Multicollinearity and maximum entropy leuven estimator

SK Mishra North Eastern Hill University, Shillong, India

Abstract

Multicollinearity is a serious problem in applied regression analysis. Q. Paris (2001) introduced the MEL estimator to resolve the multicollinearity problem. This paper improves the MEL estimator to the Modular MEL (MMEL) estimator and shows by Monte Carlo experiments that MMEL estimator performs significantly better than OLS as well as MEL estimators.

Citation: Mishra, SK, (2004) "Multicollinearity and maximum entropy leuven estimator." *Economics Bulletin*, Vol. 3, No. 25 pp. 1–11

Submitted: June 14, 2004. Accepted: July 15, 2004.

URL: http://www.economicsbulletin.com/2004/volume3/EB-04C10016A.pdf

Multicollinearity and maximum entropy leuven estimator

Dr. SK Mishra Dept. of Economics NEHU, Shillong, India

1. Introduction : Deleterious effects of a high degree of multicollinearity on estimation of regression coefficients, β , of a linear model such as $y = X\beta + u$ is well known. The *Ordinary Least Squares* (OLS) estimate of β , $\hat{\beta}_{OLS} = (X'X)^{-1}X'y$, is often inaccurate, usually far from the true coefficients, if X'X exhibits a high degree of multicollinearity. As a remedial measure to multicollinearity, Hoerl & Kennard (1970) introduced *Ridge Regression*, which is based on purely numerical considerations. Ridge Regression numerically perturbs X'X through adding to it a matrix δI : $\delta > 0$. Thus, $\beta_{RIDGE} = (X'X + \delta I)^{-1}X'y$. The value of δ is iteratively obtained. As Theobald (1974) pointed out, the choice of δ depends on unknown parameters (population β and its variance) and replacing the unknown population parameters by their sample estimates does not ensure an advantage of Ridge Regression over the Ordinary Least Squares.

Golan et al. (1996) introduced the *Generalized Maximum Entropy* (GME) estimator to resolve the multicollinearity problem in regression analysis. This estimator requires a number of support values supplied subjectively and exogenously by the researcher. The estimates as well as their standard errors depend on those support values. In a real life situation it is too demanding on the researcher to supply appropriate support values. Consequently, GME estimator is not a very practicable method to overcome the multicollinearity problem.

Paris (2001) introduced the *Maximum Entropy Leuven* (MEL) estimator. It exploits the information available in the sample data more efficiently than the OLS does, and unlike GME estimator, it does not require any additional information to be supplied by the researcher. The MEL estimator maximizing entropy in the estimated regression coefficients, $\hat{\beta}$, is formulated as (see Paris, 2001, p. 3) min $H(p_{\beta}, L_{\beta}, u) = p'_{\beta} \log(p_{\beta}) + L_{\beta} \log(L_{\beta}) + u'u$, subject to three equality conditions (all definitional in nature) stated as: (*i*) $y = X \beta + u$; (*ii*) $L_{\beta} = \beta' \beta$; and (*iii*) $p_{\beta} = \beta \Theta \beta / L_{\beta}$: $0 < p_{\beta} < 1$ for i = 1, 2, ..., m. Here the symbol Θ indicates the element-by-element Hadamard product and the column vector $p_{\beta} = (p_{\beta_i}, p_{\beta_2}, ..., p_{\beta_m})'$ is the vector of probabilities, wherein p_{β_i} is the probability of the regression coefficient β_i ; i = 1, 2, ..., m in the regression model $y = X \beta + u$. In his paper, Paris restricts $p_{\beta_i} \ge 0$. However, since multicollinearity necessarily presupposes that β will have $m \ge 2$ elements, hence if $p_{\beta_i} = 1$ then $p_{\beta_j} : j \neq i$ will be zero. Further, since log(0) is numerically undefined, the objective function H(.) will be undefined, unless we explicitly declare that the product $p_{\beta_i} \log(p_{\beta_i}) = 0$ whenever $p_{\beta_i} = 0$. We consider, therefore, that $0 < p_{\beta_i} < 1$. Of course, p_{β_i} being the probability, $\sum_{i=1}^{m} p_{\beta_i} = 1$. Paris concludes: "under any

level of multicollinearity, MEL estimator uniformly dominates the OLS estimator according

to the mean squared error criterion. It rivals also the GME estimator without requiring any subjective additional information."

