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Abstract

A generalized envelope theorem is presented which has the Envelope Theorem as a special
case. Relative to the Envelope Theorem, it provides greater flexibility in determining the rate
of change of a value function with respect to one of its arguments. We revisit a classic result
on economies of scale for a congestion−prone facility, using the flexibility of the Generalized
Envelope Theorem to provide a simpler, more intuitive proof.
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1.  Introduction
Applied to cost curves, the Envelope Theorem (see, e.g., Simon and Blume (1994)) states that

a firm's long run total cost (LRTC) curve is the envelope of its family of short run total cost curves,
where for the sake of illustration, we characterize the short run by some fixed employment of
capital.  LRTC also envelopes families of (short run) total cost curves for which capital does vary
with output, but nonoptimally.  But because the statement of the Envelope Theorem does not cover
this, it is not as widely appreciated.  In this note, we provide a more general statement of the
Envelope Theorem which in the case of the cost curve application is more inclusive with respect to
short run cost curves, and demonstrate its usefulness in practical applications.  Specifically, we
show that it permits a simpler, more intuitive approach than would otherwise be possible to the
problem of analyzing economies of scale for the output of a congestible facility.

2.  The Generalized Envelope Theorem
We begin with a statement of the standard Envelope Theorem.

Envelope Theorem.  Let φ( , )y k  be a C1 function of k Rn∈  and the scalar y, and consider the
problem min  φ( , ).y k   Let k*(y) be a minimizer, and assume that k*(y) is a C1 function.

k
Define v(y) = φ(y, k*(y)), and let yo be some particular value of y.  Then
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In the cost curve application, yo is some particular level of output, k is employment of capital,
φ( )⋅  is a short run total cost function, and the value function v( )⋅  is the long run total cost function.
The Envelope Theorem asserts that long run marginal cost at yo can be evaluated as short run
marginal cost at yo,  provided the latter is determined from a short run total cost relationship for
which capital is held fixed at the level k y*( )o  which minimizes cost for yo.

Continuing with the cost curve application, now consider the cost relationship
w y y k y( ) ( , ( )),≡ φ  where k y( ) is any C1 function such that k(yo) = k*(yo).  The fact that k y( ) is
smooth and satisfies k(yo) = k*(yo) means that v(y) envelopes w(y), and that ′w y( o ) provides an
alternative way of evaluating long run marginal cost at yo.  In general,

Generalized Envelope Theorem.  Let φ( , )y k  be a C1 function of k Rn∈  and the scalar y, and
consider the problem min  φ( , ).y k   Let k*(y) be a minimizer, and assume that k*(y) is a C1

  k
function.  Let yo be some particular value of y, and let k y( ) be any C1 function such that
k(yo) = k*(yo).  Define v(y) and w(y) by v(y) = φ(y, k*(y)) and w(y) = φ(y, k(y)).  Then
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since k(yo) = k*(yo).  Again using the first order conditions 
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Remarks.  The standard Envelope Theorem is the special case of the preceding theorem in
which the function k y( ) used to define w(y) is the constant function for which k(y) = k*(yo) for all
y.  The theorem is a generalization of the Envelope Theorem for unconstrained static optimization
problems. A corresponding generalization is possible for envelope theorems for constrained static
optimization problems, including those with inequality constraints, as well as dynamic optimization
problems.

3.  Application of the Theorem

In this section, we will demonstrate the usefulness of the theorem for the problem of
identifying what type of local returns to scale characterize the output of a congestible facility.  The
reason why this problem is important is that the type of local returns to scale determines whether
the facility will incur a deficit or a surplus (or break even) under the socially optimal price and
capacity (Mohring and Harwitz (1962), Strotz (1965)).  Since the optimum is achieved with long
run marginal cost pricing, the result is essentially the standard result on the profitability of long
run marginal cost pricing extended to commodities for which consumers play a producing role by
providing some inputs directly.  The best-known example is consumer-supplied travel time in the
case of highway trips.

The most common cost specification for congestible facilities is to assume a short run total
cost relationship of the form

φ( , ) ( / ) ( ),y k = +yf y k g k (2)

where y is output and k is a scalar measure of capacity.  g k( ) is the cost of providing a capacity of
k, and f y k( / )  which is often called user cost, is short run average variable cost.  Equation (2) is
used in the standard highway model, in which y is trip output and f ( )⋅  includes the time cost of a
trip.  Equation (2) applies to any congestible facility for which user cost is scale-invariant in the
sense that if twice the output is produced with twice the capacity, there is no effect on user cost.

It is well known in the highway literature that, under the structure in (2), the elasticity of long
run total cost with respect to output is alternatively less than, equal to, or greater than one according
to whether there are increasing, constant, or decreasing returns to providing capacity.  The intuition
for this result is that short run total variable cost (i.e., total user cost) is homogeneous of degree
one in y and k, working neither towards economies nor diseconomies of scale, leaving the outcome
to the nature of returns to scale in capacity provision.  The actual proof of the result runs as
follows, where k*(y) and v(y) are as previously defined, Ev y:  denotes the elasticity of long run total
cost with respect to y, and sgn before an expression indicates its sign:
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s sgn E gn v y y v yv:y( 1) ( /− = ′ −( ) ( ) )1
 = ′ −sgn v y y v y( ( ) ( )). (3)

Using ′ =v y( )  φy(y, k*(y)) as well as equation (2), (3) can be rewritten

s f ygn E sgn yv:y( 1)− = ′( ( /2 k*(y))/k*(y) – g(k*(y)))

 = sgn(k*(y) ′g (k*(y)) – g(k*(y))),
since the first order condition for (2) is  – ( / ) ( / ) ( ) .y k f y k g k2 0′ + ′ =   Thus,

s Eg kgn E sgnv:y( 1)− = −( ),: 1

where Eg k:  is the elasticity of capacity costs with respect to capacity evaluated at k*(y).
The Generalized Envelope Theorem permits a simpler, more intuitive derivation of this result.

As a preliminary to the derivation, we point out that, like the Envelope Theorem, the Generalized
Envelope Theorem holds in terms of elasticities, so that in the notation of the theorem,
E Ev y y w y y( ): ( ): .

o o
=   Thus, in the present application, we can consider sgn Ew(y(

o ): ),y −1  which is

equivalent to comparing w ty( )o  to tw y( )o  for t infinitesimally different from 1.  Turning to the
actual proof, the function k(y) we use to define w(y) is k y k y y y( ) ( ) / .*= o o   This exploits the
special structure of (2) by having k vary proportionately to y.  We have

w ty tw y ty f ty tk y g tk y( ) ( ) ( / ( )) ( ( ))* *
o o o o o o− = +

− + t y f y k y g k y[ ( / ( )) ( ( ))]* *
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which has the same sign as Eg k: ,−1  where Eg k:  is evaluated at k k y= *( ).o
Not only is this simpler, but it has the same structure as the intuitive argument given above.

4. Conclusion
A generalized envelope theorem has been presented which has the Envelope Theorem as a

special case.  Relative to the Envelope Theorem, it provides greater flexibility in determining the
rate of change of a value function with respect to one of its arguments.  We revisited a classic
result on economies of scale for a congestion-prone facility, using the flexibility of the Generalized
Envelope Theorem to provide a simpler, more intuitive proof.
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