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Abstract

This paper considers a voluntary contribution threshold game in which a group benefit is
realized only if the number of contributors at least reaches a threshold level, and analyzes the
effect of the threshold level on the likelihood that the group benefit is realized. Changes in
the threshold level in interior symmetric equilibrium have two effects on the likelihood, the
direct, threshold effect and the indirect, strategic effect. While the direct effect is always
negative, the indirect effect can be either positive or negative. And the net effect is not
necessarily negative.
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1. Introduction 
 
Many researchers (e.g., Bliss and Nalebuff, 1984; Palfrey and Rosenthal, 1991; Bilodeau and 
Slivinski, 1996; Xu, 2001) have studied voluntary contribution threshold games. In these games, 
a group benefit or goal is realized only if the number of contributors in the group at least passes 
over a threshold level. These authors have focused on the free rider problem for a given threshold 
level. In this paper I focus on the effect of different threshold levels on the likelihood that the 
group benefit is realized.  
 It seems plausible, as conventional wisdom would suggest, that the group benefit, which 
is a pure public good, is less likely to be provided, when the threshold level increases. Suppose 
that a group project is produced with 50 percent chance if it takes at least two contributors to 
produce. Will increases in the threshold level (such that the project takes, say, at least three or 
more contributors to produce) lead to a greater likelihood that the group project will be 
completed? The immediate response of an average person would probably be No. In this paper I 
challenge the conventional wisdom and show that the answer to the above question is not so 
straightforward.  

Real-world examples abound where a threshold level must be passed over before a 
benefit is received by everyone in a group. Many elections, from the presidential to local ones, 
involve a simple majority voting; the candidate getting more of the votes is elected to the office. 
There are also many cases of a majority of 2/3 voters to pass an agenda. Articles 73 and 79 of the 
German Fundamental Law (Constitution) require a majority of 2/3 voters to privatize some 
essential public services such as the postal service, telecommunications, and railways. And the 
Charter of the U. N. requires a majority of 2/3 to pass the budget. In some cases, unanimity of all 
players is called. For example, all the five members in the U. N. security council must vote 
unanimously (with an "abstain" vote counted as an invalid vote) to pass a resolution. The 
Portuguese Constitution requires the absolute majority of all the potential voters for 
privatization. And, in the Italian law on jointly owned block of flats, investment improving 
expenditures require the unanimity of the owners (Marrelli and Stroffolini, 2001). 
 In each of the above examples, the threshold level required for the realization of the 
group benefit is fixed. Because the group benefit is a public good, each player has an incentive to 
be a free rider. Once the threshold level is passed over, additional contributors, while personally 
incurring costs of contribution, add nothing to the provision of the public good. One interesting 
and important question is: If the threshold level is lowered for a given group of fixed size, will 
there exist equilibria in which the group benefit be more likely to be privately provided?1  
 The answer to the above question has great implications on issues of significant 
importance. For instance, the Alameda County Congestion Management Agency (1999) endorses 
the concept of a state constitutional amendment that would enable voters of the county and other 
counties in California to approve transportation sales tax measures by a simple majority, rather 

                                                 
1 If players have conflicting interests, then a higher threshold level may render it harder to come up with the 
required number of contributors. This can be most clearly seen by looking at a two-player zero-sum game where a 
project benefits one player but hurts the other. If the threshold level is one, then the player who benefits from the 
project will contribute if his cost of contribution is less than the benefit. If the project needs contributions from both 
players, then it will never be completed, as the player who is to be hurt by the project will always refuse to 
contribute. 
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than the current 2/3 majority. Clearly, the Agency believes that lowering the level of threshold to 
pass a measure is more likely to get the measure passed. The critical problem here is whether 
voters act strategically, i.e., if their voting behavior will change with the constitutional 
amendment. If their voting behavior is invariant to the amendment, it does make sense that a 
lower threshold level is more conducive to the passage of the measure. But there is no reason to 
believe that voters do not behave strategically (Ledyard, 1981; Palfrey and Rosenthal, 1983). If 
voters do behave strategically, and furthermore, if each voter becomes less likely to vote for the 
transportation sales tax measure after the amendment, then there is no presumption that the 
measure will be more likely to be passed.2 

In the paper I consider a situation in which all players benefit equally from a group 
project or good. But it takes at least as many players to make voluntary contributions as required 
by the threshold level to produce the group benefit. Contribution is costly, and the cost of 
contribution is solely borne by the contributor himself; no side payments are allowed. A player 
obtains the highest payoff (as long as the threshold level is less than the group size) as a 
successful free rider; the group benefit, as a pure public good, is produced without the player's 
contribution.  

