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Abstract

Multicollinearity is a serious problem in applied regression analysis. Q. Paris (2001)
introduced the MEL estimator to resolve the multicollinearity problem. This paper improves
the MEL estimator to the Modular MEL (MMEL) estimator and shows by Monte Carlo
experiments that MMEL estimator performs significantly better than OLS as well as MEL
estimators.

Citation: Mishra, SK, (2004) "Multicollinearity and maximum entropy leuven estimator." Economics Bulletin, Vol. 3, No. 25
pp. 1−11
Submitted: June 14, 2004.  Accepted: July 15, 2004.
URL: http://www.economicsbulletin.com/2004/volume3/EB−04C10016A.pdf

http://www.economicsbulletin.com/2004/volume3/EB-04C10016A.pdf


Multicollinearity and maximum entropy leuven estimator 
 

Dr. SK Mishra 
Dept. of Economics 

NEHU, Shillong, India 
  
1. Introduction : Deleterious effects of a high degree of multicollinearity on estimation of  
regression coefficients, β , of a linear model such as y X uβ= +  is well  known. The 

Ordinary Least Squares (OLS) estimate of β , 1ˆ ( )OLS X X X yβ −′ ′= , is often inaccurate, 
usually far from the true coefficients, if X X′  exhibits a high degree of multicollinearity. As a 
remedial measure to multicollinearity, Hoerl & Kennard (1970) introduced Ridge Regression, 
which is based on purely numerical considerations. Ridge Regression numerically perturbs 
X X′ through adding to it a matrix : 0Iδ δ > . Thus, 1( ) .RIDGE X X I X yβ δ −′ ′= +  The value of 
δ  is iteratively obtained. As Theobald (1974) pointed out, the choice of δ  depends on 
unknown parameters (population β  and its variance) and replacing the unknown population 
parameters by their sample estimates does not ensure an advantage of Ridge Regression over 
the Ordinary Least Squares.  

Golan et al. (1996) introduced the Generalized Maximum Entropy (GME) estimator 
to resolve the multicollinearity problem in regression analysis. This estimator requires a 
number of support values supplied subjectively and exogenously by the researcher. The 
estimates as well as their standard errors depend on those support values. In a real life 
situation it is too demanding on the researcher to supply appropriate support values. 
Consequently, GME estimator is not a very practicable method to overcome the 
multicollinearity  problem. 

Paris (2001) introduced the Maximum Entropy Leuven (MEL) estimator. It exploits 
the information available in the sample data more efficiently than the OLS does, and unlike 
GME estimator, it does not require any additional information to be supplied by the 
researcher. The MEL estimator maximizing entropy in the estimated regression coefficients, 
β̂ , is formulated as (see Paris, 2001, p. 3) min ( , , ) log( ) log( )H p L u p p L L u uβ β β β β β′ ′= + + , 
subject to three equality conditions (all definitional in nature) stated as: 
( ) ; ( ) ; ( ) / : 0 1

i
i y X u ii L and iii p L pβ β β ββ β β β β′= + = = Θ < <  for 1,2,..., .i m=  Here 

the symbol Θ  indicates the element-by-element Hadamard product and the column vector 

1 2
( , ,..., )

m
p p p pβ β β β ′= is the vector of probabilities, wherein 

i
pβ is the probability of the 

regression coefficient ; 1, 2,...,i i mβ =  in the regression model .y X uβ= +  In his paper, 

Paris restricts 0.
i

pβ ≥  However, since multicollinearity necessarily presupposes that β  will 

have 2m ≥  elements, hence if 1
i

pβ =  then :
j

p j iβ ≠ will be zero. Further, since log(0) is 

numerically undefined, the objective function (.)H  will be undefined, unless we explicitly 
declare that the product log( ) 0

i i
p pβ β =  whenever 0.

i
pβ =  We consider, therefore, that 

0 1.
i

pβ< <  Of course, 
i

pβ being the probability, 
1

1.
i

m

i

pβ
=

=�  Paris concludes: “under any 

level of multicollinearity, MEL estimator uniformly dominates the OLS estimator according 
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to the mean squared error criterion. It rivals also the GME estimator without requiring any 
subjective additional information.” 

