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Abstract

In this note we provide justification for some Monte Carlo results presented
by Elder and Kennedy (2001). In particular we show that the severe size
distortions observed by Elder and Kennedy are due to the presence of nuisance
parameters in the data generation process, but ignored in the test regression.
As is shown in a small Monte Carlo exercise, correct size for the statistics is
obtained when an adequate test regression is considered.

1 Introduction

In a recent paper, Elder and Kennedy (2001), henceforth EK, present some interest-
ing results concerning F' and t tests for unit roots, though their Monte Carlo results
deserve some discussion. In particular the last two columns of Tables I - III require
further consideration.

The data generation process (DGP) considered by Elder and Kennedy is,

(1= pL) (ye — p) = &, (1)
where ¢, is an error term with mean zero and variance o2 and L is the usual lag

operator. The appropriate test regression to consider in this context is,

ye = (L —p)+pyp—1 + e
= a+pyr1+¢& (2)



The test regression is obtained under the assumption that the underlying (DGP) is a
first order autoregression with a nonzero mean, p # 0, when |p| < 1. Typically then,
to achieve similarity, i.e. to eliminate the potential influence of nuisance parameters
on the test statistics, deterministic variables (in this particular case a constant which
has the effect of demeaning the data) are included in the test regression. Following,
Dickey and Fuller (1979, 1981), the unit root (p = 1) can either be tested by means
of a one-sided t-test on the ordinary least-squares estimate, p, or a joint test can be
adopted to investigate the validity of the joint null hypothesis («, p) = (0, 1).

The main conclusion of EK’s analysis suggests that under stationarity the value
of a has no impact on the F-statistics, but we shall see that this is not the crucial
feature of these tests because the null hypothesis of a unit root must be handled
more carefully than in EK.

2 Starting Values

A further important consideration relates to the role of initial values. This can
be observed from the following, assuming that the initial value yq is independent of
g¢. Then, in accordance with (2), the variance of y; is represented as,

var(y,) = p*var(yo) + (i p2j> o?. (3)

Thus, when |p| > 1, y; cannot be stationary since var(y;) will increase without
bound as t — oo. On the other hand, for y; to be stationary when |p| < 1, it is

necessary that var(y) = ... = var(yy) = 7. It is straightforward to show that, if
2
o
var(yo) = m7 (4)
then
o2
var(y) = m =7 (5)
and the autocovariaces are
e = P (6)

for all ¢t. If, however, var(yy) # ﬁ, then var(y;) will not be a constant inde-

pendent of ¢ (as long as 0 > 0), and y; will not be stationary. Hence, for y; to be
stationary, it is not enough to have |p| < 1 and yo independent of &;; var(yo) = Y
must also hold. Clearly, the assumptions on the initial values are relevant for the
stationarity condition; see, for example, the discussion in Dickey, Bell and Miller
(1986, Appendix A).



In recent unit root literature, Monte Carlo investigations commonly contemplate
two scenarios: 7) the conditional case, where the starting values are assumed to be
fixed or random O, (1) variables; and i) the unconditional case, where the starting
values are assumed to be random draws from a distribution with zero mean and
variance £—22

The results found in Tables I and II of EK’s paper are obtained under the condi-
tional case (yo = 0 and yy = ﬁ, respectively), while, the results in Table III are
computed based on the unconditional case (yo «~ N [ﬁ, ﬁ]); see Elliott (1999)
for a more detailed discussion of this issue.

It is pertinent to ask why the values in the last two columns of Table I are so far
away from 0.05. It turns out that the answer to this question stems from the fact

that an inappropriate test regression is being employed.

3 Monte Carlo Contradiction

The findings generated from the last three columns of Tables I-I1I in EK merit some
further consideration. One would expect the size of the tests to be close to the
nominal 5% level considered, however, we observe in all three tables that for p = 1
and a # 0, ¢ and their 7, jyo—sided are oversized and that 7, one—siged i considerably
undersized. For instance, although using the procedure applied by Godfrey and
Orme (2000, page 75) to assess whether observed rejection proportions under the
null are acceptable, all three leftmost columns of the rightmost panels of Tables
I-11IT are clearly satisfactory, we see that none of the other entries corresponding to
a # 0 in those (rightmost) panels are. For example, if an allowance of 0.5% either
side of a nominal level of 5% is deemed satisfactory, using Godfrey and Orme’s tests
based on least favourable null hypotheses with 10,000 replications, the estimated
size must lie in the interval 4.16 — 5.88%; all of the 18 entries to which we refer are
well outside these bounds.

