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Abstract

We analyse the steady−state equilibrium dynamics of an OLG economy with a
pay−as−you−go (PAYG) pension scheme that relates old−age pensions to previous earnings.
Contrary to an economy where PAYG pensions depend on the earnings of those currently
working, such an economy may experience complex equilibrium dynamics with endogenous
cycles and bifurcations.
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1. Introduction

The defining property of pay-as-you-go (PAYG) pension systems, namely that total pen-

sion payouts in any period equal the sum of contributions raised in that period, is con-

sistent with a large variety of schemes. In this paper we distinguish two benefit rules or,

which is the same here, two policies to keep the PAYG budget intact when fluctuations

in revenues or payouts of the scheme occur. In one setting, pensioners receive old-age

incomes as a given fraction (called replacement ratio) of their incomes during working

age; contributions are then adjusted to make means meet ends. In the other setting,

contributions are levied as a constant percentage of the income of the currently working;

pension benefits emerge endogenously from the revenues thus raised.

Consider an economy of two overlapping generations where life cycles consist of one period

of work and one period of retirement. Assume that generations are equally populous.

Denoting by bt and pt−1, respectively, period-t contributions to the PAYG scheme per

capita of workers, and period-t pension payments to the retirees of generation t − 1, a

PAYG scheme is defined by bt = pt−1. We analyze the following specifications:

• Generation t − 1’s pension pt−1 depends on that generation’s previous earnings

wt−1. In a linear specification, pt−1 = α · wt−1 where α is the replacement ratio.

Contributions levied on those working emerge residually as bt = αwt−1; the implicit

contribution rate, thus, amounts to bt/wt = αwt−1/wt.

• Alternatively, contributions in t are raised as a fixed percentage (the contribution

rate) β of workers’ income: bt = β · wt. Generation t − 1’s pensions then residually

result as pt−1 = β · wt; the implicit replacement ratio is pt−1/wt−1 = β · wt/wt−1.

We call the first policy a fixed replacement (FR) policy, and the second a fixed contributions

(FC) policy. The distinction between these policies is akin to the defined-benefit/defined-

contribution dichotomy in the context of private, funded pensions. In stochastic settings,

FR- and FC-policies perform differently with respect to intergenerational risk-sharing

(Thøgersen, 1998; Wagener, 2003). The FC/FR distinction also bears linkages to the

degree of intragenerational redistribution through the pension scheme: In Bismarckian

systems pensions are indexed to previous earnings (as with a FR policy) while they are

unrelated to previous earnings in Beveridgean schemes (as under a FC regime).

Prima facie, FR- and FC-policies look equivalent in models with identical agents if the

wage is time-invariant; then α = β represents both the contribution and the replacement

rate. (With population growth at rate n > −1, set α = β(1 + n).) It therefore seems
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perfectly justified to focus on one of the two policies, especially when one is interested

in steady state economies. Indeed, most contributions in the literature only analyse FC

schemes and do not even mention FR policies.1

Here we argue that the distinction between FR and FC PAYG policies might indeed

matter. In particular, equilibrium dynamics and stability properties of steady states

largely differ under the two regimes. Technically, the equilibrium of an OLG economy

with a FR scheme is characterized by a difference equation of order two. This is due to

the fact that today’s pension contributions to the pension scheme depend on past rather

than on current wages. In contrast, with a FC policy the equilibrium is characterized by

a first-order difference equation. Hence, while equilibrium dynamics with FC schemes do

not exhibit any surprising features, FR equilibrium dynamics are more colourful. Changes

in FR policies may expose the economy to periodic or unstable dynamics. Moreover, we

show that such peculiarities can occur under circumstances (namely, for high elasticities of

substitution in production) that would, without wage-related pension liabilities, not give

rise to bifurcations or endogenous cycles. The differences between FC and FR equilibria

are due to the endogeneity of the contribution rate under a FR scheme; this works to

magnify the effects of changes in the capital-labour ratio on the rent-wage ratio.

Section 2 presents a standard 2-OLG economy with FR PAYG pensions and Section 3

analyzes and illustrates its equilibrium dynamics. Section 4 relates our observations to

the literature and compares them to a FC policy. Section 5 concludes.