 
2. Objectives of the Present Investigation: The objectives of our investigation are twofold: 
(i) to look into the problem of multicollinerarity more closely and (ii) to shed more light on 
the MEL estimator through discussion and simulation (based on Monte Carlo experiments). 
Additionally, we will discuss some computational issues and alternatives also. 
 
3. Multicollinearity, X X′  Matrix and ( )uσ : In the literature on multicollinearity we find 
that  the blame of causing trouble with estimation is solely attributed to the structure of X in 
the linear econometric model  y X uβ= + , which structure is reflected into X X′ in 

1( ) .OLS X X X yβ −′ ′ ′= The severity of multicollinearity is measured by the condition number 

(Belsley et al., 1980, Chap. 3) defined as 1n mc λ λ= , where 1λ  and  mλ  are the largest and 

the smallest eigenvalues of  X X′  matrix, respectively. Here ( , )X n m  is the matrix of 
standardized m  variables (each in n observations with zero mean and unit standard 
deviation). Multicollinearity begins to signal its deleterious effects when Belsley’s condition 
number is around 30 (see Paris, 2001, p. 1, footnote). Beyond this number ( 30nc >> ) 
multicollinearity destabilizes the estimation and the estimated regression coefficients, OLSβ ,  
are grossly unreliable. 
 In table 1 we present the OLS estimates of true β = (10, 20, 30, 40, 50) with two 
different samples of X giving two different X X′  matrices, the one with condition number 
12.02 and the other with 1222.89. We have generated (0, )u N σ� with σ = 0, 2, 5 and 10. 
Note that σ = 0 means that we have not added u to .X β  There is no constant term in the 
model, all the variables are measured as (properly signed) deviations from their respective 
mean values. The sample size is 30. The results clearly indicate that with an increase in σ the 
estimates go wild when the condition number is large. However, for a small value of σ  the 
OLS gives fairly acceptable estimates even if the condition number is large. On the other 
hand, for a small condition number a larger σ cannot destabilize the estimator. It appears that 
errors (that introduce inconsistency into the over-determined linear system of equations 
y X β= , the strength of which is dependent on ( )uσ ) and X (that contains information on 

the source of variation in the true y or the y  net of error) interact to determine ˆ.β  A large 
condition number implies a weaker power of X in explaining the variations in y , which may 
yet be effective if ( )uσ is small enough and vice versa. From this we learn that large 
condition number coupled with a large σ  destabilizes the estimator; either of the two in 
isolation cannot cause much harm. Yet, of the two, the condition number is more potent in 
determining the stability of the OLS estimator of regression coefficients.      
 
4. Estimation of Regression Coefficients when X X′ may have a Large nc : In the 
conventional scheme the regression parameters, β  in y X uβ= + , are estimated by 

1ˆ ( ) .X X X yβ −′ ′=  The matrix X X′  is inverted by conventional methods such as Gauss-Jordan, 
Gauss-Seidel, Cholesky’s triangular factorization, etc. (see Krishnamurthy & Sen, pp. 134-
213). Near-singular matrices (that have a large condition number, nc ) are often ill-
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conditioned to such inversion methods. Then the Neumann-Goldstein (1947) measure of ill-
conditioning ( µ = 1λ / mλ , where 1λ  is the largest and mλ  is the smallest eigenvalue of 