As argued by Palfrey and Rosenthal (1991), for models of this kind of public good 
problem to be applicable to natural settings, they should incorporate some element of private 
information. In reality, each player will generally be incompletely informed about certain 
characteristics of other players. In the paper I, following Palfrey and Resenthal (1991), model 
this uncertainty by assuming that each player's cost of contribution, relative to the group benefit, 
is the player's private information. Each player is uncertain about other players' costs of 
contribution which are independently drawn from a common distribution. The focus of the paper 
is on the effect of the threshold level on the probability that the group benefit is realized. 

Clearly, if the threshold level is two or above, there is always an equilibrium in which all 
players do not contribute. If each player thinks that none of the other players will contribute, it is 
thus in the player's best interest not to contribute, either. In the paper I focus on analyzing 
interior symmetric equilibrium in which each player ex ante contributes with the same positive 
probability. 

Changes in the threshold level in interior symmetric equilibrium have two effects on the 
likelihood that the group benefit is realized. One is the direct, threshold effect. Holding fixed 
each player’s probability to contribute, when the threshold level increases, the group good is less 
likely to be provided, as the likelihood that the group good is provided is the probability that the 
number of contributors in the group at least reaches the threshold level. In other words, the direct 
effect is always negative. 

The other is the indirect, strategic effect. Players' contribution decisions are dependent. In 
equilibrium, each player contributes if and only if his cost of contribution is no greater than a 
cutoff level. The cutoff level is equal to the benefit the player derives from the additional 
availability of the group good, which is the benefit of the group good times the probability that 
the player, if contributing, will put the group over the threshold level. The equilibrium 
probability that each player contributes is a function of the threshold level. When the threshold 
level increases, each player may be either more or less likely to contribute. As a result, the 
indirect, strategic effect can be either positive or negative.  

                                                 
2 As the referee points out, not all referenda will fit into the public good setup. This would be the case when there is 
an opposing party to a referendum. One such example is the referendum of separating Quebec from Canada; there 
were citizens for it, but also citizens against it. My analysis does not apply to these cases, as I illustrate in footnote 1. 
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The (net) effect, being the sum of the direct effect and the indirect effect, of the threshold 
level in interior symmetric equilibrium is thus not necessarily negative on the likelihood that the 
group benefit is realized. Indeed, it is possible that the indirect, strategic effect is positive and 
dominates the negative direct effect. As a result, as the threshold level increases, the group 
benefit is more likely to be privately provided. 
  The remainder of the paper is structured as follows. Section 2 sets up and analyzes the 
model, and Section 3 contains the conclusion. 
 
 

2. The model 
 
A group consists of N > 1 players. A group benefit or goal is realized if at least m ∈{1, …, N} 
players contribute. Call m the threshold level. 
 The group benefit is equally enjoyed by all players in the group and is normalized to be 1. 
Each player's cost of contribution, however, is his private information. Let ci be player i's cost of 
contribution. Each player knows his own cost of contribution ci ∈ [c , c ], but knows only about 
the distributions of other players' costs of contribution. For simplicity, assume that players' costs 
of contribution are independently and identically distributed according to a cumulative 
distribution function F(c), with the corresponding density function f(c) = F′(c) > 0, for c ∈ [ c , 
c ]. Assume that c  < 1 < c . This assumption implies that each player’s ex ante probability to 
contribute is strictly less than 1. 
 Each player is risk neutral, and a player's payoff, when his cost of contribution is c, is as 
follows: 
 1 - c  if he contributes and at least m - 1 others contribute; 

1 if he does not contribute and at least m others contribute; 
               - c if he contributes and less than m - 1 others contribute; 
       0 if he does not contribute and less than m others contribute. 

A pure strategy for each player is a mapping from his cost of contribution [c , c ] to his 
action set, {"contribute", "don't contribute"}. Denote si the strategy of player i, and s-i = {s1, s2, 
…, sN-1, sN} the strategies of all players except player i.  

Players' behavior is consistent with conditions for a Bayesian Nash equilibrium. A 
Bayesian Nash equilibrium is a profiles of strategies {s1*(.), …, sN*(.)} such that given other 
players strategies, s-i*(.), strategy si*(ci) maximizes player i's expected payoff, for all possible 
value of ci and for all i.  

