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Abstract

I present an alternative approach for estimating hazard models that include flexible baseline
hazards and nonparametric unobserved heterogeneity, which avoids the computational
difficulties encountered by other researchers who have used this sort of model specification.
My method places restrictions on the differences of the parameters in a flexible baseline
hazard specification, which permits information from other time periods to be used to
estimate the parameters of a specific time period. This method is illustrated with an empirical
example.
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1 Introduction
As a practical matter, many applied researchers have reported difficulties
when attempting to estimate hazard models that contain flexible baseline
hazards and nonparametric unobserved heterogeneity (for example, Ham
and Rea (1987), Meyer (1990), and Baker and Rea (1998)).1 ,2 The source
of these computational problems is not completely understood. However,
these numerical obstacles can be overcome by placing more restrictions on
the hazard model. Specifically, parametric assumptions about either the
distribution of the unobserved heterogeneity or the shape of the baseline
hazard can be imposed on the model. For example, Meyer (1990) retained
the flexible baseline hazard specification in his model but assumed that the
unobserved heterogeneity had a gamma distribution.3 On the other hand,
an applied research could also assume a functional form for the shape of the
baseline hazard. For example, Ham and Rea (1987), using a discrete time
multiperiod logit specification, specify the baseline hazard in their hazard
model as a low order polynomial in duration. This assumption allowed
them to fit the nonparametric unobserved heterogeneity distribution to their
hazard model. The disadvantage of making these parametric assumptions is
that they may not necessarily be innocuous. Consequently, a method that
places weaker restrictions on the model might be more useful to empirical
researchers.
In this paper, I propose an alternative approach that can be used to

overcome these numerical problems. I use a discrete time hazard model
that is based on a multiperiod logit specification, which has been used by,
among others, Ham and Rea (1987) and Baker and Rea (1998). My model
will include a nonparametric unobserved heterogeneity distribution and a
flexible baseline hazard specification, with a large number of time-specific
parameters. I place restrictions on the parameters of the baseline hazard,
which will restrict how the slope of the baseline hazard can change. These
restrictions allow information from adjacent time intervals to be used to
estimate the parameters of other time intervals. This method improves the
estimates of the unobserved heterogeneity distribution and does not, for the
most part, have a large effect on the controls for observable heterogeneity.
In addition, it is also fairly straightforward to implement and, consequently,

1Meyer (1990) used a grouped proportional hazards model specification. Ham and
Rea (1987) and Baker and Rea (1998) used a multiperiod logit specification of the hazard
model.

2Flexible baseline hazards are sometimes referred to as nonparametric, piece-wise con-
stant or unrestricted baseline hazards in the literature.

3The unobserved heterogeneity distribution is usually chosen so that the likelihood
function will have a closed form expression that is easily estimated, for example, the
gamma and inverse-normal distributions.
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should be a useful addition to an applied econometrician’s tool kit.

2 Econometric Model

2.1 Specification of the Hazard Rate
I assume that the transition probability (i.e., the exit probability or hazard
rate) between states for individual j is a discrete process with the following
(logit) functional form

λj (t | θ) = 1

1 + exp (−yj (t | θ)) , (1)

where yj (t | θ) = xj (t)
0 β + hj (t, γ) + θ, xj (t) is a vector of controls for

observable heterogeneity, hj (t, γ) is the baseline hazard specification, with
Nγ parameters

³
γ1, γ2, ..., γNγ

´
, and θ denotes an unobserved heterogeneity

term. In this discrete time formulation, a flexible specification of the baseline
hazard is equivalent to a model with time-specific effects (Ham and Rea
(1987)).4

Since including nonparametric unobserved heterogeneity and a flexible
baseline hazard in the model presents computational problems, some ad-
ditional structure must be placed on one of these components to obtain
estimates of the unobserved heterogeneity distribution. My approach places
this additional information on the parameters of the baseline hazard. Specif-
ically, I restrict the differences in the parameters of the baseline hazard to lie
on a polynomial of order d+1. These restrictions allow for information from
some of the surrounding time intervals to be used to estimate the baseline
hazard at a particular point in time. Kiefer (1990) argued that in models
with a large number of interval-specific parameters it would be unlikely that
the parameters from adjacent intervals would vary a great deal. This sug-
gests that the information from some of the neighboring intervals can be
combined to improve the coefficient estimates in each interval and smooth
the pattern of variation across time intervals.
The restrictions imposed on the parameters of the baseline hazard are like

those used in smoothness priors for distributed lag models (Shiller (1973)).
Smoothness priors reflect prior information that an unknown function does
not change slope quickly. These restrictions are contained in a matrix (de-
noted Rd), which contains binomial coefficients in its non-zero entries. The
smoothness prior can be viewed as imposing stochastic restrictions on the
parameters of a function (Taylor (1974)). However, in this paper the restric-
tions placed on the baseline hazard will be exact, unlike Campolieti (2000).

