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Abstract

A generalized envelope theorem is presented which has the Envelope Theorem as a special
case. Relative to the Envelope Theorem, it provides greater flexibility in determining the rate
of change of a value function with respect to one of its arguments. We revisit a classic result
on economies of scale for a congestion—prone facility, using the flexibility of the Generalized
Envelope Theorem to provide a simpler, more intuitive proof.
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1. Introduction

Applied to cost curves, the Envel ope Theorem (see, e.g., Simon and Blume (1994)) states that
afirm'slong runtota cost (LRTC) curveisthe envelope of itsfamily of short run total cost curves,
where for the sake of illustration, we characterize the short run by some fixed employment of
capital. LRTC aso envelopesfamilies of (short run) total cost curves for which capital does vary
with output, but nonoptimally. But because the statement of the Envelope Theorem does not cover
this, it isnot aswidely appreciated. In thisnote, we provide amore general statement of the
Envelope Theorem which in the case of the cost curve application is more inclusive with respect to
short run cost curves, and demonstrate its usefulness in practical applications. Specifically, we
show that it permits a simpler, more intuitive approach than would otherwise be possible to the
problem of analyzing economies of scale for the output of a congestible facility.

2. The Generalized Envelope Theorem
We begin with a statement of the standard Envelope Theorem.

Envelope Theorem. Let ¢y, k) bea C! function of k 0 R" and the scaar y, and consider the
problem n;(in @y, k). Let K (y) beaminimizer, and assumethat K (y) isa C* function.

Definev(y) = ¢y, K'(y)), and let y, be some particular value of y. Then

dv(Yo) _ 9¢Yo, K'(Yo))
dy oy

In the cost curve application, Y, issome particular level of output, k is employment of capitd,
@(Nisashort run total cost function, and the value function v(l)listhe long run total cost function.
The Envelope Theorem asserts that long run marginal cost at y, can be evaluated as short run
margina cost a Y, provided the latter is determined from a short run total cost relationship for
which capital isheld fixed at the level K*(y,) which minimizes cost for .

Continuing with the cost curve application, now consider the cost relationship
w(y) = @y, k(y)), where k(y) isany C! function such that k(y,) = K'(y,). Thefact that k(y) is
smooth and satisfies k(y,) = K'(y,) means that v(y) envelopes w(y), and that w'(y,) providesan
aternative way of evaluating long run margina cost a y,. Ingenerdl,

Generalized Envelope Theorem. Let ¢y, k) bea C* function of k [0 R" and the scalary, and
consider the problem n?in @y, k). LetK (y) beaminimizer, and assumethat K'(y) isa C*

function. Let y, be some particular value of y, and let k(y) beany C! function such that
k(o) = K'(Yo)- Define v(y) and w(y) by v(y) = @y, K'(y)) and w(y) = ¢y, k(y)). Then
dv(yo) _ dw(y,)
dy dy

Proof, 00 = 00 S0 5 Ao E06)) (6 Bb) - 280 €06), gnge
dy oy = dy EY
W =0for i =1,...,n by thefirst order conditions. At the sametime,



aw(ys) _ 9AYo, k(Yo)) i 9WYo, K(¥o)) gki (Yo)

dy % i=1 o dy
_ dqa(yo;; (o)) , :3 ﬁ(p(yo €0)) g (;O) O
since k(y,) = K'(y,). Againusing thefirst order conditions M =0fori=1..n,
(2) reducesto
AW(Yo) _ I0Yo. K (¥o))
dy oy
_ dv(yo) QE.D.
dy

Remarks. The standard Envelope Theorem isthe special case of the preceding theorem in
which the function k(y) used to define w(y) is the constant function for which k(y) = K'(y,) for all

y. Thetheorem isageneraization of the Envelope Theorem for unconstrained static optimization
problems. A corresponding generalization is possible for envelope theorems for constrained static
optimization problems, including those with inequality constraints, aswell as dynamic optimization
problems.

