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Abstract

This paper shows how strategic matching generates reputation−building behavior in an
evolutionary chain−store game. Strategic matching means the possibility for an entrant to
choose in a strategic way the local market into which it will move. Players are boundedly
rational and follow behavioral rules simply requiring that the frequency of any strategy
enjoying the highest payoff should never decrease. The model shows how strategic matching,
in preventing the random entries in markets of fighting monopolists, reinforces the reputation
effects. Under some conditions, the Nash equilibrium with reputation effects emerges as the
long−run equilibrium of the evolutionary chain−store game. Using the bounded rationality
set−up offered by evolutionary game theory, the paper follows Selten (1978)'s intuition
underlying the necessity of a limited rationality approach in order to capture reputation
effects.
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1 Introduction

One of the simplest ways to analyze the reputation phenomenon is to consider a game in
which a single long-run player faces a �nite or in�nite sequence of short-run opponents, each
of whom plays only once. The question is whether the long-run player is willing to incur losses
today in order to in�uence the behavior of future opponents. A common intuition is that the
strategy chosen by the long-run player in the �rst periods is the one which yields the highest
future payo�, provided that short-run losses are outweighed by long-run gains. However, it
has proven di�cult to model such phenomena in �nite horizon.

Selten (1978) proposes a game, called the chain-store game, where a monopolist (a chain-
store) faces a set of potential competitors deciding subsequently whether or not to enter a
local monopolist's market. Under the common knowledge assumption, even though it is a Nash
equilibrium for every potential entrant to stay out and for the monopolist to �ght each one of
them, Selten pointed out that the reputation e�ect does not emerge as a rational behavior in
the game1. This counter-intuitive result has been called the chain-store paradox because, even
though the monopoly can build a reputation for �ghting, the perfectness criterium does not
select this strategy. Selten (1978) concludes by arguing that, if reputation e�ects are observed
in reality, then we need a limited rationality approach in order to reduce discrepancies between
theoretic game analysis and human behavior.

Following Rosenthal (1981), Kreps and Wilson (1982) and Milgrom and Roberts (1982)
show that the monopolist can deter entrants if the complete information assumption is relaxed.
They modify the chain-store game by assuming some doubt on the side of the entrants
about the monopolist's payo�s2. It is worth noting that one of the interpretations proposed
by Milgrom and Roberts (1982) for justifying the informational asymmetry involves � the
entrants allowing that the �rm is not behaving as a fully rational game theorist �.

In this paper I use evolutionary game theory to model the reputation e�ects emerging
in the long-run as the best strategy to imitate. It is thus a limited rationality approach
following Selten's intuition and Milgrom and Roberts (1982)'s justi�cation of uncertainty. In
the evolutionary framework, (i) players are assumed to be boundedly rational agents using
the past experience and simple behavioral rules for elaborating a strategy3 and (ii) there are
several chain-store games played simultaneously and over again.

From (i) and (ii) two departures have to be considered in regard to the original Selten's
game. First, incumbent �rms can now learn from experience about the other monopolists'
choices; strategies emerge from a trail-and-error learning process instead of introspective-type
arguments4. Second, and due to the multiplicity of games, evolutionary models have to make
some assumptions as to how players meet in each stage game. The literature o�ers various
speci�cations regarding the matching mechanism and, as Oechssler (1997) and Robson and
Vega-Redondo (1996) showed, evolutionary models are quite sensitive to the speci�cation
of the matching process. In a general way, one may de�ne two models of matching: the
fully global selection model and the group selection model. In the former, interaction takes
place within the entire population, where individuals are randomly matched to play a bilateral
game5. In contrast, the second model of matching assumes that interaction takes place within

1This equilibrium is not subgame-perfect. See Selten (1975) and Selten (1978).
2 However, as suggested by the authors themselves, models with incomplete information present some

drawbacks: "By cleverly choosing the nature of the small uncertainty (precisely its support), one can get out
of a game-theoretic analysis whatever one wishes" (Kreps andWilson (1982)). On this point see also Fudenberg
and Maskin (1986). In an alternative way, Massò (1992) and Trockel (1986) argue that the sequentiality of
Selten's game, i.e. the order in which the players enter the game, may have consequences for the analysis
in terms of sequential equilibrium. This assumption allows to avoid problems inherent to the incomplete
information assumption. Both papers uses models with imperfect information and show that there exist a set
of sequential equilibria where reputation and entry deterrence are possible.