4For a time polynomial specification hj (t, γ) =
NγP
i=1

γit
i.
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For example, if d = 1 the restriction matrix forces the coefficients in the
baseline hazard to lie on a second order polynomial.5 The principal benefit
of imposing exact restrictions is that it permits estimation with maximum
likelihood and, consequently, makes the model easier to implement for ap-
plied researchers.
The restriction matrix Rd will be of dimension Nγ×Nγ and have ijth

element

R(ij)d =

(
0 if j − i > d+ 1

(−1)j+d+1−i
³

d+1
j+d+1−i

´
otherwise

. (2)

The non-zero elements of the Rd matrix are the coefficients of a polynomial
of order d + 1. For example, if Nγ = 5 and d = 1 the Rd matrix will have
the following form

R1 =


1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2
0 0 0 0 1

 , (3)

and the baseline hazard, denoted h (t, γ, d) , will take the form (γ1 − 2γ2 +
γ3, γ2 − 2γ3 + γ4, γ3 − 2γ4 + γ5, γ4 − 2γ5, γ5).

2.2 Estimation of Hazard Model
The exit probability in equation (1) is used to form the likelihood function of
completed as well as censored or incomplete spells. Following Heckman and
Singer (1984), I assume that the unobserved heterogeneity terms are drawn
from a discrete distribution with Nθ points of support θ1, θ2, ..., θNθ

and
associated probabilities p1, p2, ..., pNθ

, where pNθ
= 1−PNθ−1

i=1 pi.
6

The density function for the completed spells can be written as

f∗j (Tj) =
NθX
i=1

pifj (Tj | θi) , (4)

5Using information from other time intervals to estimate the parameters of a particular
time interval imposes much weaker restrictions on the baseline hazard than parametric
baseline hazard specifications, which restrict the curvature of the baseline hazard in a
much more global fashion. In general, as the order of differencing, d, increases, the infor-
mation from more time intervals will be used to estimate the parameters of a particular
time interval. This suggests that it should be easier to fit the nonparametric unobserved
heterogeneity distribution to a hazard model with a flexible baseline hazard specification
as the order of d increases.

6The sampling distribution of the NPMLE is not known, except for a few special cases
(Van der Vaart (1996)).
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where fj (Tj | θi) =
Tj−1Q
k=1

(1− λj (k | θi))λj (Tj | θi) ,λj (t | θi) = 1
1+exp(−yj(t|θi)) ,

yj (t | θi) = xj (t)
0 β + hj (t, γ, d) + θi, i = 1, ..., Nθ is the number of mass

points in the unobserved heterogeneity distribution and d is the order of
differencing used to restrict the parameters of the baseline hazard. The ex-
pression for the censored spells can be computed in a similar fashion

S∗j (Tj) =
NθX
i=1

piSj (Tj | θi) , (5)

where Sj (Tj | θi) =
TjQ
k=1
(1− λj (k | θi)). Combining the expressions from

equations (4) and (5) the likelihood function for all the individuals in the
sample can be constructed andmaximized with respect to (θ1, ..., θNθ

, p1, ..., pNθ
, β, γ) .

3 Empirical Illustration
I estimated my hazard models using employment duration data from New
Brunswick, Canada. Baker and Rea (1998) used these data to study the
effect of a change in Canadian unemployment insurance (UI) eligibility rules
on employment durations. Baker and Rea (1998) were unable to fit a non-
parametric unobserved heterogeneity distribution to these data when their
model contained a flexible baseline hazard. There are 999 individuals in the
sample with a total of 1,518 employment spells. The controls for observ-
able heterogeneity used in this specification are listed in Table 1. Further
details about the construction of the eligibility variables as well as the other
explanatory variables can be found in Baker and Rea (1993,1998).
The first column of Table 2 contains the parameter estimates from a