X X′ matrix) and Belsley’s 1n mc λ λ=  convey the one and the same thing – i.e. X X′ is ill-

conditioned to inversion or in other words, multicollinearity is very high. Note that  ( , )X n m  
is the matrix of standardized m  variables (each in n observations with zero mean and unit 
standard deviation).  Once an ill-conditioned matrix is inverted by one of the conventional 
methods, the 1( )X X −′  often does not strictly satisfy the relationship 1( ) .X X X X I−′ ′ =  
 However, it is possible to express X X′ as VDV ′ , where D  and V  are the (diagonal) 
matrix of eigenvalues and (orthogonal) matrix of eigenvectors of X X′ , respectively.  
Symmetric matrices that are ill-conditioned to inversion are quite well-conditioned to 
computing their eigenvalues and eigenvectors. Now, using the celebrated Cayley-Hamilton 
theorem (Fröberg, 1965, pp. 57-62), 1 1( )X X VD V− −′ ′=  if all the elements in the principal 
diagonal of D  are non-zero (absence of perfect multicollinearity).  In case some elements (at 
least one, but not all, of course) in the principal diagonal of D  are zero (perfect 
multicollinearity), one may obtain D+  (the Moore-Penrose generalized inverse of D , see 
Theil, 1971. pp. 268-270), which is very simple to compute. Since D  is a diagonal matrix, 

1
ii iid d+ −=  if 0iid ≠  else 0.iid + =  In this case, ( )X X VD V+ +′ ′= , with which one may obtain 
*ˆ ( ) .X X X yβ +′ ′=  If all the principal diagonal elements of D  are non-zero, 

1 *ˆ ˆ .D D β β− += � =  We will call this method of estimation as (the generalized) Cayley-

Hamilton method to obtain ˆ.β  Computationally, this method has two advantages, (i) it will 
not fail due to large nc , even if the smallest eigenvalue of  X X′ is zero, and (ii) it yields all 

the eigenvalues and eigenvectors of X X′ , and therefore, nc = 1 mλ λ  as a byproduct.  
Hence, this method qualifies well to be programmed on a computer. 
 Alternatively, one may minimize ( | , ) ( ) ( )u u f y X y X y Xβ β β′ ′= = − −  by some 
quadratic programming or search algorithm for non-linear programming. Among the search 
methods, the Random Walk Method is quite flexible, although slow. For a comparative view 
of performance of the alternative methods of computation, table 2 may be referred to.  
 
5. Generation of  Multicollinear Explanatory Variables ( X ): For the investigation at 
hand we will require to generate multicollinear X , such that X X′ has a large .nc It is easier to 
obtain ( , )X n m , in n rows (observations or the sample size) and m columns, such that each 
variable (column of X ) is uniformly distributed within a specified range. However, 
generation of X with some control over the degree of multicollinearity is quite involved. The 
following procedures generates X with a high degree of multicollinearity. 
 
A. Orthogonalization consisting of six steps - (i) Generate ( , ) (0,1)Z n m U� , uniformly 
distributed random numbers lying between 0 and 1; here n  stands for sample size and m  for 
the number of variables. (ii) Standardize Z such that for each variable (column) its mean 
( ; 1,2,..., )jz j m= is zero and standard deviation ( ( )jzσ = ,jσ say ; 1, 2,...,j m= ) is unity. 

(iii) Compute the correlation matrix ( , )R m m from Z . (iv)  Compute all m  eigenvalues ( L ) 
and eigenvectors ( E ) of R . (v) Normalize E  to yield ω such that Lω ω′ = , a diagonal 
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matrix. Note that eigenvectors are impervious to a multiplication by any non-zero constant. 
(vi) compute .Q Zω=  The columns of Q  are pair-wise orthogonal. Moreover, the variance 

( 2
jσ ) of the jth column (variable) of Q, i.e. jq , is .j jjLλ =  

B. Multicollinearization consisting of three steps – (i) Choose a suitable diagonal matrix 
*L such that its first element ( *

11L ) is quite large and the last element ( *
mmL ) is quite small; 

note that * *0 , 0ij ijL iff i j L> = =  otherwise; also note that *( ) .trace L m=  (ii) 

Normalize E (obtained in A.(iv) above) to yield ε  such that *Lε ε′ = , (iii) compute .X Zε ′=   
The resulting X in B above yields X X′ with a large .nc  However, it is important to know 
that in case the step A(v) is not undergone and Eω ≡  is used, a mild multicollinearization is 
achieved than if all the said steps in A and B were undergone. On the other hand, if step B(ii) 
is not undergone, no further multicollinearization  is achieved. 
      
