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Abstract

We consider the relation between strategy—proofness of resolute (single—valued) social
choice functions and its property which we call Non—-negative association property (NNAP)
when individual preferences over infinite number of alternatives are continuous, and the set
of alternatives is a metric space. NNAP is a weaker version of Strong positive association
property (SPAP) of Muller and Satterthwaite(1977). Barbera and Peleg(1990) showed that
strategy—proofness of resolute social choice functions implies Modified strong positive
association property (MSPAP). But MSPAP is not equivalent to strategy—proofness. We shall
show that strategy—proofness and NNAP are equivalent for resolute social choice functions
with continuous preferences.
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1 Introduction

We consider the relation between strategy-proofness of resolute (single-valued)
social choice functions (or voting rules) and its property which we caft-
negative association property (NNARhen individual preferences over infinite
number of alternatives are continuous, and the set of alternatives is a metric space.
NNAP is a weaker version oftrong positive association property (SPA#%)
Muller and Satterthwaite (197%) Barbera and Peleg (1990) showed that strategy-
proofness of resolute social choice functions impiesdified strong positive as-
sociation property (MSPAPBut MSPAP is not equivalent to strategy-proofness.
NNAP for social choice functions is the following condition:

Assume that for two distinct alternativesandy, there is an individ-
ual preference profila such that individuals in a group preferx to

y, individuals in a grouf®’ are indtterent betweerx andy, individ-
uals in a grous” prefery to x and a social choice function chooses
X. Consider another profile’ such that individuals irs preferx to

y, individuals inS’ preferx to y or their preferences are identical to
those au, then the social choice function does not chopaéu'.

We shall show that strategy-proofness and NNAP are equivalent for resolute social
choice functions with continuous preferences. This result is an extension of the
works of Muller and Satterthwaite (1977), Barbera and Peleg (1990) and Tanaka
(2001Y.

2 Notations and definitions

Notations and terminologies are borrowed from Barbera and Peleg (1990). The
set of alternatives is denoted By which is a metric space. The metric of

is denoted byd. N = {1,2,...,n} is the finite set of individuals witm > 2.

The individuals are indexed by individualj and so on, and the alternatives are
represented by, y, zand so on. The preference of individualver the alternatives

is represented by, € U, whereU is the set of continuous real-valued utility

DMuller and Satterthwaite (1977) showed that strategy-proofness and strong positive associ-
ation property are equivalent for resolute social choice functions with unrestricted domain and
linear (strict) individual preferences.

2In Tanaka (2001) we have shown that strategy-proofness is equivalgeh&salized mono-
tonicity, which is similar to NNAP in this paper, for resolute social choice functions with unre-
stricted domain and general individual preferences which allovifierdince.
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functions one7. A profile of the individual preferences is denoted bwytdity
profile such asu = {u;--- ,un} € UN, whereUN is the set of all utility profiles for
N, and ifu e UN andj € N thenu; is the j-th component ofi. (1 = u/u! denotes
the profile whereu] = u; for all j # i, anddj = u'.

A social choice function (or voting rule) is a functidn: UN = 7. When
a social choice function choosg&sat a profileu, we denotef (u) = x. The range
of f is denoted by ¢. We call the alternative which is chosen by a social choice
function thewinner of the social choice function. We consider resolute social
choice functions which choose only one of the alternatives at every profile, and
we assume that has at least three elements.

Suppose that at a utility profile a social choice function choose&sand at
another profileu™= u/u! it choosey. If u}(x) > u'(y) for individuali, the social
choice function is manipulable by him atby u; because he can make the social
choice function choos& by misrepresenting a utility functiom when his true
utility function is ul. Similarly, if ui(y) > u(x) for individual i, the social choice
function is manipulable by him atby u!.

Strategy-proofnessif a social choice function is not manipulable by any indi-
vidual at every utility profile, it isstrategy-proof

Strong positive association property (SPAPMuller and Satterthwaite (1977)
andmodified strong positive association property (MSPAPBarbera and Peleg
(1990) are defined as follows:.

Strong positive association property (SPAP)A social choice function satisfies
SPAP if for everyu € UN,i € N, ul € U, if f(u) = xand u(x) = u(y) =
ul(x) = ul(y), for ally e r¢], then f (u/ud) = x.