2. Objectives of the Present Investigation: The objectives of our investigation are twofold: (i) to look into the problem of multicollinerarity more closely and (ii) to shed more light on the MEL estimator through discussion and simulation (based on Monte Carlo experiments). Additionally, we will discuss some computational issues and alternatives also.

3. Multicollinearity, XX **Matrix and** $\sigma(u)$: In the literature on multicollinearity we find that the blame of causing trouble with estimation is solely attributed to the structure of X in the linear econometric model $y = X\beta + u$, which structure is reflected into XX in $\beta'_{OLS} = (XX)^{-1}X'y$. The severity of multicollinearity is measured by the condition number (Belsley et al., 1980, Chap. 3) defined as $c_n = \sqrt{\lambda_1/\lambda_m}$, where λ_1 and λ_m are the largest and the smallest eigenvalues of XX matrix, respectively. Here X(n,m) is the matrix of standardized *m* variables (each in n observations with zero mean and unit standard deviation). Multicollinearity begins to signal its deleterious effects when Belsley's condition number is around 30 (see Paris, 2001, p. 1, footnote). Beyond this number $(c_n \gg 30)$ multicollinearity destabilizes the estimation and the estimated regression coefficients, β_{OLS} , are grossly unreliable.

In table 1 we present the OLS estimates of true $\beta = (10, 20, 30, 40, 50)$ with two different samples of X giving two different XX matrices, the one with condition number 12.02 and the other with 1222.89. We have generated $u \sim N(0, \sigma)$ with $\sigma = 0, 2, 5$ and 10. Note that $\sigma = 0$ means that we have not added *u* to $X\beta$. There is no constant term in the model, all the variables are measured as (properly signed) deviations from their respective mean values. The sample size is 30. The results clearly indicate that with an increase in σ the estimates go wild when the condition number is large. However, for a small value of σ the OLS gives fairly acceptable estimates even if the condition number is large. On the other hand, for a small condition number a larger σ cannot destabilize the estimator. It appears that errors (that introduce inconsistency into the over-determined linear system of equations $y = X\beta$, the strength of which is dependent on $\sigma(u)$) and X (that contains information on the source of variation in the true y or the y net of error) interact to determine $\hat{\beta}$. A large condition number implies a weaker power of X in explaining the variations in y, which may yet be effective if $\sigma(u)$ is small enough and vice versa. From this we learn that large condition number coupled with a large σ destabilizes the estimator; either of the two in isolation cannot cause much harm. Yet, of the two, the condition number is more potent in determining the stability of the OLS estimator of regression coefficients.

4. Estimation of Regression Coefficients when XX may have a Large c_n : In the conventional scheme the regression parameters, β in $y = X\beta + u$, are estimated by $\hat{\beta} = (XX)^{-1}X'y$. The matrix XX is inverted by conventional methods such as Gauss-Jordan, Gauss-Seidel, Cholesky's triangular factorization, etc. (see Krishnamurthy & Sen, pp. 134-213). Near-singular matrices (that have a large condition number, c_n) are often ill-

conditioned to such inversion methods. Then the Neumann-Goldstein (1947) measure of illconditioning ($\mu = \lambda_1/\lambda_m$, where λ_1 is the largest and λ_m is the smallest eigenvalue of XX matrix) and Belsley's $c_n = \sqrt{\lambda_1/\lambda_m}$ convey the one and the same thing – i.e. XX is illconditioned to inversion or in other words, multicollinearity is very high. Note that X(n,m)is the matrix of standardized m variables (each in n observations with zero mean and unit standard deviation). Once an ill-conditioned matrix is inverted by one of the conventional methods, the $(XX)^{-1}$ often does not strictly satisfy the relationship $(XX)^{-1}XX = I$.