2. Model and Equilibrium

We consider a Diamond-type 2-OLG model with capital accumulation (see Ihori, 1996,

for a survey). Generation t (t = 0, 1, . . .) consists of Nt identical individuals each of whom

lives for the two periods t (youth) and t + 1 (old age). From t to t + 1 the population

grows by (the possibly negative) rate nt := Nt/Nt−1 − 1 > −1. We denote the life-cycle

utility function by U and assume that it is additively time-separable with instantaneous

utility functions u and û: Ut = u(c1,t) + û(c2,t). By c1,t and c2,t we denote consumption

of a member of generation t when young and old, respectively. Sub-utility functions are

well-behaved with ν ′(c) > 0 > ν′′(c) for all c > 0 and ν ′(0) = ∞ for ν = u, û. To obtain

that savings increase in their rate of return we require that the marginal utility of old-age

1See, e.g., Burbidge (1983), Ihori (1996) or Jäger (1994). Even more widespread are, however, lump-

sum (rather than earnings-related) pension schemes. See, e.g., Blanchard and Fischer (1989).
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consumption decreases less than proportionally with consumption:

û′(c) + cû′′(c) > 0 for all c > 0. (1)

Each individual inelastically supplies one unit of labour during working age and is fully

retired during old-age. Hence, total labour supply in period t amounts to Nt.

The economy has available a time-invariant, aggregate neoclassical production technology

that employs inputs capital and labour with constant returns to scale. Per-worker output

in t then amounts to f(kt) with kt as the capital stock in period t divided by Nt. We

suppose that the production function f possesses the standard Inada properties: f(k) > 0,

f ′(k) > 0, f ′′(k) < 0 for all k > 0 and f(0) = 0, f ′(0) = ∞ and f ′(∞) = 0.

We denote by st, bt, pt, wt, Rt, respectively, generation t’s per-capita savings, per-capita

social security taxes, per-capita old-age pensions, the net wage rate and the interest factor

that prevail in period t. Budget constraints for the two periods in the life of generation t

are then given by c1,t = wt − bt − st and c2,t = Rt+1 · st + pt. We concentrate on PAYG

schemes (i.e., (1 + nt)bt = pt−1) with a FR policy (for FC policies see Section 4.2). I.e.,

pt = α · wt and bt = αwt−1/(1 + nt).

Capital market equilibrium in period t requires total saving of the previous period to be

equal to capital demand in t:

st−1 = (1 + nt) · kt. (2)

Competitive profit maximization requires firms to hire labour and capital such as to equate

marginal factor productivities and factor prices: f ′(kt) = Rt and f(kt) − f ′(kt) · kt = wt.

Individuals take factor prices and the parameters of the PAYG schemes as given. Utility

maximization entails equalizing the discounted periodwise marginal utilities of consump-

tion: u′(c1,t) = Rt+1û(c2,t). This implicitly defines generation t’s saving as a function of

the own wage rate, the interest factor, the replacement rate, and the wage rate of the

previous generation which enters via pension contributions: st = st(wt, wt−1, Rt+1, α).

• swt
is ambiguous in sign due to a positive first-period income effect and a negative

second-period income effect;

• swt−1
< 0: savings are lower the higher are past wages – which imply a higher

pension liability for current workers;

• sR > 0: savings increase in their rate of return, provided that (1) holds;

• sα < 0: savings decrease in the replacement rate α due to smaller disposable incomes

in working age and higher retirement incomes.
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Plugging the (appropriately lagged) factor price relations and the savings function into the

equilibrium condition (2) for the capital market, we can summarize equilibrium dynamics

under a FR regime in the following second-order difference equation:

(1 + n)kt+1 − s (f(kt) − ktf
′(kt), f(kt−1) − kt−1f

′(kt−1), f
′(kt+1), α) = 0. (3)

Existence of equilibrium (i.e., a solution for (3)) can be established under fairly general as-

sumptions (see Geanakoplos and Polemarchakis, 1991), which are met here. A stationary

state for the dynamics of (3) is a level k̄ such that:

(1 + n) · k̄ = s
(

f(k̄) − k̄ · f ′(k̄), f(k̄) − k̄ · f ′(k̄), f ′(k̄), α
)

. (4)

One – uninteresting – fixed point of (4) is given by k̄ = 0. In what follows we will discuss

positive steady states with k̄ > 0 only.