Modified strong positive association property (MSPAP)A social choice func-
tion satisfies MSPAP if for every € UN,i € N, u! € U, if f(u) = x and
[u(X) 2 ui(y) andy # x = u'(x) > ul(y), for ally € r], then f (u/ul) = x.

SPAP is not necessarily satisfied by a strategy-proof social choice function. Bar-
bera and Peleg (1990) showed that strategy-proof social choice functions satisfy
MSPAP. But the converse does not hold as the following example shows.

An example Consider a society with two individuals 1 and 2, and there are four
alternativesx, y, zandw. We assume that at a utility profile uy(x) = u(y) =
Ur(2) = ur(w), ux(2) < u(X) < ux(y) < up(w) and f(u) = x, at another profile



u, up(x) = ui(y) = Ui(2 = uj(w), uy(w) < uy(y) < Uy(X) < uy(2) and f(u') =y,

and at all other profiles the social choice function chooses one of individual 1's
most preferred alternatives. This social choice function does not violate MSPAP
because betweanandu’ ux(2) < ux(x) is changed tai,(x) < u,(2), and between

u andu u(w) < uy(y) is changed tan(y) < ux(w). But it is manipulable by
individual 2 atu by u;, and also manipulable by him atby u,.

Now we definenon-negative association property (NNAP)

Non-negative association property (NNAP)Suppose that there is a utility pro-
file u € UN such that for alternativesandy (X # y)

(1) individuals in a grous (S c N): u;(X) > ui(y)
(2) individualsinagrou’ (S’ c N, S’ NS = 0): u(X) = ui(y)
(3) others (grou®”): ui(y) > ui(x)

and a social choice function chooseéf (u) = x). Letu’ € UN be a profile
such that

(1) individuals inS: u/(x) > u/(y)

(2) individuals inS": u/(x) > u/(y) or their utility functions do not change
(U(x) = ui(x) for all x € &)

Then, the social choice function does not chopaeu’ (f(u’) # ).

3 Equivalence of NNAP and strategy-proofness

We show the following theorem.

Theorem 1. Non-negative association property (NNAP) and strategy-proofness
for social choice functions are equivalent.

We prove this theorem by two steps.
Step 1. Strategy proof social choice functions satisfy NNAP.

In the following proof we use notations in the above definition of NNAP. This
proof is somewhat complicated. Thus we use some graphs.
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Figure 1: Utility functionv;(t) for individuals inSu &’
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Figure 2: Utility functionv(t) for individuals inS”

Proof. Let individuals 1 tom (0 < m < n) belong toS, individualsm+ 1 to m’

(m < m < n) belong toS’, and individuals1 + 1 ton belong toS”.

(1) Leto be a positive real number, we define the neighborhoodsaoidy by
B(X,0) = {z € &/|d(X,2) < 6} andB(y, ) = {z € &Z|d(y,2) < §}. Sincess/
is a metric space and the utility functions are continuous, we can make the
value of¢ be arbitrarily small such tha&(x, 5) andB(y, §) are disjoint, and
we haveu'(Xp) > U/(Yo) fori € SU S andui(yo) > Ui(Xo) fori € S” for

Xo € B(X,6), Yo € B(y, ).

For individuals inS andS’ we define the following utility functiofi:

vi(t) = d(t, & — B(X,9)) d(t, & — B(y, 9))

3)About those functions we are inspired by Barbera and Peleg (1990).
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d(t, x) + d(t, o — B(x, 9)) " 2[d(t,y) + d(t, o — B(y, 9))]



And for individuals inS” we define the following utility function:

d(t, & — B(x,6)) d(t, & — B(y, 9))

MO = 2dE ) + b o - Boco)] T AL y) + A6 - B(y.)

They are non-negative and continuous. These utility functions are illustrated
in Figure 1 and 2 in the one-dimensional case. Of course we do not assume
one dimensional space.

Let us consider a utility profile such that the utility functions of all indi-
viduals inS and S’ (denoted byj) arev;, and the utility functions of all
individuals inS” (denoted byk) arev.