Since players are symmetric ex ante, it is natural to focus on symmetric equilibrium. Let 
p be the subjective probability that player i thinks each of the other players contributes. Let k be 
the number of contributors in the residual group of N – 1 players. If player i contributes, his 
payoff is Prob(k ≥ m – 1) - ci. If he does not contribute, his expected payoff is Prob(k ≥ m). So, 
player i contributes if and only if ci ≤ c*(m, p), where c*(m, p) = Prob(k = m – 1) = CN

m
−
−

1
1 pm-1(1- 

p)N-m. 
In other words, player i's equilibrium strategy abides by a cutoff rule: He contributes if 

and only if his cost of contribution is no greater than the expected benefit he derives from the 
additional availability of the public good, which is the probability that m – 1 others contribute 
(see also Palfrey and Rosenthal, 1991).  

In symmetric equilibrium,  
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p = F(CN
m
−
−

1
1 pm-1(1 - p)N-m).                                      (1) 

From (1), we can make the following observations. First, p is a function of m. Second, for 
m = 1, there is a unique equilibrium p > 0. Note that, even though the public good can be 
provided by a single player, there are chances that more than one player contributes at the same 
time. This happens because each player is uncertain about other players' costs of contribution 
(which are assumed to be identically and independently distributed), and each contributes if and 
only if his cost of contribution does not exceed the cutoff level. Third, for m > 1, there is always 
an equilibrium p = 0. If the group good takes at least two contributors to produce and each player 
believes that no one else will contribute, then it is in the player’s best interest not to contribute. 
In the analysis below, I focus on interior symmetric equilibrium in which each player ex ante 
contributes with the same positive probability. Further, there may be multiple solutions to (1). 
Some of the equilibria may be stable while others may be not.  

A Bayesian Nash equilibrium is expectationally stable if the following tâtonnement 
process converges to equilibrium p (Palfrey and Rosenthal, 1991). Suppose that player i expects 
that all other players deviate their contributing probability from p to p'. The cutoff level for 
player i to contribute then is c*(m, p') =CN

m
−
−

1
1 p'm-1(1- p')N-m. Hence, the ex ante probability that 

player i contributes is G(p') = F(CN
m
−
−

1
1 p'm-1(1- p')N-m). p is an expectationally stable equilibrium 

(ESE) if there exists an interval PE(p) ⊂ [0, 1] containing p such that, for all p' ∈ PE(p), [p' - 
G(p')](p' - p) > 0 if p' ≠ p. Dividing both sides of the above inequality by (p' - p)2, we have [p'- 
G(p')]/(p' – p) > 0, which can be rewritten as [G(p') – p + p - p']/(p' – p) > 0. Note that p = G(p). 
Plugging this into the last inequality and letting p' → p, it follows immediately that for p to be an 
ESE, we must have G'(p) < 1. 
 ESE has a nice property. If the group benefit is not 1 but B, then one can easily see that in 
symmetric equilibrium, p = F(CN

m
−
−

1
1 pm-1(1 - p)N-mB). It can be easily shown that dp/dB > 0 in 

ESE. In other words, for a given threshold level, each player is more likely to contribute as the 
group benefit increases. 

When the threshold level is m, the probability that the group benefit is realized is  
P(m) = pN + CN

N −1 pN-1(1 - p) + … + CN
m pm(1- p)N-m.                       (2) 

Recall that in the above equation, p is a function of m. Clearly, 
 dP/dm = ∂P/∂m + ∂P/∂p dp/dm.              (3) 
The first term captures the direct effect of the threshold level on the likelihood that the group 
benefit is realized, and the second term captures the indirect effect.  

Note that, for a given p, P(m + 1) – P(m) = - m
NC pm(1- p)N-m < 0. In other words, ∂P/∂m < 

0. This is the direct, threshold effect of the threshold level on the realization of the group benefit. 
The direct effect is always negative in that a higher threshold level leads to a lower likelihood 
that the group benefit is realized. 

The indirect, strategic effect describes the effect on P of m through p. Intuitively, for a 
given threshold level, if each player is more likely to contribute, then the group benefit is more 
likely to be realized, that is, ∂P/∂p > 0. This can be formally proved as follows. Differentiating P 
with respect to p, we have ∂P/∂p = NpN-1 - CN