3 In this setup, the game and players rationality are not common knowledge.
4On the point of departure between evolutionary game theory and the introspective approach, see Kandori,

Mailath and Rob (1993) and Samuelson (1997).
5For more details on this class of matching mechanisms, see Fudenberg and Levine (1998).
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relatively small subpopulations, where there is infrequent migration between subpopulations6.
Both models share the assumption that the matching mechanism relies on a perfectly random
process, removing strategic considerations like group or partner choice. Recently, however,
some evolutionary models have included the possibility of strategic considerations in the
matching process. For instance, Oechssler (1997) studies the coordination problem in a
population partitioned into groups, where players can, not only choose which action to take
in the game, but also which group they want to join. Similarly, Bergstrom (2002a) explores
the possibility of partner choice in a multiplayer prisoners' dilemma game with voluntary
matching.

In the same spirit, the evolutionary chain-store game presented here considers the
possibility of strategic matching on the side of competitors. The intuition sustaining this
assumption rests on the multiplicity of chain-store games o�ered to the competitors by the
evolutionary set-up. Due to this multiplicity, the choice of a particular monopolist becomes
available to the potential competitors. This is what I call strategic matching: the possibility
for an entrant to choose in a strategic way the local market into which it will move, according
to the past decisions of the monopolists. The strategic matching assumption plays a key role
in the evolutionary analysis of the chain-store game. It permits to select the Nash equilibrium
with reputation e�ects as the long-run equilibrium of the game. Thus, the model can produce
a clear-cut selection between equilibria based on the strategic matching assumption.

The rest of the paper is organized as follows: Section 2 reviews the original Selten's chain-
store game. Section 3 presents the evolutionary model with strategic matching. Section
4 examines the selection or learning mechanism of the evolutionary process, and Section 5
states the results of this mechanism in the chain-store game. Section 6 speci�es the mutation
mechanism and its results. Section 7 concludes the paper.

2 The original set-up

The chain-store game consider a situation where a single long-run incumbent �rm I faces se-
quential and potential entry by a set of short-run �rms denoted C = f10; :::; i0; :::; n0g. Player
I is operating n stores in di�erent locations. Let i represents a store of player I. Each period,
a potential competitor i0, which plays only once but observes all previous play, confronts the
decision problem described in the following game:

(0,a)

(b,c)

(d,-1)

Player i'

Player I

R

E

A

F

where a, b > 0, d < 0 and �1 < c < a. In Selten's game, each competitor i0 has to choose
between two actions: enter the market (Action E) or not enter (R). If player i0 decide to
enter, the �rm I has to decide for its store i whether it �ghts the entrant (F ) or it acquiesces
the entry (A).

With the assumption that the game and the rationality of all the �rms are common
knowledge, Selten (1978) points out that the only subgame-perfect equilibrium of the game
corresponds to the situation where each entrant chooses "E" and the monopolist accepts the
entry. Thus, the reputation e�ects (the Nash equilibrium in which the incumbent �rm �ghts
the �rst entries in order to deter the next ones) do not emerge as a rational behavior in the
game.

6 Biologists call this class of models Haystack models. See Bergstrom (2002b).
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3 An evolutionary model with strategic matching

This section inserts the chain-store game into an evolutionary setup. I use the model devel-
oped in Robson and Vega-Redondo (1996) to which I add the possibility of strategic matching.

Assume that there are large but �nite sets of competitors and monopolists; denote these
sets respectively C = f10; :::; i0; :::; n0g and M = f1; :::; I; :::; Ng, with n0 = Nn. Player I
represents a chain-store as described in Section 2. The stores locations of each player I are
indicated by �iI = (xiI ; yiI) where �iI 2 R

2 . Let �I = f�1I ; :::; �iI ; :::; �nIg be the locations
pro�le of I with �iI 6= �jI 8i; j. Then, � = f�IgI2M is the set of all possible market points.