6. A Comparative Study of Performance of OLS and MEL Estimators: Now we proceed 
to conduct some Monte Carlo experiments to study the relative performance of OLS and 
MEL (Paris, 2001) estimators. We have fixed the sample size (n) to 20, since small sample 
properties of these estimators have a relatively more practical significance. We have also 
fixed the model size (m = no. of explanatory variables in the regression model y X uβ= + ) 
to five variables. The (true) coefficient vector (10 20 30 40 50) .β ′=  The disturbance 
vector, u , is normally distributed with 0 mean and ( )uσ = 0, 5, 10 15 or 20. Choice of 

( )uσ = 0 amounts to adding no error term to X β  that implies an over-determined (since 
n m> ) but consistent system of linear equations, .y X β=  
 Multicollinear (20,5)X  matrices yielding X X′ with different nc have been generated 

by the procedure laid down earlier. The estimation of ˆ
OLSβ  has been made by the Cayley-

Hamilton method while the estimation of ˆ
MELβ has been made by the Random Walk method. 

The author wrote his own  program (in FORTRAN) for computation needed in this work.   
 The results are presented in the tables  3-A through 3-D with different nc values, viz. 
5.02, 27.87, 91.48 and 419.43, implying negligible, critical (threshold), substantially high and 
very high degrees of multicollinearity respectively. We have not computed any overall 
measure (such as MSEL – Judge et al., 1982, p. 558) of performance of an estimator. Instead, 
we have computed Root Mean Square (RMS) of deviations of each individual ˆ

jβ  (given by 

RMSj = 2 1/ 2

1

ˆ[{ ( ) }/ ]
ntrial

ij j
i

ntrialβ β
=

−� ; ijβ  estimated in the ith trial; ntrial=50; jβ =known 

parameter). It is obvious that if the RMSa of most of the coefficients are smaller than the 
RMSb of their counterpart, and no RMSa is much larger than RMSb , then MSELa will be 
smaller than MSELb. Moreover, multicollinearity is not of so much concern to the overall 
model fit as to the individual coefficients of the model.  
 
7. A Revisit to probability in Paris’ MEL Estimator: Paris has defined 

2( ) /i iprob β β β β′= = 1/ 2 2{ /( ) } .iβ β β′  Thus, he has normalized iβ using the Euclidean norm 
of .β  He draws a justification for this operation from physics. However, we must note that 
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the physical system relating to light may not be archetypal to all systems (e.g. the economic 
system, see Georgescu-Roegen, 1971, pp. 95-113) that throw up data with the 
multicollinearity problem.  
    Therefore, let us part with the Euclidean norm, normalize iβ  using the absolute norm 
of β  and investigate into its effects on the performance of the Maximum Entropy estimator. 
This new estimator is not fully à la Paris (2001) and hence we would call it the Modular 
Maximum Entropy Leuven (MMEL) estimator. The results of this enterprise are presented 
in the tables 3-A through 3-D, between the results of MEL and OLS estimators.  
 