Assuming that individual 1 belongs &) letv! be a utility profile such that
only the utility function of individual 1 changes fromn to v;, and sup-
pose that av* the social choice function chooses an alternative other than
x (f(v!) # X). Then, individual 1 has an incentive to report a false utility
function u; when his true utility function is;, becausex is the maximal
element forvy, and hence we havi(\V!) = x. By the same logic, when the
utility functions of individuals 1 taxf change fronu; to v; (denote such a
profile byv™), we havef (V™) = x.

(2) Next, letv"™* be a utility profile such that the utility function of individual
nY+1, as well as the utility functions of the finst individuals, changes from
Uny+1 1O V21, and supposé&(v™*1) € B(y, 8). Then, individuaht + 1 has an
incentive to report a false utility function,,; when his true utility function
IS Uny+1 becausely1(Yo) > Uns1(Xo) for Xo € B(X,6), Yo € B(y, ). On the
other hand, iff (V™+1) ¢ B(x, 6) U B(y, 6), individualnY + 1 has an incentive
to report a false utility functioni,y,; when his true utility function iy ,1
because/yy;1(X) > Virs1(2) = 0 for xg € B(X,6) andz € {&Z — B(X,6) U
B(y, 8)}. Therefore, we havé(V"*1) € B(x, 6). By the same logic, when the
preferences of all individuals change framto v;, we havef (v) € B(x, 6).

(3) Now, suppose that the individual utility functions change one by one yrom
to u/. Then, when the utility function of some individual changes, the win-
ner of the social choice function can not change directly figra B(X, §) to
y* € B(y, 3). If the social choice function choosgse B(y, 3) when the util-
ity function of an individual inS U S” (denoted byj) changes fronv; to u;,
individual j has an incentive to report a false utility functigrwhen his true
utility function is U becauser,(xo) > u’j(y*) for X € B(X,0), y* € B(y, ‘—;).
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On the other hand, if the social choice function chogges B(y, g) when
the utility function of an individual inrS” (denoted byk) changes frony
to uy, individualk has an incentive to report a false utility functiopwhen
his true utility function isv, becauses(y*) > Vk(Xo) for Xo € B(X,0), y* €
B(y, 2). Noticevi(y*) > 3 andvi(xo) < 3. See Figure 2.

It remains the possibility, however, that the winner of the social choice func-
tion changes fromxy, € B(X,6) throughw € {& — B(X,6) U B(y, g)} to

y* € B(y, g). Suppose that when the utility functions of some individu-
als have changed from to u/, the winner of the social choice function is
w e {7 — B(Xx, 6) UB(Y, g }, and further when the utility function of individ-
uall (e SU S orl € S”) changes frony, to uf, the winner of the social
choice function becomeg € B(y, 3). Sincevi(y*) > vi(w) for y* € B(y, 3)
andw € {.& — B(X, 6) U B(y, g)}, he can gey* by misrepresenting his utility
functionu’ when his true utility function is;. Noticev;(y*) > %, vj(w) £ %1
wi(y") > Z andv(w) < 1. See Figure 1 and 2. Therefore, if the social
choice function is strategy-proof, in the sequence of changes of individual
utility functions the winner of the social choice function does not change

from xo € B(x, 6) throughw € {7 — B(x,6) U B(y, $)} toy* € B(y, %), and
hence we must havl(u) #y.

©
Next we show the converse of Step 1.
Step 2. NNAP for social choice functions implies strategy-proofness.
Proof. Let u be a profile such that a social choice function choosggu) = x),

and assume that a social choice function which satisfies NNAP is manipulable.
Then, there is a case where, when the utility function of one individual (denoted by

i) changes fromy; to, for examplep! (denote such a profile by/ul), the winner
of the social choice function changes frorto y and we have;(y) > u(X).

Comparingu andu/u?, individuali prefersy to x atu and the utility functions
of other individuals are the same. Thus, those who prefery atu also preferx
toy atu/u', and the utility functions of individuals who are iriirent betweenx
andy atu do not change from to u/ul. From NNAP, if the social choice function
chooses< atu (f(u) = x), it does not choosg atu/u! (f(u/ul) # y). Therefore,
the social choice function must not be manipulable.

@)

We have completed the proof of Theorem 1.
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