However, it is possible to express XX as VDV', where D and V are the (diagonal) matrix of eigenvalues and (orthogonal) matrix of eigenvectors of XX, respectively. Symmetric matrices that are ill-conditioned to inversion are quite well-conditioned to computing their eigenvalues and eigenvectors. Now, using the celebrated Cayley-Hamilton theorem (Fröberg, 1965, pp. 57-62), $(X'X)^{-1} = VD^{-1}V'$ if all the elements in the principal diagonal of D are non-zero (absence of perfect multicollinearity). In case some elements (at least one, but not all, of course) in the principal diagonal of D are zero (perfect multicollinearity), one may obtain D^+ (the Moore-Penrose generalized inverse of D, see Theil, 1971. pp. 268-270), which is very simple to compute. Since D is a diagonal matrix, $d_{ii}^+ = d_{ii}^{-1}$ if $d_{ii} \neq 0$ else $d_{ii}^+ = 0$. In this case, $(X'X)^+ = VD^+V'$, with which one may obtain $\hat{\beta}^* = (X'X)^+ X'y$. If all the principal diagonal elements of D are non-zero, $D^{-1} = D^+ \Rightarrow \hat{\beta} = \hat{\beta}^*$. We will call this method of estimation as (the generalized) Cayley-Hamilton method to obtain $\hat{\beta}$. Computationally, this method has two advantages, (i) it will not fail due to large c_n , even if the smallest eigenvalue of XX is zero, and (ii) it yields all the eigenvalues and eigenvectors of XX, and therefore, $c_n = \sqrt{\lambda_1/\lambda_m}$ as a byproduct. Hence, this method qualifies well to be programmed on a computer.

Alternatively, one may minimize $u'u = f(\beta | y, X) = (y - X\beta)'(y - X\beta)$ by some quadratic programming or search algorithm for non-linear programming. Among the search methods, the Random Walk Method is quite flexible, although slow. For a comparative view of performance of the alternative methods of computation, table 2 may be referred to.

5. Generation of Multicollinear Explanatory Variables (X): For the investigation at hand we will require to generate multicollinear X, such that XX has a large c_n . It is easier to obtain X(n,m), in n rows (observations or the sample size) and m columns, such that each variable (column of X) is uniformly distributed within a specified range. However, generation of X with some control over the degree of multicollinearity is quite involved. The following procedures generates X with a high degree of multicollinearity.

A. Orthogonalization consisting of six steps - (i) Generate $Z(n,m) \sim U(0,1)$, uniformly distributed random numbers lying between 0 and 1; here *n* stands for sample size and *m* for the number of variables. (ii) Standardize Z such that for each variable (column) its mean $(\overline{z}_j; j=1,2,...,m)$ is zero and standard deviation $(\sigma(z_j) = \sigma_j, \text{ say }; j=1,2,...,m)$ is unity. (iii) Compute the correlation matrix R(m,m) from Z. (iv) Compute all *m* eigenvalues (L) and eigenvectors (E) of R. (v) Normalize E to yield ω such that $\omega'\omega = L$, a diagonal

matrix. Note that eigenvectors are impervious to a multiplication by any non-zero constant. (vi) compute $Q = Z\omega$. The columns of Q are pair-wise orthogonal. Moreover, the variance (σ_i^2) of the jth column (variable) of Q, i.e. q_i , is $\lambda_i = L_{ii}$.

B. Multicollinearization consisting of three steps – (i) Choose a suitable diagonal matrix L^* such that its first element (L_{11}^*) is quite large and the last element (L_{mm}^*) is quite small; note that $L_{ij}^* > 0$ iff i = j, $L_{ij}^* = 0$ otherwise; also note that $trace(L^*) = m$. (ii) Normalize E (obtained in A.(iv) above) to yield ε such that $\varepsilon' \varepsilon = L^*$, (iii) compute $X = Z\varepsilon'$. The resulting X in B above yields X'X with a large c_n . However, it is important to know that in case the step A(v) is not undergone and $\omega = E$ is used, a mild multicollinearization is achieved than if all the said steps in A and B were undergone. On the other hand, if step B(ii) is not undergone, no further multicollinearization is achieved.

6. A Comparative Study of Performance of OLS and MEL Estimators: Now we proceed to conduct some Monte Carlo experiments to study the relative performance of OLS and MEL (Paris, 2001) estimators. We have fixed the sample size (n) to 20, since small sample properties of these estimators have a relatively more practical significance. We have also fixed the model size (m = no. of explanatory variables in the regression model $y = X \beta + u$) to five variables. The (true) coefficient vector $\beta = (10 \ 20 \ 30 \ 40 \ 50)'$. The disturbance vector, u, is normally distributed with 0 mean and $\sigma(u) = 0$, 5, 10 15 or 20. Choice of $\sigma(u) = 0$ amounts to adding no error term to $X\beta$ that implies an over-determined (since n > m) but *consistent* system of linear equations, $y = X\beta$.