As in the original game, monopolists face a set of potential competitors. Time is measured
discretely and indexed by t = 1; 2; 3:::. At period t, player i0 2 C is paired with a market point
�iI 2 � to play the one-shot chain-store game described in Section 2. The matching takes
place according to the following matching process. With probability �, each competitor i0 2 C
chooses in a strategic way (i.e., according to its expectations about the monopolist's strategy) a
market point �iI 2 �. This is called strategic matching7. With the complementary probability
1 � �, each competitor i0 2 C is randomly matched with a market point �iI 2 �. This is
called random matching. Notice that monopolists cannot choose a particular competitor and
then, from their point of view, the matching only follows a random process.

The sets C = f10; :::; i0; :::; n0g and M = f1; :::; I; :::; Ng evolve in the long-run according
to entry and exit of �rms. A chain-store game ends when each market point �iI 2 �iI has
been entered. In this case, I assume that player I is replaced with a new chain-store in M so
that the size of the set remains stable. Similarly, competitors regularly leave the game and
are replaced with new players.8

In an evolutionary model, we are interested by the description of the strategic behavior
adopted by the players in the long-run. Let zt = (zct ; z

m
t ) 2 Z � fz = (zc; zm) : 0 � zc �

n0; 0 � zm � Ng be the state at t of the evolutionary dynamics, where zct and zmt represent
respectively the number of players using R in C and using F in M . For convenience, states
z1 = (n0; N) and z2 = (0; 0) will be directly written z1 = (R;F ) and z2 = (E;A). The
evolution of state zt is realized via two di�erent mechanisms: selection and mutation. In the
next section, I present the selection mechanism. Mutations are considered in Section 6.

4 The selection mechanism

The selection component of the dynamics describes how players choose their strategies. They
are assumed to be myopic9 and adaptive. Thus, agents do not form expectations about the
future course of play and simply take into account the decisions made in the past to determine
their strategies. This means that changing from one strategy to another is dictated by such
considerations as: How well do I perform compared to the other players? What is the strat-
egy used by the most successful player or what is the strategy with the highest average payo�?

Let et = (e10t; :::; ei0t; :::; en0t) be the strategy-pro�le of the competitors at period t, and
denote by �C;t = (�10t; :::; �i0t; :::; �n0t) the corresponding payo�-pro�le. In the same way,
mt = (m1t; :::;mIt; :::;mnt) represents the strategy-pro�le of the incumbent �rms at period
t, with mIt 2 fA;Fg. It is further assumed that each store i follows the strategy chosen by
player I. If player I faces no e�ective entry at t then its strategy at t is the last one used
when confronted with an entry.

When strategic matching is available (probability �), player i0 2 C observes mt�1 and
computes a myopic best reply. His strategy consists of choosing an action ai0t 2 fE;Rg and

7See Section 1.
8 This represents an economic interpretation of mutation phenomenon. See Canning (1989) and Section 6.
9On the justi�cation of the myopic assumption, see the end of this section.
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of selecting a market point �iI 2 �.10 Formally, player i0's strategy is a couple ei0t = (ai0t; �iI).
Let �i0(ei0 ;mI ; n

0

i) 2 R be the payo� function of player i0, with n0i the number of competitors
choosing �iI . I assume that �i0((E; �iI);mI ; n

0

i) � d if n0i > 0. This means that the entry
of more than one entrant in the same market �iI 2 � removes the expected gain of the
monopolist's acquiescence for the entrants.

In period t, player i0 2 C selects a strategy ei0t = (ai0t; �iI) that satis�es the behavioral
rule

eit 2 argmaxa;� �i0(ei0t;mIt�1; n
0

i): (1)

In this program, player i0 �rstly chooses a myopic best reply to each of the opponent
strategies in mt�1; namely player i0 constructs all the possible couples (ai0t; �iI); he then
chooses among them the one maximizing its payo� function.

With the probability 1��, player i0 2 C is randomly matched with a market point �iI 2 �.
Given any zt = (zct ; z

m
t ) 2 Z, let ~rt be the random variable describing the matching process

at time t between competitors and monopolists. A realization rt of ~rt represents the set of
numbers rk;l;t � 0, with k = R;E and l = A;F . The number of pairings between k-users and
l-users at t is then rk;l;t.

