, called the dual egalitarian solution, that is
the natural counterpart of the egalitarian solution of Dutta and Ray (1989). We prove, among
others, that for a convex game the egalitarian solution coincides with the dual egalitarian
solution for its dual concave game.
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1 Introduction

Often a situation involving several persons who can obtain benefits by cooperating can be for-
mulated in terms of a cooperative savings game with transferable utility. Examples of such
classes of games are bankruptcy games (O’Neill (1982) and Aumann and Maschler (1985)),
sequencing games (Curielet al. (1989)), market games (Shapley and Shubik (1969)), and linear
production games (Owen (1975)). Moreover, some interesting classes of these games men-
tioned above are convex, i.e., an agent contributes more to the benefits of a coalition when the
coalition becomes larger.

A decision making situation involving several persons can sometimes also be formulated in
terms of a cooperative cost game. Among the cost games that can be found in the literature
are airport games (Littlechild and Owen (1973)) and minimum cost spanning tree games (Bird
(1976)). These games satisfy the property of concavity, i.e., the marginal burden of an agent to
the costs of a coalition decreases when the coalition becomes larger.

In this note we start with recalling the definition of the egalitarian solution, a solution con-
cept for cooperative games introduced by Dutta and Ray (1989). This solution unifies the two
conflicting concepts of individualistic utility maximization and the social goal of equality. The
egalitarian solution is a singleton or the empty set. For convex games Dutta and Ray (1989)
describe an algorithm to locate the unique egalitarian solution, and they show, in addition, that
it is in the core of the game. Finally, they prove that for convex games the egalitarian solution
Lorenz dominates all other allocations in the core. For an extensive discussion on the egalitarian
solution we refer to Dutta and Ray (1989).

If a game is concave but not additive, then the egalitarian solution of Dutta and Ray (1989)
is empty. Therefore, we define, along the lines of Dutta and Ray (1989), a dual of Lorenz
domination and construct a dual egalitarian solution. We show that Lorenz domination and
dual Lorenz domination are equivalent. Furthermore, the dual egalitarian solution is either a
singleton or the empty set. After that, we study the relations with the egalitarian solution of
Dutta and Ray (1989) and the core of the game. Next, we introduce an algorithm similar to
that of Dutta and Ray (1989) to calculate the dual egalitarian solution for concave games. We
show that the dual egalitarian solution is in the dual core of the concave game and that the dual
egalitarian solution Lorenz dominates all other allocations in the dual core.

Our main result is that for a convex game the egalitarian solution coincides with the dual
egalitarian solution for its dual (concave) game. Similar duality results are provided by Funaki
(1994) and concern, among others, the core, the Shapley value (Shapley (1953)), and the prenu-
cleolus (Schmeidler (1969)). To this series we can also add the modified nucleolus (Sudhölter
(1997)) and theτ -value (Tijs (1986)).

The work is organized as follows. Section 2 deals with notation and definitions regarding
cooperative games with transferable utility. Moreover, we recall the definition of the egalitarian
solution of Dutta and Ray (1989). In Section 3 we introduce the dual egalitarian solution and
present the relations with the egalitarian solution. Finally, we prove that for a convex game the
egalitarian solution coincides with the dual egalitarian solution for its dual (concave) game.
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2 Preliminaries

A cooperative game with transferable utility (game, for short) is a pair(N, v), whereN =
{1, . . . , n} is the player set andv the characteristic function, which assigns to every subset1

S ⊆ N a valuev(S), with v(∅) = 0.
A game(N, v) is calledconvexif

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all S ⊆ T ⊆ N andi ∈ N\T,

andconcaveif the reverse inequality holds.
Thecoreof a game(N, v) is defined by

C(N, v) := {x ∈ IRN :
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) for all S ⊆ N},

and itsdual coreis defined by

C∗(N, v) := {x ∈ IRN :
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≤ v(S) for all S ⊆ N}.

A game is called (dual) balanced if and only if its (dual) core is non-empty. LetS be a non-
empty subset ofN . The game(S, v|S) (or (S, v), for short) is called a subgame of(N, v). A
game is called totally (dual) balanced if and only if the (dual) cores of all subgames are non-
empty.

Thedual gameof a game(N, v) is the game(N, v∗), wherev∗ is defined by

v∗(S) := v(N)− v(N\S) for all S ⊆ N.

It is easily shown thatC(N, v) = C∗(N, v∗).