3. Application of the Theorem

In this section, we will demonstrate the usefulness of the theorem for the problem of
identifying what type of local returns to scale characterize the output of a congestible facility. The
reason why this problem isimportant is that the type of local returns to scale determines whether
the facility will incur adeficit or asurplus (or break even) under the socially optimal price and
capacity (Mohring and Harwitz (1962), Strotz (1965)). Since the optimum is achieved with long
run marginal cost pricing, the result is essentially the standard result on the profitability of long
run marginal cost pricing extended to commodities for which consumers play a producing role by
providing someinputs directly. The best-known example is consumer-supplied travel timein the
case of highway trips.

The most common cost specification for congestible facilities is to assume a short run total
cost relationship of the form

Ay, k) = yf (y/k) +9(k), @)
wherey isoutput and k is a scalar measure of capacity. g(k) isthe cost of providing a capacity of
k,and f(y/k) whichisoften called user cost, is short run average variable cost. Equation (2) is
used in the standard highway model, in which y istrip output and f ([))includes the time cost of a
trip. Equation (2) appliesto any congestible facility for which user cost is scale-invariant in the
sensethat if twice the output is produced with twice the capacity, there is no effect on user cost.

Itiswell known in the highway literature that, under the structurein (2), the elagticity of long
run total cost with respect to output is aternatively lessthan, equal to, or greater than one according
to whether there are increasing, constant, or decreasing returns to providing capacity. Theintuition
for thisresult is that short run total variable cost (i.e., total user cost) is homogeneous of degree
oneiny and k, working neither towards economies nor diseconomies of scale, leaving the outcome
to the nature of returnsto scale in capacity provision. The actual proof of the result runs as

follows, where K*(y) and v(y) are as previoudly defined, E.y denotes the elasticity of long run total
cost with respect to y, and sgn before an expression indicates its sign:



sgn(E,.y —1) = sgn(v'(y)y/M(y) -1
= sgn(V'(y)y — v(y)). ©)
Using V'(y) =@y, K'(y)) aswell as equation (2), (3) can be rewritten
sgn(Ey;y —1) = sgn(y2 ' (y/K ())/K () — 9(K'(¥)))
= sgn(K' () g’ (K'(¥)) — 9(K' (1)),
since the first order condition for (2) is — (y/k)2 f'(y/k) + g'(k) = 0. Thus,
Sgn(Ev:y -1) = sgn(Eg:k -1,
where Egx isthe elagticity of capacity costs with respect to capacity evauated at k' (y).

The Generalized Envelope Theorem permits asimpler, more intuitive derivation of this resuilt.
Asaprdiminary to the derivation, we point out that, like the Envel ope Theorem, the Generalized
Envelope Theorem holdsin terms of eagticities, so that in the notation of the theorem,

Eviy,):y = BEw(y,):y- Thus, inthe present application, we can consider sgn(E,y, )., —1), whichis
equivaent to comparing w(ty,) to tw(y,) for tinfinitesmally different from 1. Turning to the
actual proof, the function k(y) we use to define w(y) is k(y) = k*(y,)y/y,. Thisexploitsthe
specia structure of (2) by having k vary proportionately toy. We have
W(tYo) = tW(Yo) = tyo f(tyo/tk* (Yo)) + 9tk (Vo))
= Yo F(Yo/ K (Yo)) +9(K'(¥o))]
= gtk (Yo)) —ta(K" (o))

which hasthe samesign as E —1, where Eg, isevauated a k = K'(y,).

Not only isthissimpler, but it has the same structure as the intuitive argument given above.

4. Conclusion
A generalized envel ope theorem has been presented which has the Envelope Theorem asa
gpecial case. Relative to the Envelope Theorem, it provides greater flexibility in determining the
rate of change of a value function with respect to one of its arguments. Werevisited aclassic
result on economies of scale for a congestion-prone facility, using the flexibility of the Generalized
Envelope Theorem to provide asimpler, more intuitive proof.
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