Multicollinear X(20,5) matrices yielding XX with different c_n have been generated by the procedure laid down earlier. The estimation of $\hat{\beta}_{OLS}$ has been made by the Cayley-Hamilton method while the estimation of $\hat{\beta}_{MEL}$ has been made by the Random Walk method. The author wrote his own program (in FORTRAN) for computation needed in this work.

The results are presented in the tables 3-A through 3-D with different c_n values, viz. 5.02, 27.87, 91.48 and 419.43, implying negligible, critical (threshold), substantially high and very high degrees of multicollinearity respectively. We have not computed any overall measure (such as MSEL – Judge et al., 1982, p. 558) of performance of an estimator. Instead, we have computed Root Mean Square (RMS) of deviations of each individual $\hat{\beta}_i$ (given by

 $RMS_{j} = \left[\left\{\sum_{i=1}^{ntrial} (\hat{\beta}_{ij} - \beta_{j})^{2}\right\} / ntrial\right]^{1/2}; \quad \beta_{ij} \text{ estimated in the } i^{\text{th}} \text{ trial; ntrial=50; } \beta_{j} = \text{known}$

parameter). It is obvious that if the RMS_a of most of the coefficients are smaller than the RMS_b of their counterpart, and no RMS_a is much larger than RMS_b , then $MSEL_a$ will be smaller than $MSEL_b$. Moreover, multicollinearity is not of so much concern to the overall model fit as to the individual coefficients of the model.

7. A Revisit to probability in Paris' MEL Estimator: Paris has defined $prob(\beta_i) = \beta_i^2 / \beta' \beta = \{\beta_i / (\beta' \beta)^{1/2}\}^2$. Thus, he has normalized β_i using the *Euclidean norm* of β . He draws a justification for this operation from physics. However, we must note that

the physical system relating to light may not be archetypal to all systems (e.g. the economic system, see Georgescu-Roegen, 1971, pp. 95-113) that throw up data with the multicollinearity problem.

Therefore, let us part with the Euclidean norm, normalize β_i using the *absolute norm* of β and investigate into its effects on the performance of the Maximum Entropy estimator. This new estimator is not fully à la Paris (2001) and hence we would call it the *Modular Maximum Entropy Leuven* (MMEL) estimator. The results of this enterprise are presented in the tables 3-A through 3-D, between the results of MEL and OLS estimators.

8. The Main Findings: A perusal of tables 3.A through 3.D brings out the following findings. (i). With increasing severity of multicollinearity, the performance of the MEL as well as the MMEL estimator becomes increasingly better than that of the OLS. This is so because in the OLS estimation $\hat{\beta}_{OLS}$ are completely unconstrained while in the MMEL (and MEL) estimation the $\hat{\beta}_{MMEL}$ (and $\hat{\beta}_{MEL}$) have to take on values such that the entropy in the estimated regression coefficients is maximized. (ii). In terms of the mean estimated regression coefficients as well as the root mean squares of errors of estimation, performance of the MMEL estimator is uniformly better than the MEL estimator. (iii) Large standard deviation of the error term, $\sigma(u)$, least affects the MMEL estimator. In this regard, the MMEL is a more stable estimator than the MEL and the OLS.

In view of these findings, it appears that the MMEL estimator is a better alternative to the MEL as well as the OLS when the regressor variables exhibit a high degree of multicollinearity.

9. A Multi-Objective Optimization Interpretation of the MEL Estimator: The MEL estimator (MEL proper as well as MMEL) purports to minimize a combination of $\{u'u\}$ and $\{p'_{\beta} \log(p_{\beta}) + L_{\beta} \log(L_{\beta})\}$. Consider the 2-objective minimization problem given as:

Min $H_1(\beta \mid y, X) = u'u$

 $Min \ H_2(\beta \mid y, X) = p'_{\beta} \log(p_{\beta}) + L_{\beta} \log(L_{\beta})$

Subject to :

(i) $y = X\beta + u$; (ii) $L_{\beta} = \beta'\beta$; (iii) $p_{\beta} = \beta \Theta \beta / L_{\beta}$; (iv) $0 < p_{\beta_i} < 1 \forall i = 1, 2, ..., m$.

Now, one of the simplest procedures to solve a multi-objective programming problem is to construct an auxiliary (composite) single objective function from the multiple objective functions and optimize it under the given constraints. One may write the resulting composite minimand objective function as a convex combination of the original H_1 and H_2 functions, such as $\kappa[u'u] + (1-\kappa)[p'_{\beta}\log(p_{\beta}) + L_{\beta}\log(L_{\beta})]: 0 < \kappa < 1$. If $\kappa = 1$, it gives us the conventional OLS estimator and if $\kappa = 0$ it maximizes '*entropy*' leading to equalization of the regression coefficients, ignoring u'u altogether. The MEL estimator chooses $\kappa = 0.5$.