Next, we recall the definition of the egalitarian solution of Dutta and Ray (1989). For this we
need some more notation, most of which is due to Dutta and Ray (1989). LetS be a non-empty
subset of{1, . . . , n}. We denote the cardinality ofS by |S|. To avoid unnecessary notational
complications we denote anyx ∈ IRS by x = (x1, . . . , x|S|). For two vectorsx andy in IRS, we
write x = y if all their components are equal, andx > y if xi ≥ yi for all i = 1, . . . , |S|, with
strict inequality for somei. For anyx ∈ IRS, we denote bŷx the vector obtained by permuting
the indices ofx such that̂x1 ≥ x̂2 ≥ · · · ≥ x̂|S|. For x ∈ IRS andT ⊆ S, we denote the
projection ofx on IRT by x(T ) = (xi)i∈T .

Let (N, v) be a game. An allocationx ∈ IRS is feasiblefor S if
∑

i∈S xi = v(S). TheLorenz
mapE is defined on the domain

A :=

{
A : A ⊆ IRk for somek, and there existsλ ∈ IR such that

k∑
i=1

xi = λ for all x ∈ A

}
.

1S ⊆ N denotes thatS is a subset ofN andS ⊂ N denotes thatS is a strict subset ofN .
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For each setA ∈ A, EA is the set of all allocations inA that areLorenz undominatedwithin
A. Formally,

EA :=
{
x ∈ A : there is noy ∈ A such that

∑j
i=1 ŷi ≤

∑j
i=1 x̂i for all

j = 1, . . . , k, with strict inequality for somej} .

TheLorenz coreis defined inductively as follows. The Lorenz core of a singleton coalition
is defined byL({i}, v) := {v({i})}. Now suppose that the Lorenz cores for all coalitions of
cardinalityk or less have been defined, where1 ≤ k < n. The Lorenz core of a coalition of
sizek + 1 is defined by

L(S, v) :=
{
x ∈ IRS : x is feasible forS, and there is noT ⊂ S and

y ∈ EL(T, v) such thaty > x(T )} .

If x ∈ IRS and there isT ⊂ S andy ∈ EL(T, v) such thaty > x(T ), then we say thaty
Lorenz-blocks(L-blocks)x. We shall also say in this case thatT L-blocksx. Furthermore, note
thatC(S, v) ⊆ L(S, v).

Dutta and Ray (1989) called the set of Lorenz undominated allocations in the Lorenz core
of (N, v), i.e.,EL(N, v), theegalitarian solution. They proved thatEL(N, v) is either empty
or a singleton. If it is non-empty, then its unique element is called theegalitarian allocationof
the game(N, v). For convex games Dutta and Ray (1989) describe a finite algorithm to locate
the unique egalitarian allocation. Moreover, they showed that the egalitarian allocation is an
element of the core of(N, v) and that it Lorenz dominates all other core allocations.

3 The dual egalitarian solution

In this section, we will introduce a dual of the egalitarian solution of Dutta and Ray (1989),
thereby following closely the ideas of Dutta and Ray (1989) concerning egalitarianism. Theo-
rem 3.2 shows that the dual egalitarian solution is either a singleton or the empty set. After that,
we study the relations with the egalitarian solution of Dutta and Ray (1989) and the core of the
game. Next, we introduce an algorithm similar to that of Dutta and Ray (1989) to calculate the
dual egalitarian solution for concave games. We show that the dual egalitarian solution is in
the dual core of the concave game and that the dual egalitarian solution Lorenz dominates all
other allocations in the dual core. Finally, we present our main result: for a convex game the
egalitarian allocation is equal to the dual egalitarian allocation for its dual (concave) game.

For starters, we need some extra notation. LetS ⊆ {1, . . . , n}. For anyx ∈ IRS, we denote
by x̄ the vector obtained by permuting the indices ofx such that̄x1 ≤ x̄2 ≤ · · · ≤ x̄|S|. Let
(N, v) be a game. Thedual Lorenz mapD is defined on the same domain as the Lorenz map
E, i.e.,

A =

{
A : A ⊆ IRk for somek, and there existsλ ∈ IR such that

k∑
i=1

xi = λ for all x ∈ A

}
.

For each such setA ∈ A, DA is the set of all allocations inA that aredual Lorenz undominated
within A. Formally,
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DA :=
{
x ∈ A : there is noy ∈ A such that

∑j
i=1 ȳi ≥

∑j
i=1 x̄i for all

j = 1, . . . , k, with strict inequality for somej} .

