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Abstract

The analysis of collusion in infinitely repeated Cournot oligopoly games has generally
assumed that demand is linear, but this note uses constant−elasticity demand functions to
investigate how the elasticity of demand affects the sustainability of collusion.
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1. Introduction 
Most analyses of the sustainability of collusion in infinitely-repeated Cournot oligopoly 

games either prove general propositions about the sustainability of collusion as a subgame 
perfect equilibrium for a sufficiently large discount factor, as in Friedman (1971), or they assume 
that demand is linear so that they can explicitly solve for the discount factor and relate it to the 
parameters of the model. For example, various authors have used linear demand functions to 
analyse how product differentiation, the number of firms, cost asymmetries, or the type of 
competition (Bertrand or Cournot) affects the sustainability of collusion.1 Although such 
analyses are useful in the exploration of the factors that affect the sustainability of collusion, they 
are somewhat limited by being restricted to a particular functional form i.e. linear demand. One 
important factor that may be thought to affect the sustainability of collusion is the elasticity of 
demand but, obviously, the effect of this parameter on the sustainability of collusion cannot be 
addressed using linear demand.2 It would be natural to address this question using a constant-
elasticity demand function. However, the constant-elasticity demand function does not allow 
explicit analytical solutions to be obtained when a firm deviates from collusion so it is not 
possible to obtain an explicit solution for the critical discount factor required to sustain collusion. 
Therefore, the only way to assess the effect of the elasticity of demand on the sustainability of 
collusion in an infinitely repeated Cournot oligopoly is to resort to numerical solutions, and that 
is what will be done in this note. As there are only two significant parameters in the model (the 
elasticity of demand and the number of firms) it straightforward to plot the critical discount 
factor as a function of these parameters. Despite using numerical solutions, the results obtained 
are unambiguous and seem to be quite general. It is shown that the larger is the elasticity of 
demand then the easier it is for firms to sustain collusion at the monopoly price.3 

 

2. The Model 
Consider an infinitely-repeated Cournot oligopoly game with J  firms producing a 

homogeneous product and facing a constant-elasticity demand function, ( ) 1−=P Q Q η , where P  
is the market price, Q  is total industry output, and η  is the elasticity of demand, which is 
assumed to be greater than one. All firms have identical and constant marginal cost c , and they 
maximise the present discounted value of future profits using a common discount factor, δ . In 
each stage of the infinitely repeated game, the output of the jth firm is jq  and its profits are 

                                                 
1 See, inter alia, Deneckere (1983,1984), Majerus (1988), Wernerfelt (1989), Albæk and Lambertini (1998), 

and Rothschild (1999). Exceptions to the assumption of linear demand are Lambertini (1996) and Tyagi (1999) both 
of whom allow non-linearity by using a particular functional form that allows demand to be concave or convex, but 
which does not include constant elasticity demand as a special case. 

2 Jacquemin and Slade (1989, p. 421) note that ‘The elasticity of the individual-firms demand curve is an 
important factor’ affecting the incentive to cheat by cutting price and increasing sales. 

3 This note only considers collusion at the monopoly price (full or perfect collusion) and does not deal with the 
possibility of partial collusion. For an analysis of partial collusion in an infinitely repeated Cournot duopoly see 
Verboven (1997). 
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( )= −j jP c qπ  while total industry output is 
1=

=∑ J
jj

Q q  and total industry profits are 

( )Π = −P c Q . 

In such an infinitely-repeated game, Friedman (1971) has shown that collusion at the 
monopoly price can be sustained as a subgame-perfect equilibrium using Nash-reversion trigger 
strategies, where firms revert to the Cournot-Nash equilibrium if any firm deviates from 
collusion, provided that the discount factor is sufficiently large.4 Collusion at the monopoly price 
is sustainable if the present discounted value of profits from collusion, Mπ , exceed the profits 
from deviating from collusion, Dπ , followed by the Cournot-Nash equilibrium profits, Nπ , 
forever thereafter. Thus, collusion at the monopoly price is sustainable if the discount factor 
exceeds the critical value, *δ , defined as follows: 
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When the firms collude, they are assumed to behave as a monopolist and maximise total 
industry profits. Straightforward calculations yield the monopoly price, output and profits: 
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Given that all firms are identical, it is natural to assume that all firms produce the same 
output when they collude so each firm produces =M Mq Q J  and earns profits equal to: 
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In the Cournot-Nash equilibrium, each firm maximises its profits given the outputs of the 
other firms and this leads to the following first-order conditions: 
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Summing over the J first-order conditions yields an equation that can be solved for total 
industry output and the market price. Thus, the market price, total industry output, and total 
industry profits in the Cournot-Nash equilibrium are: 
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Since all the firms have the identical and constant marginal cost, the Cournot-Nash 
equilibrium is symmetric with each firm producing =N Nq Q J  and earning profits equal to: 