Nevertheless, one may choose to make κ a decision variable obeying some additional constraint(s). This approach to resolving the multicollinearity problem requires investigation. Further, there could be several alternative approaches to solve a multi-objective programming problem, other than the one outlined above. Note that all these observations apply to MMEL estimator also.

References

- **1. Belsley, DA, E Kuh & RE Welsch** (1980). *Regression Diagnostics, Identifying Influential Data and Sources of Collinearity*, Wiley, New York.
- 2. Fröberg, CE (1965). Introduction to Numerical Analysis, Addison-Wesley, London.
- **3. Georgescu-Roegen, N** (1971). *The Entropy Law and The Economic Process*, Harvard Univ. Press, Cambridge, Mass.
- 4. Golan, A, G George & D Miller (1996). Maximum Entropy Econometrics, Wiley, London.
- **5. Hoerl, AE & RW Kennard** (1970). "Ridge Regression: Biased Estimation for Non-Orthogonal Problems", *Technometrics*, pp. 55-68.
- **6.** Hoerl, AE & RW Kennard (1970). "Ridge Regression: Applications to Non-Orthogonal Problems", *Technometrics*, pp. 69-82.
- 7. Krishnamurthy, EV & SK Sen (1976). Computer-Based Numerical Algorithms, Affiliated East-West Press, New Delhi.
- 8. Paris, Q (2001). "Multicollinearity and Maximum Entropy Estimator", *Economics Bulletin*, 3(11), pp. 1-9.
- 9. Theil, H (1971). Principles of Econometrics, Wiley, New York.
- **10. Theobald, CM** (1974). "Generalizations of Mean Square Error Applied to Ridge Regression", *J. of the Royal Stat. Soc., Series B*, 36, pp. 103-106.
- 11. von Neumann, J & HH Goldstein (1947). "Numerical Inverting of Matrices of High Order", *Bull. Amer. Math. Soc.*, 53, pp. 1021-1099.

Table 1. Effects of $\sigma(u)$ and Multicollinearity Measure $\sqrt{\mu}$ on OLS Estimation									
$\sigma(u)$	Measure $(\sqrt{\mu})$ of	Regressio	Regression Coefficients Estimated by OLS (Mean of 50						
	multicollinearity	$\hat{oldsymbol{eta}}_{_1}$	$\hat{oldsymbol{eta}}_2$	$\hat{oldsymbol{eta}}_{_3}$	$\hat{oldsymbol{eta}}_{\scriptscriptstyle 4}$	$\hat{oldsymbol{eta}}_{\scriptscriptstyle{5}}$			
0.00	1222.89	10.000	20.000	30.000	40.000	50.000			
0.00	32.16	10.000	20.000	30.000	40.000	50.000			
0.00	12.02	10.000	20.000	30.000	40.000	50.000			
1.00	1229.89	8.884	29.864	48.073	33.719	67.479			
1.00	32.16	9.898	20.365	30.486	39.825	50.426			
1.00	12.02	9.943	20.206	30.199	39.927	50.116			
2.00	1222.89	2.535	54.552	93.735	17.922	108.128			
2.00	32.16	9.795	20.731	30.972	39.651	50.852			
2.00	12.02	9.320	20.501	31.101	39.879	50.404			
5.00	1222.89	-8.662	106.380	189.338	-15.195	195.321			
5.00	32.16	9.488	21.826	32.431	39.127	52.130			
5.00	12.02	8.301	21.252	32.752	39.697	51.009			
10.00	1222.89	-27.324	192.760	348.676	-70.390	340.642			
10.00	32.16	8.977	23.653	34.862	38.254	54.259			
10.00	12.02	6.602	22.503	35.504	39.393	52.019			
20.00	1222.89	-12.306	217.284	391.452	-85.613	399.588			
20.00	32.16	7.953	27.305	39.723	36.506	58.578			
20.00	12.02	8.857	24.114	33.980	38.538	53.113			
30.00	1222.89	-23.460	315.926	572.178	-148.419	574.382			
30.00	32.16	6.930	30.958	44.585	34.761	68.777			
30.00	12.02	8.285	26.172	35.964	37.808	54.669			
True values of β		10.00	20.00	30.00	40.00	50.00			