3. Stability Analysis

3.1 General Observations

Eq. (3) being of order two, the stability analysis proves a bit tricky. We use the “geomet-

rical” method developed in Azariadis (1993) and Grandmont et al. (1998).2 Along with

the substitution kt =: xt−1 we rewrite (3) as a dynamic system xt = G(kt−1, xt−1) and

kt = xt−1 with Jacobian matrix J of partial derivatives:

J =

(

Gk Gx

1 0

)

=

(

∂kt+1

∂kt

∂kt+1

∂kt−1

1 0

)

. (5)

The elements in the first line of J can be calculated by implicit differentiation of (3):

∂kt+1

∂kt
= −

swt
· f ′′(kt) · kt

1 + n − sR · f ′′(kt+1)
and

∂kt+1

∂kt−1
= −

swt−1
· f ′′(kt−1) · kt−1

1 + n − sR · f ′′(kt+1)
< 0. (6)

The sign of the second term comes from sR > 0 > swt−1
, the sign of the first one is unclear.

With det J = −Gx > 0 and trJ = Gk, the characteristic polynomial of J is

φ(λ) = λ2 − λ
∂kt+1

∂kt

−
∂kt+1

∂kt−1

,

where all the derivatives have to be evaluated at k̄. The discriminant of φ, D = G2
k +4Gx,

can take any sign. Hence, J may have complex eigenvalues; equilibria may thus be peri-

odic. Moreover, the positions of the eigenvalues of J relative to the unit circle are unclear,

2For recent applications see Koskela et al. (2000), Aloi et al. (2000) or Coimbra et al. (2000).
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too. Hence, equilibria may be stable or not. Furthermore, upon changes of the replace-

ment rate α (possibly also of other parameters of the model) there may be bifurcations of

different types, including period-doubling Hopf bifurcations . I.e., by slightly changing a

parameter of the model, qualitative changes in the dynamic properties of the equilibrium

trajectories nearby the steady state may occur. We illustrate this in a numerical example.

3.2 An Example

Let utility be Cobb-Douglas and production technology be CES:

U = log c1,t + log c2,t and f(kt) = A[1 + a · kη
t ]

1/η

with parameters A > 0, a ∈ (0, 1), η ≤ 1 and η 6= 0. The elasticity of substitution in

production is 1/(1 − η). For this specification we obtain a saving function

s(wt, wt−1, Rt+1; α) =
1

2
·

[

wt

(

1 −
α

Rt+1

)

−
α

1 + n
wt−1

]

.

It is plausible to assume α ≤ Rt+1; hence, ∂s/∂wt ≥ 0. Furthermore, ∂s/∂wt−1 < 0 <

∂s/∂Rt+1 for α > 0, as expected. By an appropriate choice of A, we adapt units of

measurement such that k̄ = 1 in the steady state. Then,

R̄ = (1 + a)1/η−1 and w̄ =
1

a
· (1 + a)1/η−1.

We index the economy by the replacement rate and write all expressions as functions of

α. The top-row elements of the Jacobian J(α) can be calculated as:

Gk(α) =
1

2
·
(1 + a)1/η−1 − α

1+n
(1−η)·(1+a)

+ aα
2

> 0 and Gx(α) = −
1

2
·

α
1+n

· (1 + a)1/η−1

1+n
(1−η)·(1+η)

+ aα
2

< 0,

which has characteristic polynomial φ(λ, α) = λ2 + λGk(α) − Gx(α) and discriminant

D(α) = G2
k(α) + 4Gx(α). We set n = 0. By appropriately choosing the free parameters

we can generate a large variety of stability patterns: fixed and periodic points both with

contracting and expanding directions. We illustrate this for η = 0.25 and a = 0.4.

Figure 1 goes here.