8. The Main Findings: A perusal of tables 3.A through 3.D brings out the following 
findings. (i). With increasing severity of multicollinearity, the performance of the MEL as 
well as the MMEL estimator becomes increasingly better than that of the OLS. This is so 
because in the OLS estimation ˆ

OLSβ  are completely unconstrained while in the MMEL (and 

MEL) estimation the  ˆ
MMELβ  (and ˆ

MELβ ) have to take on values such that the entropy in  the 
estimated regression coefficients is maximized. (ii). In terms of the mean estimated 
regression coefficients as well as the root mean squares of errors of estimation, performance 
of the MMEL estimator is uniformly better than the MEL estimator. (iii) Large standard 
deviation of the error term, ( )uσ , least affects the MMEL estimator. In this regard, the 
MMEL is a more stable estimator than the MEL and the OLS.   
 In view of these findings, it appears that the MMEL estimator is a better alternative to 
the MEL as well as the OLS when the regressor variables exhibit a high degree of 
multicollinearity.     
 
9. A Multi-Objective Optimization Interpretation of the MEL Estimator: The MEL 
estimator (MEL proper as well as MMEL) purports to minimize a combination of { }u u′  and 
{ log( ) log( )}p p L Lβ β β β′ + . Consider the 2-objective minimization problem given as:  

1

2

( | , )

( | , ) log( ) log( )

Min H y X u u

Min H y X p p L Lβ β β β

β
β

′=
′= +

 

 Subject to : 
( ) ; ( ) ; ( ) / ; ( ) 0 1 1,2,..., .

i
i y X u ii L iii p L iv p i mβ β β ββ β β β β′= + = = Θ < < ∀ =  

Now, one of the simplest procedures to solve a multi-objective programming problem 
is to construct an auxiliary (composite) single objective function from the multiple objective 
functions and optimize it under the given constraints. One may write the resulting composite 
minimand objective function as a convex combination of the original 1H  and 2H  functions, 
such as [ ] (1 )[ log( ) log( )] : 0 1.u u p p L Lβ β β βκ κ κ′ ′+ − + < <  If 1κ = , it gives us the 

conventional OLS estimator and if 0κ =  it maximizes ‘entropy’ leading to equalization of 
the regression coefficients, ignoring u u′  altogether. The MEL  estimator chooses 0.5.κ =   
 Nevertheless, one may choose to make κ  a decision variable obeying some 
additional constraint(s). This approach to resolving the multicollinearity problem requires 
investigation. Further, there could be several alternative approaches to solve a multi-
objective programming problem, other than the one outlined above. Note that all these 
observations apply to MMEL estimator also. 
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Table 1. Effects of ( )uσ  and Multicollinearity Measure µ  on OLS Estimation 

Regression Coefficients Estimated by OLS (Mean of 50 trials) ( )uσ  Measure ( µ ) of 
multicollinearity 1̂β  2β̂  3β̂  4β̂  5β̂  

0.00 1222.89 10.000 20.000 30.000 40.000 50.000 
0.00 32.16 10.000 20.000 30.000 40.000 50.000 
0.00 12.02 10.000 20.000 30.000 40.000 50.000 
1.00 1229.89 8.884 29.864 48.073 33.719 67.479 
1.00 32.16 9.898 20.365 30.486 39.825 50.426 
1.00 12.02 9.943 20.206 30.199 39.927 50.116 
2.00 1222.89 2.535 54.552 93.735 17.922 108.128 
2.00 32.16 9.795 20.731 30.972 39.651 50.852 
2.00 12.02 9.320 20.501 31.101 39.879 50.404 
5.00 1222.89 -8.662 106.380 189.338 -15.195 195.321 
5.00 32.16 9.488 21.826 32.431 39.127 52.130 
5.00 12.02 8.301 21.252 32.752 39.697 51.009 

10.00 1222.89 -27.324 192.760 348.676 -70.390 340.642 
10.00 32.16 8.977 23.653 34.862 38.254 54.259 
10.00 12.02 6.602 22.503 35.504 39.393 52.019 
20.00 1222.89 -12.306 217.284 391.452 -85.613 399.588 
20.00 32.16 7.953 27.305 39.723 36.506 58.578 
20.00 12.02 8.857 24.114 33.980 38.538 53.113 
30.00 1222.89 -23.460 315.926 572.178 -148.419 574.382 
30.00 32.16 6.930 30.958 44.585 34.761 68.777 
30.00 12.02 8.285 26.172 35.964 37.808 54.669 