Table 2. Relative Performance of Generalized Cayley-Hamilton (C-H) and Random Walk Algorithms									
[Sample size (n) = 20; $\sigma(u) = 10, 20$; Condition Number (C_n)=5.12]									
$\sigma(u)$	Algorithm $\hat{\beta}_1$ $\hat{\beta}_2$ $\hat{\beta}_3$ $\hat{\beta}_4$ $\hat{\beta}_5$								
10	Random Walk Search	9.43192	23.23360	32.99955	40.31155	52.82256			
10	$C\text{-}H;\;(X'X)^{+}\equiv VD^{+}V'$	9.43192	23.23359	32.99954	40.31155	52.82256			
20	Random Walk Search	8.86384	26.46719	35.99909	40.62309	55.64511			
20	$C\text{-}H;\;(X'\!X)^{+}\equiv V\!D^{+}\!V'$	8.86384	26.46719	35.99909	40.62310	55.64511			
	True values of eta	10.00	20.00	30.00	40.00	50.00			

Table 3-A. Relative Performance of OLS and MEL Estimators								
[Sample size (n) = 20; Condition Number (C_n)=5.12; $\sqrt{\mu}$ = 5.02]								
$\sigma(u)$	Estimate	Estimator	$\hat{oldsymbol{eta}}_1$	$\hat{oldsymbol{eta}}_2$	$\hat{oldsymbol{eta}}_{_3}$	$\hat{oldsymbol{eta}}_4$	$\hat{oldsymbol{eta}}_5$	
$\sigma(u) = 0$	Â	MEL	5.994	0.810	7.258	30.748	23.971	
	1-	MMEL	10.023	18.431	28.566	40.251	48.950	
		OLS	10.000	20.000	30.000	40.000	50.000	
	RMS	MEL	4.006	19.190	22.742	9.252	26.029	
		MMEL	0.023	1.569	1.434	0.251	1.050	
		OLS	0.000	0.000	0.000	0.000	0.000	
$\sigma(u) = 5$	Â	MEL	6.005	0.719	7.147	30.739	24.003	
	1-	MMEL	10.118	17.937	28.111	40.344	48.809	
		OLS	10.095	19.504	29.543	40.092	49.859	
	RMS	MEL	4.069	19.294	22.862	9.293	26.007	
		MMEL	1.359	3.445	2.872	1.490	2.134	
		OLS	1.357	2.811	2.218	1.454	1.782	
$\sigma(u) = 10$	Â	MEL	6.014	0.629	7.035	30.725	24.032	
	,	MMEL	10.213	17.444	27.656	40.436	48.669	
		OLS	10.190	19.008	29.087	40.185	49.717	
	RMS	MEL	4.275	19.422	23.000	9.399	26.010	
		MMEL	2.716	6.081	4.920	2.932	3.783	
		OLS	2.715	5.622	4.436	2.907	3.563	
$\sigma(u) = 15$	β	MEL	6.021	0.539	6.921	30.708	24.057	
	,	MMEL	10.308	16.951	27.202	40.528	48.530	
		OLS	10.285	18.513	28.630	40.277	49.576	
	RMS	MEL	4.604	19.574	23.155	9.569	26.037	
		MMEL	4.074	8.819	7.066	4.381	5.511	
		OLS	4.072	8.432	6.654	4.361	5.345	
$\sigma(u) = 20$	Â	MEL	6.028	0.449	6.807	30.688	24.078	
	1-	MMEL	10.410	16.540	26.813	40.596	48.436	
		OLS	10.381	18.017	28.173	40.370	49.434	
	RMS	MEL	5.031	19.750	23.328	9.800	26.088	
		MMEL	5.358	11.369	9.081	5.797	7.206	
		OLS	5.430	11.243	8.872	5.814	7.126	
Tru	ue values of	β	10.00	20.00	30.00	40.00	50.00	
Note: MEL = Estimator à la Paris (2001); MMEL obtains $p(\beta)$ differently using absolute norm.								