N −1 pN-1 + (N - 1)CN
N −1 pN-2(1- p) + … - (N - m - 

1)CN
m+1 pm+1(1- p)N-m-2 + (m + 1)CN

m+1 pm(1- p)N-m-1  - (N - m)CN
m pm(1- p)N-m-1 + mCN

m pm-1(1- p)N-m  
= mCN

m pm-1(1- p)N-m, where use is made of the fact that (N - i)CN
i  = (i + 1)CN

i+1 . 
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The sign of dp/dm can be obtained from (1). There are two ways of looking at it. The first 
is totally differentiating both sides of (1) with respect to p and m. It is easy to see that the sign of 
dp/dm is generally indeterminate. But a more instructive way is to compare c*(m + 1, p) with 
c*(m, p). Note that c*(m, p) > c*(m + 1, p) if and only if CN

m
−
−

1
1 pm-1(1- p)N-m > CN

m
−1 pm(1- p)N-m-1, 

or equivalently, if p < m/N. But there is no guarantee that this will be the case (see Example 1 
below). It implies that dp/dm can be either positive or negative. 

The result that dp/dm is ambiguously signed can be most clearly illustrated by looking at 
two-player contribution threshold games. Let p(m) be the solution to (1) when the threshold level 
is m. Then, for N = 2, p(1) satisfies that p(1) = F(1 – p(1)), and p(2) satisfies that p(2) = F(p(2)). 
Clearly, p(1) > p(2) if and only if 1 - p(1) > p(2). Let p(1) = α < 1/2, and p(2) = β < α = p(1). 
Note that for β < α < 1/2, β < 1 - α. It is easy to construct cumulative distribution functions such 
that F(1 - α) = α, and F(β) = β. 

On the other hand, let p(1) = α > 1/2, and p(2) = β > α = p(1). Then, β > 1 - α. It is easy 
to construct distributions such that F(1 - α) = α, and F(β) = β. 

If dp/dm < 0, then ∂P/∂p dp/dm < 0. Thus, the indirect effect and the direct effect work in 
the same direction. Consequently, as the threshold level increases, the group benefit is less likely 
to be realized.  

On the other hand, if dp/dm > 0, then ∂P/∂p dp/dm > 0. Thus, the indirect effect and the 
direct effect work in opposite directions. Moreover, if the direct effect dominates the indirect 
effect, there is an inverse relationship between the threshold level and the likelihood that the 
group benefit is realized. If the direct effect is dominated by the indirect effect, there is a positive 
relationship between the threshold level and the likelihood that the group benefit is realized.  

I demonstrate now by an example that, depending on cost distributions, the group benefit 
can be either more or less likely to be privately provided, as the threshold level increases. 
  
Example 1. Let N = 3. If m = 1, then p(1) satisfies that p(1) = F([1 - p(1)]2), and P(1) = p(1)3 + 
3p(1)2[1- p(1)] + 3p(1)[1- p(1)]2. If m = 2, then p(2) satisfies that p(2) = F(2p(2)[1 – p(2)]), and 
P(2) = p(2)3 + 3p(2)2[1- p(2)]. And if m = 3, then p(3) satisfies that p(3) = F(p(3)2), and P(3) = 
p(3)3.  
 If each player’s cost of contribution is uniformly distributed over the interval [0, 3/2], 
then F(c) = 2c/3. Simple algebra shows that p(1) ≈ 0.314, p(2) = 1/4, and p(3) = 0. It can also 
easily be verified that all p(i), i = 1, 2, 3, are ESE. Given p(1) > p(2) > p(3), it follows 
immediately from (3) that P(1) > P(2) > P(3). Indeed, it can be easily verified that P(1) ≈ 0.677, 
P(2) = 0.15625, and P(3) = 0.   

On the other hand, for cost distribution such that p1 = 2/5 = F(9/25), p2 = 3/4 = F(3/8), 
and p3 = 19/20 = F(361/400), P(1) = 0.784, P(2) = 0.84374, and P(3) = 0.857375. It is easy to 
show that p(2) is an ESE. For p(3) to be an ESE, it is required that 2p(3)f(p(3)2) = 19/10 
f(361/400) < 1, or f(361/400) < 10/19. 

 
 

3. Conclusion 
 
This paper considers a voluntary contribution threshold game in which a group benefit or good is 
realized only if the number of contributors at least reaches a threshold level, and analyzes the 
effect of the threshold level on the likelihood that the group benefit is realized. Changes in the 
threshold level in interior symmetric equilibrium have two effects on the likelihood, namely, the 
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direct, threshold effect and the indirect, strategic effect. The direct effect is always negative. The 
indirect, strategic effect can be either negative or positive, depending on whether each player is 
less or more likely to contribute as the threshold level increases. There is generally no inverse 
relationship between the threshold level and the likelihood that the group benefit is realized. 
Laboratory experiment can be conducted to test the relationship.  
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