The dual Lorenz coreof a singleton coalition is defined byL∗({i}, v) := {v({i})}. Now
suppose that the dual Lorenz cores for all coalitions of cardinalityk or less have been defined,
where1 ≤ k < n. The dual Lorenz core of a coalition of sizek + 1 is defined by

L∗(S, v) :=
{
x ∈ IRS : x is feasible forS, and there is noT ⊂ S and

y ∈ DL∗(T, v) such thaty < x(T )} .

If x ∈ IRS and there isT ⊂ S andy ∈ DL∗(T, v) such thaty < x(T ), then we say thaty dual
Lorenz-blocks(L∗-blocks)x. We shall also say in this case thatT L∗-blocksx. Furthermore,
note thatC∗(S, v) ⊆ L∗(S, v).

We call the set of dual Lorenz undominated allocations in the dual Lorenz core of(N, v),
i.e., DL∗(N, v), the dual egalitarian solution. Next, we will show thatDL∗(N, v) is either
empty or a singleton. Hence, ifDL∗(N, v) is non-empty, its unique element will be called the
dual egalitarian allocationof the game(N, v). But first we show that the operatorsD andE
coincide.

Lemma 3.1 The operatorsD andE coincide.

Proof. Let A ∈ A. Then there is a coalitionS = {1, . . . , k} and a numberλ ∈ IR such
that

∑k
i=1 zi = λ for all z ∈ A. Let z ∈ A. Consider the vectorŝz and z̄. Recall that

ẑ1 ≥ ẑ2 ≥ · · · ≥ ẑk andz̄1 ≤ z̄2 ≤ · · · ≤ z̄k. It is easily verified that for alli = 1, . . . , k we
havez̄i = ẑk−i+1.

Let x, y ∈ A. From the observation above and
∑k

i=1 xi = λ =
∑k

i=1 yi it follows that the
following conditions are equivalent:

j∑
i=1

ȳi ≥
j∑

i=1

x̄i for all j = 1, . . . , k with a strict inequality for somej ⇔

j∑
i=1

ȳi ≥
j∑

i=1

x̄i for all j = 1, . . . , k − 1 with a strict inequality for somej ⇔

k∑
i=j+1

ȳi ≤
k∑

i=j+1

x̄i for all j = 1, . . . , k − 1 with a strict inequality for somej ⇔

k∑
i=j+1

ŷk−i+1 ≤
k∑

i=j+1

x̂k−i+1 for all j = 1, . . . , k − 1 with a strict inequality for somej ⇔

j∑
i=1

ŷi ≤
j∑

i=1

x̂i for all j = 1, . . . , k − 1 with a strict inequality for somej ⇔

j∑
i=1

ŷi ≤
j∑

i=1

x̂i for all j = 1, . . . , k with a strict inequality for somej
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From this it immediately follows thatDA = EA. 2

From Lemma 3.1 it follows that dual Lorenz domination coincides with Lorenz domination.
Henceforth, we will use the notationE instead ofD. The proof of the next Theorem is omitted
since it runs completely analogously to the proof of Theorem 1 of Dutta and Ray (1989).

Theorem 3.2 There is at most one dual egalitarian allocation.

The following examples from Dutta and Ray (1989) give an idea about the relations between
the egalitarian solution, the dual egalitarian solution, and the core of the game.

The game(N, v) in the first example (Example 1 from Dutta and Ray (1989)) is totally
balanced game withEL(N, v) = ∅, butEL∗(N, v∗) 6= ∅.

Example 3.3 Let N = {1, 2, 3}, v({i}) = 0 for all i ∈ N, v({1, 2}) = v({1, 3}) = v(N) = 1,
andv({2, 3}) = 0. Dutta and Ray (1989) showed thatEL(N, v) = ∅. Using thatL∗({1, 2}, v∗)
= (1, 0), L∗({1, 3}, v∗) = (1, 0), andL∗({2, 3}, v∗) = ∅ one easily verifies thatL∗(N, v∗) =
(1, 0, 0) and, hence,EL∗(N, v∗) = {(1, 0, 0)}. Note that the game(N, v) is not convex, since
v({1, 2})− v({1}) = 1 > 0 = v({1, 2, 3})− v({1, 3}). �

The game(N, v) in the second example (Example 2 from Dutta and Ray (1989)) is not
convex. It holds thatEL(N, v) 6= ∅, EL∗(N, v∗) = ∅, andC(N, v) = ∅.