The dotted arrow in Fig. 1 shows what happens when α varies from 0 to closely below 1:3

3The precise values of the boundary points for the numerical specification chosen are: α1 = 0.198,

α2 = 0.259, and α3 = 0.621. Calculations have been made in a Mathematica notebook that is available

from the author.
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• 0 < α < α1: Here we have D(α) > 0 (real eigenvalues) and φ(1, α) < 0 (eigenvalues

on different sides of +1); furthermore g(α) > 0. Hence, the steady state is a saddle.

• α1 < α < α2: Eigenvalues are still real (since D(α) > 0), but now are both

positive and fall on the same side of both +1 and −1. Hence, the steady state is

asymptotically stable.

• α2 < α < α3: Eigenvalues are complex and come as a conjugate pair. As det J(α) <

1, the oscillatory orbits in the neighbourhood of the steady state are stable spirals.

• α3 < α < 1: Eigenvalues are complex. Since det J(α) > 1, we obtain unstable

spirals near to the steady state.

For α = α1, a saddle-node bifurcation occurs (there is one eigenvalue of modulus one and

| detJ | < 1), and for α = α3 we detect a Hopf bifurcation (an invariant closed curve in

the neighbourhood of the steady state).4 Summing up, we get

Result 1 In an economy with FR pensions equilibria may be periodic and unstable. Small

changes in the replacement rate may lead to drastic changes in the system’s orbit structure

and dynamic behaviour.

4. Discussion and Comparison

4.1 Bifurcations and the Elasticity of Substitution

While saddle-node bifurcations are quite common in planar dynamical models with some

sort of debt (see Azariadis (1993) for several examples), Hopf bifurcations are rarer. They

can occur in many-good OLG models (Grandmont, 1985) and are not new in one-good,

Diamond-type OLG models either; see, e.g., Farmer (1986), Reichlin (1986), or Azariadis

(1993). Typically, however, they emerge at low values of the elasticity of substitution in

production, in particular for values well below unity (i.e., for η < 0 in CES functions):

4Application of the Hopf bifurcation theorem requires several conditions to be met at once (Azariadis,

1993, Theorem 8.5): The dynamic mappings that give rise to the Jacobian J must be Ck for some k ≥ 6.

This is satisfied here, since in the relevant range all functions are smooth. The steady state must be a

non-hyperbolic equilibrium at α3, and there must be a conjugate pair of complex eigenvalues λ(α3) of

modulus 1. This is exactly what det J(α3) = 1 means. Furthermore λk(α) 6= 1 for k = 1, 2, 3, 4, which is

also satisfied. Finally, d|λ(α3)|/dα 6= 0, which can be visually verified by plotting the graph of g(α).
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Reichlin (1986) discusses the Leontief case, and in Farmer (1986)’s example for the CES-

case Hopf bifurcations occur only when technologies exhibit lower factor substitutability

than Cobb-Douglas functions.

In the example presented above, we find Hopf bifurcations for elasticities of substitution

well above unity, which may be regarded as the empirically more relevant case. They

originate from opposing effects of higher wages in different periods on saving. In standard

models, higher wages will stimulate saving which, in a growing economy, will promote

capital accumulation, further raise the wages and lower the interest rate. With FR pen-

sions there is, however, a negative effect on saving which runs counter to this process:

High wages today mean high pension liabilities for the subsequent generation — which

will depress their saving. Eventually, the dynamic growth process might reverse itself.

Result 2 In an economy with a FR PAYG pension scheme, endogenous cycles and bi-

furcations may occur even when the elasticity of substitution in production is above unity.

4.2 FR- versus FC-policies

Contrast these observations with the case of FC pensions. The FC analogue to eq. (3) is

(1 + n)kt+1 − ŝ (f(kt) − ktf
′(kt), f(kt+1) − kt+1f

′(kt+1), f
′(kt+1), β) = 0, (7)

where ŝ = ŝ(wt, wt+1, Rt+1, β) emerges from utility maximization, maxst
[u(wt(1 − β) −

st) + û(Rt+1st + (1 + nt+1)βwt+1)].