11 The support of ~rt is denoted P (zt). The random average payo�s
for each strategy are given by:

��E(zt; rt) =
b rE;A;t + d rE;F;t

n0 � zct
; and ��R(zt; rt) = 0;

with n0 � zct = rE;A;t + rE;F;t. The evolution of zc, the number of competitors choosing R,
satis�es the following restrictions,

zct =

�
� zct�1

if ��E(zt; rt) < 0,
� zct�1

if ��E(zt; rt) > 0,
(2)

with zc 2 f1; :::; n0�1g.12 This latter restriction ensures that the payo�s are well de�ned and
that strict inequalities are feasible. The selection mechanism leading monopolists decisions
is similar to those of competitors in the case of random matching. The average payo�s are
given by:

��A(zt; rt) =
a rA;R;t + c rA;E;t

n(N � zmt )
; and ��F (zt; rt) =

a rF;R;t � rF;E;t
n zmt

:

The evolution of zm, the number of monopolists choosing F , satis�es the following restrictions,

zmt =

�
� zmt�1

if ��F (zt; rt) > ��A(zt; rt),
� zmt�1

if ��F (zt; rt) > ��A(zt; rt),
(3)

with zm 2 f1; :::; N � 1g.

This formulation of the selection mechanism is very �exible since it means only that the
frequency of any strategy enjoying the highest payo� should never decrease13. One possible

10 Following Oechssler (1997), E and R are called actions since in our model of strategic matching
competitors strategy indicates both the choice of a location and of an action.

11 Every possible way of pairing k-users and l-users is assumed to be equally likely.
12In case of identical average payo�s, players behavior can be speci�ed in any arbitrary manner, as the

random choice of a strategy.
13 It is close to the notion of payo� monotonic dynamics de�ned by Weibull (1995).
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interpretation is that players' decisions are an imitation process where people learn what are
good strategies by observing what has worked well for other people.

What supports the di�erent behavior assumed between � random � and � strategic �
competitors? This di�erence relies on the information used by each category of competitors.
In the case of random matching, players only use global information on the behavior of �rms,
that is information concerning an industry containing several incumbent �rms. On the other
hand, strategic competitors use more precise information concerning each �rm of an industry
considered as independent. Notice also that the best reply dynamics of strategic competitors
needs more information than the imitative process. The latter is usually interpreted as the
idea that the world is a complicated place where agents cannot calculate the best responses
to their environment. Therefore one can argue that competitors do not have the same access
to information, and thus do not use the same behavioral rules.

The dynamics just described allow some important inertia in strategy adjustment. Indeed,
evolutionary models assume that not all agents react instantaneously to their environment
but rather gradually adjust their strategy following the selection mechanism. Inertia is an
important aspect of the evolutionary dynamics since it o�ers a good justi�cation of myopic
behavior: as players know that only a small segment of agents changes its actions, strategies
that prove to be e�ective today are likely to remain e�ective in the near future. Accordingly, I
do not consider that all players simultaneously adjust their strategy at each period t. Rather, I
assume that there is some inertia in the learning process. Formally, each player independently
with some �xed probability � 2 (0; 1] receives the opportunity to update his strategy in each
given period.

5 Results of the selection mechanism

In this section, I examine the paths along which behavior evolves and, in particular, the states
towards which the selection process converge. As we will see below, the possibility of strategic
matching has strong implications on the trajectories of the evolutionary system.

In the selection mechanism with random matching (the process (2)-(3)), extinct strategies
are required to remain extinct, i.e., mutation is needed to introduce a new strategy14. Thus,

Observation 1 States z0
1
2 Z1 � f(R; z

m) : 0 � zm � Ng, z2 = (E;A), and z3 = (E;F ) are
stationary states of the selection dynamics (2)-(3).