True values of β  10.00 20.00 30.00 40.00 50.00 
  
 
 
 

Table 2.  Relative Performance of   
Generalized Cayley-Hamilton (C-H)  and Random Walk Algorithms 

 [Sample size (n) = 20; ( )uσ = 10, 20; Condition Number ( nc )=5.12] 

( )uσ  Algorithm 
 

1β̂  2β̂  3β̂  4β̂  5β̂  

10 Random Walk Search 9.43192 23.23360 32.99955 40.31155 52.82256 
10 C-H; ( )X X VD V+ +′ ′≡  9.43192 23.23359 32.99954 40.31155 52.82256 
20 Random Walk Search 8.86384 26.46719 35.99909 40.62309 55.64511 
20 C-H; ( )X X VD V+ +′ ′≡  8.86384 26.46719 35.99909 40.62310 55.64511 

True values of β  10.00 20.00 30.00 40.00 50.00 
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Table 3-A. Relative Performance of OLS and MEL Estimators 
[Sample size (n) = 20; Condition Number ( nc )=5.12; µ  = 5.02] 

( )uσ  Estimate Estimator 
1β̂  2β̂  3β̂  4β̂  5β̂  

MEL 5.994 0.810 7.258 30.748 23.971 

MMEL 10.023 18.431 28.566 40.251 48.950 
β̂  

OLS 10.000 20.000 30.000 40.000 50.000 
MEL 4.006 19.190 22.742 9.252 26.029 

MMEL 0.023 1.569 1.434 0.251 1.050 

( )uσ = 0 

RMS 

OLS 0.000 0.000 0.000 0.000 0.000 
MEL 6.005 0.719 7.147 30.739 24.003 

MMEL 10.118 17.937 28.111 40.344 48.809 
β̂  

OLS 10.095 19.504 29.543 40.092 49.859 
MEL 4.069 19.294 22.862 9.293 26.007 

MMEL 1.359 3.445 2.872 1.490 2.134 

( )uσ = 5 

RMS 

OLS 1.357 2.811 2.218 1.454 1.782 
MEL 6.014 0.629 7.035 30.725 24.032 

MMEL 10.213 17.444 27.656 40.436 48.669 
β̂  

OLS 10.190 19.008 29.087 40.185 49.717 
MEL 4.275 19.422 23.000 9.399 26.010 

MMEL 2.716 6.081 4.920 2.932 3.783 

( )uσ = 10 

RMS 

OLS 2.715 5.622 4.436 2.907 3.563 
MEL 6.021 0.539 6.921 30.708 24.057 

MMEL 10.308 16.951 27.202 40.528 48.530 
β̂  

OLS 10.285 18.513 28.630 40.277 49.576 
MEL 4.604 19.574 23.155 9.569 26.037 

MMEL 4.074 8.819 7.066 4.381 5.511 

( )uσ = 15 

RMS 

OLS 4.072 8.432 6.654 4.361 5.345 
MEL 6.028 0.449 6.807 30.688 24.078 

MMEL 10.410 16.540 26.813 40.596 48.436 
β̂  

OLS 10.381 18.017 28.173 40.370 49.434 
MEL 5.031 19.750 23.328 9.800 26.088 

MMEL 5.358 11.369 9.081 5.797 7.206 

( )uσ = 20 

RMS 

OLS 5.430 11.243 8.872 5.814 7.126 
True values of β  10.00 20.00 30.00 40.00 50.00 

Note: MEL  = Estimator à la Paris (2001); MMEL obtains ( )p β differently using absolute norm. 
 