Result 3 In an economy with FC pensions equilibrium dynamics are monotonic. Fur-

thermore, the steady state is stable if capital income increases with the capital stock:

f ′(k) + k · f ′′(k) ≥ 0 for all k > 0. (8)

Proof: The properties of a FC steady state are determined by

dkt+1

dkt
= −

ŝwt
ktf

′′(kt)

1 + n + f ′′(kt+1) ·
[

ŝwt+1
kt+1 − ŝR

]

(see Galor and Ryder, 1989; Azariadis, 1993). Uniqueness of the steady state and mono-

tonicity of dynamics will hold when dkt+1/dkt > 0. This provided, stability of the steady

state will prevail whenever dkt+1/dkt < 1.5 It can easily be shown that ŝwt
> 0, ŝwt+1

< 0,

5Precisely, stability will prevail if −1 < dkt+1/dkt < 1. The case −1 < dkt+1/dkt < 0 (which cannot

occur here) is problematic; see Jäger (1994) for a discussion.
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ŝR > 0, and ŝwt+1
kt+1 − ŝR < 0. Hence, dkt+1/dkt > 0. Now we evaluate dkt+1/dkt in

the steady state. Invoking these intermediate results one gets that dkt+1/dkt < 1 for

kt+1 = kt = k̄ is equivalent to

(

(1 + n) − f ′′k̄(1 − β)
)

u′′ < −û′′(1 + n)f ′
[

f ′ + (1 − β)f ′′k̄
]

− f ′′û′.

This always holds as the LHS is negative while the RHS is positive, given (8). �

The dynamics of the economy with a FC PAYG scheme are, thus, well-behaved, compared

to those under a FR scheme: They are monotonic and never exhibit endogenous cycles

or bifurcations.6 The difference between FC and FR schemes traces back to eqs. (3) and

(7): The former difference equation is of order two, the latter of order one.

4.3 Increasing the Replacement Rate

The higher the contribution rate in a FC scheme, the lower is the steady-state capital

stock; see, e.g., Burbidge (1983) and Azariadis (1993, ch. 18). What does happen in a FR

scheme when we increase the replacement rate? From (4),

dk̄

dα
=

sα

1 + n + f ′′(k̄)
(

−sR + swt
k̄ + swt−1

k̄
) (9)

with sα < 0. Without further restrictions the sign of the denominator in (9) is unclear.

It is therefore conceivable that increasing α raises the capital stock. However, we show

Result 4 If the steady state is stable for α = 0, then introducing a small FR scheme

depresses the capital stock: dk̄/dα < 0.

Proof: For α = 0 we are in a standard laissez-faire OLG economy without pensions.

Galor and Ryder (1989) show that the conditions for a unique and globally stable steady

state (characterized by k̄0) include dkt+1/dkt < 1. This is equivalent to 1 + n + f ′′(k̄0) ·

(−sR + swt
k̄0) > 0 here. Taking into account that swt−1

< 0 for α > 0 while swt−1
= 0 for

α = 0, the denominator in (9) is positive for small positive values of α. �

6This only holds for perfect-foresight equilibria (where individuals correctly anticipate future interest

and wage rates). With myopic foresight, equilibria might be oscillatory and exhibit deterministic stable

cycles (Michel and de la Croix, 2000).
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5. Conclusion

We analyzed economic dynamics in an OLG model with capital accumulation and PAYG

social security schemes. Unlike the literature, which concentrates on pension policies with

constant contribution rates, our focus was on pension policies with a fixed replacement

ratio. Our results are the following: (i) Equilibrium dynamics differ considerably between

economies with FC and FR pensions. (ii) With FR pensions, equilibria may be periodic

and unstable, prompting endogenous cycles and bifurcations. (iii) With FR pensions,

bifurcations might even occur when the elasticity of substitution in production is high.

The distinction between FR- and FC-policies currently figures prominently on the pension

reform agenda. While PAYG schemes throughout the world traditionally are of the FR-

type, several countries recently switched to a FC scheme (e.g., Sweden) or at least moved

into that direction (e.g., Italy, Germany). Latvia and Poland chose the FC option when

newly designing their pension system in the late 1990s. While (to our knowledge) so far

no empirical comparison of the dynamic stability of the two PAYG options is available,

our analysis indicates that addressing that issue in pension studies might be worthwile.
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Figure 1: Characteristics of stability (n = 0; η = 0.25; a = 0.4)
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