Table 3-B. Relative Performance of OLS and MEL Estimators								
[Sample size (n) = 20; Condition Number (C_n)=28.55; $\sqrt{\mu}$ =27.87]								
$\sigma(u)$	Estimate	Estimator	$\hat{oldsymbol{eta}}_{_1}$	$\hat{oldsymbol{eta}}_2$	$\hat{oldsymbol{eta}}_{3}$	$\hat{oldsymbol{eta}}_4$	$\hat{oldsymbol{eta}}_{5}$	
$\sigma(u) = 0$	Â	MEL	-2.564	-2.325	1.909	22.489	16.460	
	Ρ	MMEL	11.083	0.000	16.497	42.853	42.728	
		OLS	10.000	20.000	30.000	40.000	50.000	
	RMS	MEL	12.564	22.325	28.091	17.511	33.540	
		MMEL	1.083	20.000	13.503	2.853	7.272	
		OLS	0.000	0.000	0.000	0.000	0.000	
$\sigma(u) = 5$	Â	MEL	-2.567	-2.348	1.835	22.455	16.526	
	1-	MMEL	11.001	0.754	16.876	42.678	43.072	
		OLS	10.352	17.659	28.445	40.321	49.443	
	RMS	MEL	12.586	22.352	28.173	17.561	33.481	
		MMEL	2.798	19.458	13.337	3.111	7.277	
		OLS	3.251	13.308	8.140	2.857	4.377	
$\sigma(u) = 10$	Â	MEL	-2.570	-2.369	1.760	22.415	16.588	
	1-	MMEL	11.059	0.588	16.683	42.645	43.152	
		OLS	10.705	15.317	26.891	40.642	48.886	
	RMS	MEL	12.646	22.386	28.271	17.650	33.442	
		MMEL	5.560	22.033	14.880	4.458	8.466	
		OLS	6.501	26.616	16.280	5.714	8.755	
$\sigma(u) = 15$	Â	MEL	-2.572	-2.390	1.685	22.367	16.644	
	1-	MMEL	11.446	-0.913	15.730	42.826	42.934	
		OLS	11.057	12.976	25.336	40.963	48.330	
	RMS	MEL	12.743	22.426	28.384	17.780	33.424	
		MMEL	8.179	27.098	17.770	6.347	10.450	
		OLS	9.752	39.923	24.420	8.572	13.132	
$\sigma(u) = 20$	Â	MEL	-2.574	-2.409	1.609	22.311	16.696	
	1-	MMEL	11.653	-1.409	15.402	42.851	42.982	
		OLS	11.410	10.635	23.781	41.284	47.773	
	RMS	MEL	12.875	22.474	28.513	17.948	33.424	
		MMEL	11.005	32.344	20.626	8.222	12.477	
		OLS	13.003	53.231	32.560	11.429	17.510	
Tru	True values of β 10.00 20.00 30.00 40.00 50.00							
Note: MEL = Estimator à la Paris (2001); MMEL obtains $p(\beta)$ differently using absolute norm.								

Table 3-C. Relative Performance of OLS and MEL Estimators								
[Sample size (n) = 20; Condition Number (C_n)=92.98; $\sqrt{\mu}$ = 91.48]								
$\sigma(u)$	Estimate	Estimator	$\hat{oldsymbol{eta}}_{_1}$	$\hat{oldsymbol{eta}}_2$	$\hat{oldsymbol{eta}}_{3}$	$\hat{oldsymbol{eta}}_4$	$\hat{oldsymbol{eta}}_{5}$	
$\sigma(u) = 0$	Â	MEL	-6.215	-1.874	0.577	17.346	12.857	
	1-	MMEL	4.982	0.000	14.510	42.225	39.482	
		OLS	10.000	20.000	30.000	40.000	50.000	
	RMS	MEL	16.215	21.874	29.423	22.654	37.143	
		MMEL	5.019	20.000	15.490	2.225	10.518	
		OLS	0.000	0.000	0.000	0.000	0.000	
$\sigma(u) = 5$	Â	MEL	-6.222	-1.873	0.507	17.305	12.931	
	,	MMEL	5.601	-0.147	14.541	42.169	39.970	
		OLS	11.016	12.672	25.567	40.982	48.331	
	RMS	MEL	16.231	21.876	29.501	22.707	37.075	
		MMEL	6.227	20.173	15.663	2.871	10.572	
		OLS	7.566	41.834	24.434	6.646	11.231	
$\sigma(u) = 10$	Â	MEL	-6.226	-1.872	0.438	17.256	13.000	
	,	MMEL	7.159	-3.759	12.739	42.593	39.904	
		OLS	12.032	5.345	21.135	41.963	46.662	
	RMS	MEL	16.259	21.884	29.595	22.793	37.026	
		MMEL	9.074	25.335	18.385	4.854	12.015	
		OLS	15.132	83.668	48.867	13.292	22.462	
$\sigma(u) = 15$	Â	MEL	-6.226	-1.870	0.369	17.197	13.063	
	1-	MMEL	8.487	-8.084	10.407	43.143	39.444	
		OLS	13.048	-1.983	16.702	42.945	44.993	
	RMS	MEL	16.301	21.897	29.705	22.913	36.996	
		MMEL	13.538	31.059	21.434	7.031	14.323	
		OLS	22.698	125.502	73.301	19.938	33.693	
$\sigma(u) = 20$	Â	MEL	-6.223	-1.868	0.300	17.128	13.121	
	1-	MMEL	9.336	-10.169	9.326	43.386	39.423	
		OLS	14.064	-9.311	12.270	43.927	43.324	
	RMS	MEL	16.355	21.914	29.830	23.067	36.984	
		MMEL	18.259	34.072	23.238	8.924	16.758	
		OLS	30.265	167.337	97.734	26.585	44.924	
Tru	ue values of	β	10.00	20.00	30.00	40.00	50.00	
Note: MEL = Estimator à la Paris (2001); MMEL obtains $p(\beta)$ differently using absolute norm.								