hazard model with a flexible baseline hazard, which includes week-specific
dummy variables for weeks 2 to 40.7 The second column of this table con-
tains the estimates from a hazard model with a parametric specification of
the baseline hazard, i.e., a third order time polynomial in duration. The
remaining columns of Table 2 contain the estimates from the hazard mod-
els with restrictions on the parameters of the flexible baseline hazard, with
d = 1, 3, 5, 7 and 10.
The numerical problems encountered when fitting the nonparametric un-

observed heterogeneity distribution to a model with a flexible baseline spec-
ification can be seen in column (1) of Table 2. Specifically, the standard
error on one of the mass points in the unobserved heterogeneity distribution
was very large. In addition, most of the probability mass was also concen-
trated on the second mass point in the distribution. Imposing a parametric

7The durations were artificially censored at 40 weeks.
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assumption about the shape of the baseline hazard, i.e., a third order poly-
nomial in duration, stabilized the estimates of the unobserved heterogeneity
distribution (see column (2), Table 2).8

The estimates of the unobserved heterogeneity distribution were much
better behaved in the hazard models with restrictions on the flexible base-
line hazard (see columns (3) to (7) in Table 2). In particular, the standard
errors on the mass points from those specifications were smaller than the
unrestricted estimates in column (1). In addition, the t-statistics on the
mass points in the unobserved heterogeneity distribution tended to increase
as d was increased. This suggests that the estimation of the unobserved het-
erogeneity distribution becomes easier as d is increased and the information
from more adjacent time intervals is used to estimate the baseline hazard at
a particular point.
The parameter estimates on the controls for observable heterogeneity,

from the specifications with restrictions on the baseline hazard, were not
very sensitive to the order of differencing. However, the estimates for the
eligibility variables, i.e., EL1, EL2 and EL3, were, to varying degrees, more
sensitive to the specification of the baseline hazard.9

The estimate of EL1, which indicates that there is an increase in the
employment hazard in the week the UI eligibility criteria are satisfied, was
larger when the model included a parametric specification of the baseline
hazard. For small values of d, the estimates from the specifications with
restrictions on the parameters of the baseline hazard were very similar to
those from the specification with no restrictions on the flexible baseline haz-
ard. However, when d was increased to 7 and 10 the parameter estimates
for EL1 became more like those from the model with the parametric base-
line hazard. The estimates for EL2, which captures the effect of additional
entitlement on the employment hazard, from the specifications with the re-
stricted baseline hazards (in columns (3) to (7)) varied in magnitude without
any clearly defined pattern. In addition, most of the estimates for EL2 were
not statistically significant, so it is difficult to determine the effects of the
restrictions on this variable. The estimates on the control for EL3 were the
most sensitive to the specification of the baseline hazard. This sensitivity
may occur because, as Baker and Rea (1998) note, this variable may be an
additional control for duration dependence. Consequently, the restrictions

8This was the highest order polynomial supported by the data.
9Baker and Rea (1998) argued that a hazard model with a time polynomial controlling

for duration dependence would make it more difficult to separate the effects of the eligi-
bility rules on the employment hazard from measurement errors, such as digit preferences
or calendar effects. These measurement errors would be captured by the eligibility vari-
ables when the time polynomial is used to control for duration dependence. However, the
flexible baseline hazard would be better able to accommodate these measurement errors
and provider a ‘cleaner’ estimate of the effect of the eligibility rules.

5



on the baseline hazard might induce this variable to capture some of the
effects that the duration dependence specification was not able to absorb.
These estimates suggest that using the differencing restrictions on the

parameters of a flexible baseline hazard can improve the estimates of the
unobserved heterogeneity distribution and not have a large impact on the
inferences associated with the other covariates in the model. The estimates
of the unobserved heterogeneity distribution tended to improve as d (i.e.,
the order of differencing) was increased. However, as d was increased to
7 and 10 there were slightly larger impacts on some of the controls for
observable heterogeneity. In this application, it appears that a value of d =
5 would work best. However, the optimal value for the order of differencing
will probably vary from data set to data set, which suggests that some
exploratory analysis with alternative values of d should be undertaken.