This means that, without perturbations or mutations, once the learning process (2)-(3)
has reached one of the states given in Observation 1, it remains forever. On the other hand,
all states z0

2
2 Z2 � f(zc; zm) : 0 < zc < n0; 0 � zm � Ng are not stationary states. In order

to see this, consider the 3 possible conditions under which states z0
2
are stationary states:

(1) ��E(zt; rt) = 0 and zm = 0 or (2) ��E(zt; rt) = 0 and zm = N or (3) ��E(zt; rt) = 0 and
��A(zt; rt) = ��F (zt; rt). However, only a particular number of pairings between E-users and
A-users ensures that ��E(zt; rt) = 0. Formally, it is necessary that rE;A = �d(n0 � zm)=b � d
for ��E(zt; rt) = 0. As rE;A is the realization of a random variable, one cannot observe
rE;A;t = �d(n0 � zm)=b� d for all periods � � t. Moreover, we can state the following:

Proposition 1 Selection dynamics (2)-(3) converges to states z2 = (E;A) or z0
1
2 Z1 �

f(R; zm) : 0 � zm � Ng from all states z0
2
2 Z2.

Proof. See the appendix.

14 This constitutes a point of departure between the Kandori, Mailath and Rob (1993)'s model and the
assumption made by Robson and Vega-Redondo (1996), which in turn is similar to the biologists formulation
of evolutionary dynamics.
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Proposition 1 shows that reputation e�ects may exist in the evolutionary chain-store game
with purely random matching. The �rst reason is that in an evolutionary setup (and contrary
to the standard setup) the monopolist does not condition its strategy on the number of stores
left. Second, entrants are myopic players considering that a monopolist who fought before will
�ght again. They do not try to in�uence the future play of their opponents. Thus, Subgame
perfection may not be attained here.

When strategic matching is considered, the selection mechanism is the process (1)-(3). In
that case, the set of stationary states is reduced due to the dynamics of best reply followed
by competitors.

Proposition 2 States z1 = (R;F ) and z2 = (E;A) are the only stationary states of the
selection dynamics (1)-(3). Furthermore, the system deterministically converges to state
z1 = (R;F ) from all states with zm � 1.

Proof. See the appendix.

Proposition 1 means that, under the random matching assumption, the selection
mechanism either converges to the subgame-perfect equilibrium z2 = (E;A) or to the set
Z1 � f(R; zm) : 0 � zm � Ng. The latter is a component of Nash equilibria expressing the
strategic indi�erence of the monopolists when confronted with strategy R. This disappears
when strategic matching is assumed (Proposition 2). In that case, the set Z1 is reduced to
the singleton z1 = (R;F ). There are two forces behind this result. First, incumbent �rms
that choose F are protected by the strategic choice of a location from the entrants which
play E during the convergence to z1 = (R;F ). Second, monopolists which remain with
strategy A are selected by competitors, which decreases the average payo� of A. These two
forces together favor the imitation of strategies F which in turn favors the imitation of R.
Therefore, indi�erence between A and F does not appear when the learning process reveals
to competitors that R is the best strategy to play. Thus, preventing the random entries in
markets of �ghting incumbents strategic matching reinforces the reputation e�ects.

6 The selection mechanism with mutations

I turn now to the possibility of mutation in order to show that state z1 = (R;F ) is the
long-run equilibrium of the evolutionary chain-store with strategic matching. Our attention
is thus limited to selection dynamics (1)-(3). Besides this selection mechanism, mutation
is the other force acting on agents' strategies. It refers to a situation where an individual
randomly switches to a new strategy. After the completion of the learning adjustment, each
agent independently changes his strategy with a small probability �. The learning process is
then perturbed15. In economic contexts, the mutation phenomenon may be interpreted as
experimentation of nonoptimal strategies in the sense of (1)-(3) or the entry of a new player
who knows nothing about the game.

The dynamic process (1)-(3) combined with the mutation mechanism generates a Markov
chain over the �nite state space Z. The existence of a small probability � > 0 ensures that
the process has a unique stationary distribution16 summarizing the long-run behavior of the
system, regardless of initial conditions. The latter characteristic of the model is particularly
interesting when the selection mechanism had several absorbing states, since it allows a
selection to be made between them. Our goal is to �nd the long-run equilibrium of the
game assuming that � ! 0. In the case of the evolutionary chain-store game, we have to
compute the number of mutations required in the transitions between the stationary states
of the selection mechanism. The long-run equilibrium is simply the one requiring the fewest

15As mentioned by Samuelson (1997), mutation is a residual capturing whatever has been excluded when
modeling selection.