 
 
 
 
 
 



 9 

 
 

 
Table 3-B. Relative Performance of OLS and MEL Estimators 
[Sample size (n) = 20; Condition Number ( nc )=28.55; µ =27.87] 

( )uσ  Estimate Estimator 
1β̂  2β̂  3β̂  4β̂  5β̂  

MEL -2.564 -2.325 1.909 22.489 16.460 

MMEL 11.083 0.000 16.497 42.853 42.728 
β̂  

OLS 10.000 20.000 30.000 40.000 50.000 
MEL 12.564 22.325 28.091 17.511 33.540 

MMEL 1.083 20.000 13.503 2.853 7.272 

( )uσ = 0 

RMS 

OLS 0.000 0.000 0.000 0.000 0.000 
MEL -2.567 -2.348 1.835 22.455 16.526 

MMEL 11.001 0.754 16.876 42.678 43.072 
β̂  

OLS 10.352 17.659 28.445 40.321 49.443 
MEL 12.586 22.352 28.173 17.561 33.481 

MMEL 2.798 19.458 13.337 3.111 7.277 

( )uσ = 5 

RMS 

OLS 3.251 13.308 8.140 2.857 4.377 
MEL -2.570 -2.369 1.760 22.415 16.588 

MMEL 11.059 0.588 16.683 42.645 43.152 
β̂  

OLS 10.705 15.317 26.891 40.642 48.886 
MEL 12.646 22.386 28.271 17.650 33.442 

MMEL 5.560 22.033 14.880 4.458 8.466 

( )uσ = 10 

RMS 

OLS 6.501 26.616 16.280 5.714 8.755 
MEL -2.572 -2.390 1.685 22.367 16.644 

MMEL 11.446 -0.913 15.730 42.826 42.934 
β̂  

OLS 11.057 12.976 25.336 40.963 48.330 
MEL 12.743 22.426 28.384 17.780 33.424 

MMEL 8.179 27.098 17.770 6.347 10.450 

( )uσ = 15 

RMS 

OLS 9.752 39.923 24.420 8.572 13.132 
MEL -2.574 -2.409 1.609 22.311 16.696 

MMEL 11.653 -1.409 15.402 42.851 42.982 
β̂  

OLS 11.410 10.635 23.781 41.284 47.773 
MEL 12.875 22.474 28.513 17.948 33.424 

MMEL 11.005 32.344 20.626 8.222 12.477 

( )uσ = 20 

RMS 

OLS 13.003 53.231 32.560 11.429 17.510 
True values of β  10.00 20.00 30.00 40.00 50.00 

Note: MEL  = Estimator à la Paris (2001); MMEL obtains ( )p β differently using absolute norm. 
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Table 3-C.  Relative Performance of OLS and MEL Estimators 
[Sample size (n) = 20; Condition Number ( nc )=92.98; µ = 91.48] 