Example 3.4 Let N = {1, 2, 3}, v({1}) = 0, v({2}) = v({3}) = 1, v({1, 2}) = v({1, 3}) =
1.4, andv({2, 3}) = v(N) = 2.2. Dutta and Ray (1989) observed thatEL(N, v) = {(0, 1.1,
1.1)} andC(N, v) = ∅. It is easy to verify thatEL∗({1}, v∗) = {(0)} andEL∗({2}, v∗) =
EL∗({3}, v∗) = {(0.8)}. Sincev∗(N) = 2.2, it follows thatEL∗(N, v∗) = ∅. �

Finally, we consider Example 3 from Dutta and Ray (1989). In this example we have a
non-convex game(N, v) with EL(N, v) = EL∗(N, v∗) 6= ∅, C(N, v) 6= ∅, andEL(N, v) ∩
C(N, v) = ∅,

Example 3.5 Let N = {1, 2, 3, 4}, v({i}) = 0 for all i ∈ N , v(N) = 2, v({2, 3}) = 1.05,
v({3, 4}) = 1.9, and for all otherS, v(S) is the minimal superadditive function compatible
with these values. Dutta and Ray (1989) observed thatEL(N, v) = {(0.05, 0.05, 0.95, 0.95)} 6∈
C(N, v) 6= ∅. One can verify thatEL∗(N, v∗) = EL(N, v). �

Next, we describe an algorithm for locating the (unique) dual egalitarian allocation in a
concave game. The algorithm is analogous to the algorithm of Dutta and Ray (1989) for locating
the egalitarian allocation in a convex game. Denote theaverage worthof coalition S with
respect to a characteristic functionv′ by

a(S, v′) :=
v′(S)

|S|
.

Let (N, w) be a concave game. DefineN1 := N andw1 := w.
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STEP 1: Let T1 be the largest coalition with thelowestaverage worth in the game(N, w1).
Define

x∗
i (N, w) := a(T1, w1) for all i ∈ T1. (1)

STEP k: Suppose thatT1, . . . , Tk−1 have been defined recursively andT1 ∪ · · · ∪ Tk−1 6= N .
Define a new game with player setNk := N\(T1∪ · · ·∪Tk−1). For all subcoalitionsT ⊆
Nk, definewk(T ) := wk−1(Tk−1∪T )−wk−1(Tk−1). The game(Nk, wk) is concave since
(Nk−1, wk−1) is concave. DefineTk to be the largest coalition with the lowest average
worth in this game. Define

x∗
i (N, w) := a(Tk, wk) for all i ∈ Tk. (2)

We remark that the concavity of the game(Nk, wk) ensures that there is a largest coalition
with the lowest average worth in(Nk, wk). Let x∗ be the allocation defined by equations (1)
and (2).

Theorem 3.6 In a concave game(N, w), x∗ as constructed by the algorithm above is the unique
dual egalitarian allocation. Moreover,x∗ is in the dual coreC∗(N, w) and Lorenz dominates
every allocation in the dual core.

The proof of Theorem 3.6 is omitted since it runs completely analogously to the proofs of
Theorem 2 and 3 of Dutta and Ray (1989).

From Examples 3.3, 3.4, and 3.5 it follows thatEL(N, v) does not need to coincide with
EL∗(N, v∗). For convex games, however, they do coincide. This is our main result:

Theorem 3.7 For a convex game(N, v) it holds thatEL(N, v) = EL∗(N, v∗).

Proof. Let (N, v) be a convex game. Dutta and Ray (1989) showed thatEL(N, v) ⊆ C(N, v)
and that the unique egalitarian solution Lorenz dominates all other core allocations inC(N, v).
Note also that(N, v∗) is a concave game, and hence, according to Theorem 3.6, we have that
EL∗(N, v) ⊆ C∗(N, v∗). Moreover, the unique dual egalitarian solution Lorenz dominates all
other dual core allocations inC∗(N, v). Now the Theorem follows from the observation that
C(N, v) = C∗(N, v∗). 2

Given Theorem 3.7 it is not difficult to axiomatically characterize the dual egalitarian solu-
tion on the class of concave games. The procedure runs along the lines of Funaki (1994) and
consists of dualizing the axioms that characterize the egalitarian solution. We refer to Funaki
(1994) for the details. Thus, dualizing the axioms in Dutta (1990) and Klijnet al. (2000) yields
characterizations of the dual egalitarian solution. Since this procedure is straightforward we
have omitted it.

We conclude with the following open question: if for a game(N, v) it holds thatEL(N, v) 6=
∅ andEL∗(N, v∗) 6= ∅, thenEL(N, v) = EL∗(N, v∗)? We know by Theorem 3.7 that if(N, v)
is convex this is true. Note also that by Example 3.5EL(N, v) andEL∗(N, v∗) can be both
non-empty for non-convex games(N, v).
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