4 Concluding Remarks
This paper presented an alternative approach that can be used to over-
come some of the numerical problems encountered when estimating a haz-
ard model with a flexible baseline hazard specification and nonparametric
unobserved heterogeneity distribution. The restrictions on the parameters
of the baseline hazard, imposed by the restriction matrices, allow for in-
formation from other time intervals to be used to estimate the parameters
for neighboring time periods. This method improved the estimates of the
unobserved heterogeneity distribution and did not, for the most part, have
a large impact on the other covariates in the model.
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Table 1: Variable Definitions 
 
Variable Name Variable Definition 
EL1 Dummy variable that takes the value 1 for the period in which a respondent 

satisfies the UI eligibility requirement; 0 otherwise 
EL2 Dummy variable that takes the value 1 for the periods after a respondent has 

satisfied the UI eligibility requirement and is still accumulating benefits; 0 
otherwise 

EL3 Dummy variable that takes the value 1 for the periods in which the respondent 
has qualified for UI at the maximum entitlement; 0 otherwise 

Year Dummy variable that takes the value 1 in weeks during 1990; 0 otherwise 
Unemployment 
Rate 

Monthly unemployment rate in the respondent’s province of residence 

Hourly 
Earnings 

The respondent’s average hourly earnings in a given year (1989 dollars) 

Age 16-24 Dummy variable that takes the value 1 if the respondent was between 16 and 24 
years in 1998; 0 otherwise 

Age 25-44 Dummy variable that takes the value 1 if the respondent was between 25 and 44 
years in 1998; 0 otherwise 

High School Dummy variable that takes the value 1 if the respondent graduated from high 
school; 0 otherwise  

Post Secondary Dummy variable that takes the value 1 if the respondent has some post 
secondary education; 0 otherwise 

Trade 
Certificate 

Dummy variable that takes the value 1 if the respondent has a trade certificate; 
0 otherwise 

University Dummy variable that takes the value 1 if the respondent graduated from 
university; 0 otherwise  

Past UI 
Receipt 

Dummy variable that takes the value 1 if the respondent received UI benefits in 
the year preceding the employment spell; 0 otherwise 

Marital Status  Dummy variable that takes the value 1 if the respondent was married; 0 
otherwise 

School 
Attendance 

Dummy variable that takes the value 1 if the respondent attended school in the 
year of the current week; 0 otherwise 

Sex Dummy variable that takes the value 1 for females; 0 otherwise 
  
 
 



Table 2: Parameter Estimates 
 
   Restrictions on Flexible Baseline Hazard 
 Flexible

Baseline 
Hazard 

 Parametric Baseline 
Hazard (Time Polynomial 
in Duration) 

Order of 
Differencing 

d = 1 

Order of 
Differencing 

d = 3 

Order of 
Differencing 

d = 5 

Order of 
Differencing 

d = 7 

Order of 
Differencing 

d = 10 
Variable Name (1)       (2) (3) (4) (5) (6) (7)
EL1 0.4301** 

(0.1789) 
0.7912** 
(0.1445) 

0.4185** 
(0.1717) 

0.3846** 
(0.1642) 

0.4387** 
(0.1600) 

0.5424** 
(0.1200) 

0.6402** 
(0.0513) 

EL2  

  

  

        

  

0.2401
(0.1582) 

0.0021 
(0.1401) 

0.2072 
(0.1411) 

0.1249 
(0.1145) 

0.1607 
(0.1170) 

0.2384** 
(0.0861) 

0.2782** 
(0.0458) 

EL3 0.7816**
(0.2345) 

0.4741** 
(0.1976) 

0.6645** 
(0.1499) 

0.3383** 
(0.1245) 

0.1995 
(0.1418) 

0.3578** 
(0.0899) 

0.3526** 
(0.0440) 

Year -0.2012**
(0.0762) 

-0.2217** 
(0.0675) 

-0.2180** 
(0.0692) 

-0.2413** 
(0.0740) 

-0.2415** 
(0.0689) 

-0.2421** 
(0.0660) 

-0.2440** 
(0.0423) 

Unemployment 
Rate 

-0.1083** 
(0.0388) 

-0.1520** 
(0.0311) 

-0.1206** 
(0.0355) 

-0.0978** 
(0.0387) 

-0.1244** 
(0.0384) 

-0.1148** 
(0.0357) 

-0.1325** 
(0.0283) 

Hourly 
Earnings 

-0.0014 
(0.0085) 

-0.0012 
(0.0080) 

-0.0013 
(0.0080) 

-0.0018 
(0.0091) 