16See Kandori, Mailath and Rob (1993) or Young (1993).
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mutations17.

Proposition 3 The number of mutations required to move the system from z1 = (R;F ) to
z2 = (E;A) is at least two when selection dynamics (1)-(3) is considered.

Proof. See the appendix.

From Propositions 2 and 3, it immediately follows

Corollary 1 State z1 = (R;F ) is the long-run equilibrium of the evolutionary chain-store
game with strategic matching.

Proposition 2 informs us that one mutation is su�cient for convergence of the system to
z1 = (R;F ). As transition from z1 = (R;F ) to z2 = (E;A) requires at least two mutations,
state z1 = (R;F ) is the long-run equilibrium of the evolutionary chain-store game when
the choice of a monopolist is viewed as a component of the entrants' strategy. It is worth
noting that state z2 = (E;A) is the long-run equilibrium of the evolutionary chain-store game
with random matching. This is due to the absence of the two forces sustaining the result in
proposition 2.

7 Conclusion

This paper proposed an evolutionary chain-store game with strategic matching. The model
considers potential competitors which have to not only choose whether or not to enter, but
also the local market into which they will move. This is what I call strategic matching. The
model show how strategic matching can favor � �ghting monopolists �, and thus how the
reputation e�ects emerge in the long-run as the best strategy to imitate. Using evolutionary
game theory, the paper follows Selten (1978)'s intuition underlying the necessity of a limited
rationality approach in order to reduce discrepancies between theoretic game analysis and
human behavior.

Appendix
Proof of Proposition 1. Assume that 0 < zc < n0 (both strategies R and E are present in
C) and that ��E(zt; rt) < 0. Then, strategy R is imitated whatever the strategic choice of
incumbents, since R realizes 0 against A and F . On the side of the incumbents, the in-
crease of R-users can create an indi�erence between the options A and F depending on the
speed of adjustment of the system (i.e., the level of �i0 and �I). This may lead the system
to the set Z1 � f(R; zm) : 0 � zm � Ng which includes z1 = (R;F ). Assume now that
��E(zt; rt) > 0 and at the same time ��A(zt; rt) > ��F (zt; rt). As more E-users sustains more
A-users (and reciprocally), the system reaches the state z2 = (E;A). In the situation where
��A(zt; rt) < ��F (zt; rt), more F -users prevents the increase of the E-users (and reciprocally),
moving the system away from z2 = (E;A).
Proof of Proposition 2. Assume �rst that 0 < zm < N . Then, at period t, competitors have a
unique best reply to each of the two incumbent strategies (to enter if the monopolist accepts
and to give up if it �ghts). Due to the strategic matching, during the subsequent periods
� � t the best-reply mechanism ensures that ��A(zt; rt) = c whereas ��F (zt; rt) = a. As c < a,
one observes that zm� > zmt , that is to say strategy F is imitated by monopolists constraining
competitors to choose R. This result also holds for zm = N , and then it can be stated that the
selection dynamics (1)-(3) converges deterministically to state z1 = (R;F ) from all zm � 1.

Consider now that zmt = 0. Thus, the only best reply is E. As the monopolists
dynamics selection cannot generate itself new strategies (extinct strategies remain extinct),
state z2 = (E;A) is observed during the subsequent periods.

17For more details on this result, see Kandori, Mailath and Rob (1993) or Samuelson (1997) or Vega-
Redondo (1996).
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Proof of Proposition 3. We have to show that one mutation is not su�cient to move the
dynamics from z1 = (R;F ) to z2 = (E;A). Assume �rst that the system is in z1 = (R;F )
and consider one mutation j0 2 C playing E. As all monopolists play F , we observe that
��E(zt; rt) > ��R(zt; rt). Consider now one mutation J 2 M playing A. Then, strategic
competitors choose the locations of mutant J 2M which ensures that ��A(zt; rt) = c whereas
��F (zt; rt) = a. As c < a, monopolist J returns to strategy F constraining competitors to
choose R.
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