( )uσ  Estimate Estimator 
1β̂  2β̂  3β̂  4β̂  5β̂  

MEL -6.215 -1.874 0.577 17.346 12.857 

MMEL 4.982 0.000 14.510 42.225 39.482 
β̂  

OLS 10.000 20.000 30.000 40.000 50.000 
MEL 16.215 21.874 29.423 22.654 37.143 

MMEL 5.019 20.000 15.490 2.225 10.518 

( )uσ = 0 

RMS 

OLS 0.000 0.000 0.000 0.000 0.000 
MEL -6.222 -1.873 0.507 17.305 12.931 

MMEL 5.601 -0.147 14.541 42.169 39.970 
β̂  

OLS 11.016 12.672 25.567 40.982 48.331 
MEL 16.231 21.876 29.501 22.707 37.075 

MMEL 6.227 20.173 15.663 2.871 10.572 

( )uσ = 5 

RMS 

OLS 7.566 41.834 24.434 6.646 11.231 
MEL -6.226 -1.872 0.438 17.256 13.000 

MMEL 7.159 -3.759 12.739 42.593 39.904 
β̂  

OLS 12.032 5.345 21.135 41.963 46.662 
MEL 16.259 21.884 29.595 22.793 37.026 

MMEL 9.074 25.335 18.385 4.854 12.015 

( )uσ = 10 

RMS 

OLS 15.132 83.668 48.867 13.292 22.462 
MEL -6.226 -1.870 0.369 17.197 13.063 

MMEL 8.487 -8.084 10.407 43.143 39.444 
β̂  

OLS 13.048 -1.983 16.702 42.945 44.993 
MEL 16.301 21.897 29.705 22.913 36.996 

MMEL 13.538 31.059 21.434 7.031 14.323 

( )uσ = 15 

RMS 

OLS 22.698 125.502 73.301 19.938 33.693 
MEL -6.223 -1.868 0.300 17.128 13.121 

MMEL 9.336 -10.169 9.326 43.386 39.423 
β̂  

OLS 14.064 -9.311 12.270 43.927 43.324 
MEL 16.355 21.914 29.830 23.067 36.984 

MMEL 18.259 34.072 23.238 8.924 16.758 

( )uσ = 20 

RMS 

OLS 30.265 167.337 97.734 26.585 44.924 
True values of β  10.00 20.00 30.00 40.00 50.00 

Note: MEL  = Estimator à la Paris (2001); MMEL obtains ( )p β differently using absolute norm. 
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Table 3-D. Relative Performance of OLS and MEL Estimators 
[Sample size (n) = 20; Condition Number ( nc )=421.34; µ = 419.43] 

( )uσ  Estimate Estimator 
1β̂  2β̂  3β̂  4β̂  5β̂  

MEL -2.806 0.641 -3.836 3.657 6.937 

MMEL -0.001 -0.078 9.596 36.202 32.255 
β̂  

OLS 10.000 20.000 30.000 40.000 50.000 
MEL 12.806 19.359 33.836 36.343 43.063 

MMEL 10.001 20.080 20.406 3.808 17.747 

( )uσ = 0 

RMS 

OLS 0.000 0.000 0.000 0.000 0.000 
MEL -2.817 0.651 -3.901 3.612 7.004 

MMEL -2.789 -0.289 8.160 36.225 30.408 
β̂  

OLS 14.384 -12.610 10.679 43.999 42.114 
MEL 12.822 19.353 33.909 36.393 43.001 

MMEL 13.892 20.314 22.070 6.295 20.128 

( )uσ = 5 

RMS 

OLS 27.836 186.564 110.175 25.228 48.386 
MEL -2.821 0.656 -3.953 3.562 7.055 

MMEL -6.539 -0.195 6.693 36.513 28.162 
β̂  

OLS 18.768 -45.221 -8.643 47.997 34.227 
MEL 12.842 19.357 33.985 36.458 42.965 

MMEL 20.308 20.216 24.152 10.424 23.758 

( )uσ = 10 

RMS 

OLS 55.672 373.128 220.350 50.456 96.772 
MEL -2.819 0.659 -3.994 3.504 7.091 

MMEL -7.701 -0.955 5.925 27.167 27.579 
β̂  

OLS 23.152 -77.831 -27.964 51.996 26.341 
MEL 12.867 19.370 34.064 36.539 42.954 

MMEL 24.900 21.216 25.576 14.776 25.967 

( )uσ = 15 

RMS 

OLS 83.509 559.691 330.526 75.684 145.159 
MEL -2.809 0.661 -4.026 3.435 7.111 

MMEL -7.818 -1.573 5.412 37.261 27.443 
β̂  

OLS 27.536 -110.441 -47.286 55.994 18.455 
MEL 12.895 19.389 34.149 36.640 42.970 

MMEL 29.723 21.944 26.998 19.859 28.341 

( )uσ = 20 

RMS 

OLS 111.345 746.255 440.701 100.912 193.545 
True values of β  10.00 20.00 30.00 40.00 50.00 

Note: MEL  = Estimator à la Paris (2001); MMEL obtains ( )p β differently using absolute norm. 

 
  