Table 3-D. Relative Performance of OLS and MEL Estimators								
[Sample size (n) = 20; Condition Number (C_n)=421.34; $\sqrt{\mu}$ = 419.43]								
$\sigma(u)$	Estimate	Estimator	$\hat{oldsymbol{eta}}_{_{1}}$	$\hat{oldsymbol{eta}}_2$	$\hat{oldsymbol{eta}}_{3}$	$\hat{oldsymbol{eta}}_4$	$\hat{oldsymbol{eta}}_{5}$	
$\sigma(u) = 0$	Â	MEL	-2.806	0.641	-3.836	3.657	6.937	
	1-	MMEL	-0.001	-0.078	9.596	36.202	32.255	
		OLS	10.000	20.000	30.000	40.000	50.000	
	RMS	MEL	12.806	19.359	33.836	36.343	43.063	
		MMEL	10.001	20.080	20.406	3.808	17.747	
		OLS	0.000	0.000	0.000	0.000	0.000	
$\sigma(u) = 5$	Â	MEL	-2.817	0.651	-3.901	3.612	7.004	
	1-	MMEL	-2.789	-0.289	8.160	36.225	30.408	
		OLS	14.384	-12.610	10.679	43.999	42.114	
	RMS	MEL	12.822	19.353	33.909	36.393	43.001	
		MMEL	13.892	20.314	22.070	6.295	20.128	
		OLS	27.836	186.564	110.175	25.228	48.386	
$\sigma(u) = 10$	Â	MEL	-2.821	0.656	-3.953	3.562	7.055	
	1-	MMEL	-6.539	-0.195	6.693	36.513	28.162	
		OLS	18.768	-45.221	-8.643	47.997	34.227	
	RMS	MEL	12.842	19.357	33.985	36.458	42.965	
		MMEL	20.308	20.216	24.152	10.424	23.758	
		OLS	55.672	373.128	220.350	50.456	96.772	
$\sigma(u) = 15$	Â	MEL	-2.819	0.659	-3.994	3.504	7.091	
	1-	MMEL	-7.701	-0.955	5.925	27.167	27.579	
		OLS	23.152	-77.831	-27.964	51.996	26.341	
	RMS	MEL	12.867	19.370	34.064	36.539	42.954	
		MMEL	24.900	21.216	25.576	14.776	25.967	
		OLS	83.509	559.691	330.526	75.684	145.159	
$\sigma(u) = 20$	Â	MEL	-2.809	0.661	-4.026	3.435	7.111	
	1-	MMEL	-7.818	-1.573	5.412	37.261	27.443	
		OLS	27.536	-110.441	-47.286	55.994	18.455	
	RMS	MEL	12.895	19.389	34.149	36.640	42.970	
		MMEL	29.723	21.944	26.998	19.859	28.341	
		OLS	111.345	746.255	440.701	100.912	193.545	
Tru	True values of β 10.00 20.00 30.00 40.00 50.00							
Note: MEL = Estimator à la Paris (2001); MMEL obtains $p(\beta)$ differently using absolute norm.								