                                                 
4 For simplicity, only Nash-reversion trigger strategies will be considered in this note. The optimal penal code 

for sustaining collusion has been derived by Abreu (1986) and it would be interesting to analyse such strategies with 
constant elasticity demand functions. 
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For later reference, it is useful to calculate the ratio of Cournot-Nash equilibrium profits and 
the profits from collusion at the monopoly price: 
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Note that this profit ratio does not depend upon the costs of the firms, but only on the 
number of firms and the elasticity of demand. Differentiating this profit ratio with respect to the 
elasticity of demand yields: 
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This can be signed by noting that the term in square brackets is negative since 
( )ln 1 0+ − <x x  for 0 1< <x . Therefore, as the elasticity of demand increases Cournot-Nash 

equilibrium profits increase relative to the profits from collusion at the monopoly price. 
Intriguingly, note that the limit of this profit ratio as the elasticity of demand tends to infinity is 
equal to ( )exp 1 1 1J J− < , which implies that there are always gains from collusion (and losses 
from deviation) whatever the elasticity of demand. 

If a firm deviates from collusion in any stage of the game then it maximises its profits in that 
stage given that all the other firms produce the collusive output, Mq . Therefore the first-order 
condition for profit maximisation by the deviating firm is: 
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The solution to this equation gives the output of the deviating firm, = D
jq q , which can be 

used to calculate total industry output, market price, and the profits of the deviating firm, Dπ . 
Unfortunately, this equation cannot be solved analytically as the situation is no longer 
symmetric, but it can be solved numerically using Mathematica, see Wolfram (1999). The 
marginal cost of the firms can be normalised to unity, 1=c , without any loss of generality since 
the profit ratios: N Mπ π , see (7), and D Mπ π  are independent of marginal cost so the critical 
discount factor (1) will be independent of costs.5 Equation (9) can be solved for a given number 
of firms and a given value for elasticity of demand. The solution can then be used to solve for the 
profits of the deviating firm and this together with the profits from collusion (3) and the Cournot-
Nash equilibrium profits (6) can be used to calculate the critical discount factor(1). Thus, as 
shown in figure 1, the critical discount factor can be plotted as a function of the elasticity of 
demand for given numbers of firms ( 2, 5, 20=J ). Figure 2 shows the critical discount factor as a 

                                                 
5 Numerical solutions can be used to show that the second profit ratio is independent of costs. 
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function of the number of firms for given values of the elasticity of demand ( 1 1, 5= ⋅η ). In both 
figures, it can be seen that the critical discount factor is decreasing in the elasticity of demand 
and increasing in the number of firms. Therefore, the larger is the elasticity of demand then the 
easier it is to sustain collusion at the monopoly price. 

The explanation for this result can be understood if one realises that the elasticity of demand 
has three effects on the sustainability of collusion. Firstly, the larger is the elasticity of demand 
then the lower will be the price-cost margin when the firms collude at the monopoly price. This 
effect reduces the incentive for the firms to deviate from collusion as the elasticity of demand 
increases. Secondly, the larger is the elasticity of demand then the smaller will be the reduction 
in price if a firm deviates from collusion and increases its output. This effect increases the 
incentive to deviate from collusion as the elasticity of demand increases. Thirdly, as shown in (8)
, the larger is the elasticity of demand then the larger will be the Cournot-Nash equilibrium 
profits relative to the profits from collusion at the monopoly price. This effect reduces the losses 
from reversion to the Cournot-Nash equilibrium following any deviation from collusion, and 
thereby increases the incentive to deviate from collusion as the elasticity of demand increases. It 
turns out that the first effect dominates the second and third effects so that the incentive to 
deviate from collusion decreases as the elasticity of demand increases. Therefore, the larger is 
the elasticity of demand then the easier it is to sustain collusion at the monopoly price. 

 

3. Conclusions 
This note has investigated the relationship between the elasticity of demand and the 

sustainability of collusion at the monopoly price. It has been shown that the larger is the 
elasticity of demand then the easier it is for firms to sustain collusion at the monopoly price. 
Despite using numerical solutions, the results obtained are unambiguous and seem to be quite 
general. Since firms are colluding at the monopoly price, the dominant effect that drives this 
result is that the larger is the elasticity of demand then the lower is the price-cost margin and the 
lower is the incentive to deviate from collusion. If one considered partial collusion where firms 
colluded at the same price whatever the elasticity of demand then the result will probably be 
reversed so that the larger is the elasticity of demand then the harder it is to sustain collusion. 
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Figure 1: Critical discount factor and the elasticity of demand

Figure 2: Critical discount factor and the number of firms
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