-0.0011 
(0.0088) 

-0.0005 
(0.0085) 

-0.0013 
(0.0076) 

[Age 45-64]
Age 16-24 0.1116 

(0.1270) 
0.1099 

(0.1167) 
0.1122 

(0.1163) 
0.1373 

(0.1686) 
0.1146 

(0.1193) 
0.1360 

(0.0987) 
0.1280** 
(0.0459) 

Age 25-44 -0.0210 
(0.1056) 

-0.0212 
(0.0951) 

-0.0120 
(0.0933) 

-0.0339 
(0.1668) 

-0.0219 
(0.0096) 

-0.0142 
(0.0840) 

-0.0148 
(0.0443) 

[Did Not Complete High School] 
High School -0.1681 

(0.0999) 
-0.1710** 
(0.0860) 

-0.1721** 
(0.0860) 

-0.1991** 
(0.0963) 

-0.1790** 
(0.0882) 

-0.1946** 
(0.0832) 

-0.1940** 
(0.0451) 

Post Secondary -0.3300** 
(0.0956) 

-0.3288** 
(0.0872) 

-0.3354** 
(0.0871) 

-0.3972** 
(0.1011) 

-0.3514** 
(0.0913) 

-0.3756** 
(0.0808) 

-0.3649** 
(0.0448) 

Trade 
Certificate 

-0.3751** 
(0.1946) 

-0.3706** 
(0.1833) 

-0.3775** 
(0.1846) 

-0.4443** 
(0.2009) 

-0.3846** 
(0.1854) 

-0.4127** 
(0.1329) 

-0.4271** 
(0.0520) 

University -0.1181
(0.1954) 

-0.1366 
(0.1882) 

-0.1259 
(0.1897) 

-0.1807 
(0.2088) 

-0.1490 
(0.1892) 

-0.1625 
(0.1341) 

-0.1463** 
(0.0521) 



Past UI 
Receipt 

0.3924** 
(0.0887) 

0.3926** 
(0.0765) 

0.3941** 
(0.0766) 

0.4149** 
(0.0841) 

0.4080** 
(0.0800) 

0.4197** 
(0.0743) 

0.3949** 
(0.0436) 

Marital Status -0.2006** 
(0.0099) 

-0.1973** 
(0.0852) 

-0.2012** 
(0.0852) 

-0.2178** 
(0.0947) 

-0.2047** 
(0.0874) 

-0.2017** 
(0.0802) 

-0.1936** 
(0.0443) 

School 
Attendance 

 

0.4940** 
(0.1076) 

0.4854** 
(0.0951) 

0.4957** 
(0.0949) 

0.5975** 
(0.1155) 

0.5075** 
(0.0102) 

0.5430** 
(0.0894) 

0.5118** 
(0.0443) 

Sex 0.2480** 

        

(0.0829) 
0.2482** 
(0.0703) 

0.2504** 
(0.0702) 

0.2753** 
(0.0783) 

0.2545** 
(0.0737) 

0.2703** 
(0.0697) 

0.2689** 
(0.0430) 

1θ  -3.7937 
(728.77) 

-1.9378** 
(0.4909) 

-1.6835 
(1.9958) 

3.5224 
(2.4294) 

1.9870** 
(0.6535) 

1.1072** 
(0.1630) 

1.5080** 
(0.0533) 

1p  8.9E-10** 
(2.0E-14) 

0.7443** 
(0.0666) 

0.1950** 
(0.0873) 

0.9327** 
(0.0020) 

0.6044** 
(0.0332) 

0.5946** 
(0.0400) 

0.6208** 
(0.0259) 

2θ  -3.3516** 
(0.5457) 

-2.0319** 
(0.4580) 

-1.7790 
(1.9802) 

-3.7059 
(2.5788) 

2.3999** 
(0.6633) 

0.3020 
(0.1622) 

0.3823** 
(0.0532) 

2p  0.9999 
(----) 

0.2557 
(----) 

0.8050 
(----) 

0.0673 
(----) 

0.3956 
(----) 

0.4054 
(----) 

0.3792 
(----) 

Log-likelihood -4442.82 -4526.78 -4447.06 -4449.83 -4453.10 -4458.15 -4465.71
 
Notes: Standard errors in parentheses. Excluded reference group is square brackets. 
Double asterisk (**) denotes statistically significant at 5 percent level. 