This is consistent with the notion that a non-similar regression was used. More
specifically, if (2) was used as DGP as well as test regression, one should note that,
for |p| < 1 the test regression remains similar because it accounts for the presence
of a non zero intercept under the alternative hypothesis.

However, when p = 1, this is not the case. It is straightforward to see in this
case that (2) can be rewritten as,

t
Y= at + Yo + E oy ki (7)
o) 0,(1) o (?T)

(the orders of magnitude of each term on the right hand side are given below them).
As a result, when a # 0, a drift term is introduced into the DGP when p = 1,



resulting in non-trivial implications for the test statistics, as noted by Haldrup and
Hylleberg (1995), and as can be observed from Tables I-III in EK.

From (7) the main problem resides in the deterministic drift term, which is
O(T). Tt dominates the stochastic trend (which is O,(v/T), and consequently the
use of a non-similar regression will, without careful consideration, imply the use of
inappropriateate distributions. As was shown by Haldrup and Hylleberg (1995) and
Rodrigues (2001), when deterministic trends present in the DGP are not accounted
for in the test regression, then the t-statistic on p will converge to a mixture of
normal distributions and Brownian motions, with the normal component displaying
greater dominance as the magnitude of «v increases. Nankervis and Savin (1987) and
West (1988) also have interesting discussions of this problem.

4  Simulation Study

In this Section we perform a small simulation study to show that test statistics
computed from test regressions which account for the presence of potential nui-
sance parameters present in the DGP will display correct empirical size. The
tests considered are: t,_,ne_sigeq, the left sided t-test that ¢ < 0; tr_two_sided
representing the two-sided t-test that ¢ # 0; ®, the joint test of the null hy-
pothesis Hy : (79,71,¢) = (0,0,0); and ®3 the joint test of the null hypothesis
Ho : (79,71,%) = (70,0,0). The notation for these last two tests follows that of
Dickey and Fuller (1981); notice that the set of test statistics we consider does not
include ®;, unlike EK.

The DGP considered in this simulation is (2) with p = {1,0.99, 0.95,0.90, 0.80,0.70}
and « € {0,0.5,1.0}; compare EK’s tables and also Table VII of Dickey and Fuller
(1981). Furthermore, ¢; «~» N(0,1) and the RNDN function of GAUSS for Win-
dows NT/95 Version 3.2.38 is used. Thus, the DGP considered is the same as in
EK’s paper (with sample size reported 100, as there), however the test statistics are
computed from the test regression,

Ay =9 + 71t + QY1 + s (8)

Note that EK in all three tables consider stochatically bounded (O,(1)) starting
values. Hence, under the test regression (8) considered these will have no impact
on the test statistics. Hence, without loss of generality (see Phillips (1987)), we
consider yy = 0. We experimented with other starting values and obtained directly
comparable results; details are available from the authors on request. The results of
our small experiment are presented in Table I, but they convincingly demonstrate
the thrust of our argument. All entries are based on 20000 replications.



Table I - Empirical Size and Power of 0.05 Tests for Sample Size 100
(¥o =0)
o p
1099 095 0.90 0.80 0.70
tr—one—sidea 0 046 .049 .083 .186 .642 .960

Ur—two—sided 048 .046 .045 .101 .457 .889
05 048 .033 .038 .085 .415 .859
OB 047 .046 .063 .138 .549 .930
tr—one—sidea 0.5 .046 .045 .091 .214 .670 .963
Ur—two—sided 048 .064 .053 .121 .486 .89%4
O 975 .659 .091 .128 450 .870
Oy 047 .064 .104 .183 .580 .935
lr—one—sidea 1.0 .046 .034 .130 .310 .736 .969
Ur—two—sided 048 .107 .080 .186 .561 .913
D, 1.00 1.00 .538 .315 .561 .898
O 047 139 353 .362 .676 .948

As can be observed from this Table, the results for ®5, &3 and the left sided
t-ratio, t;_one_sided, are in accordance with the results in Dickey and Fuller (1981,
p.1067). This confirms the crucial importance of considering adequate test regres-
sions in order to obtain asymptotically invariant tests, which is our basic message.
In more detail, the large rejection frequencies for ®; when v, # 0 are detecting
this failure of the null; this is mirrored in EK’s work by the seemingly poor ‘size’
properties of ®; seen in the last two columns of the rightmost blocks of their tables.
When the null fails because p < 1 (with v, = 0), the t;_one—sigea test is preferable to
all the others because it is one-sided; when this zero restriction fails, the tests based
on the F' — distribution can sometimes outperform the ¢t — tests (particularly when
p =0.95 or 0.99), whether or not they are implemented in their one-sided guise.

5 Conclusion

This note reconsiders some of the points made in the paper by Elder and Kennedy
(2001) for some unit root test statistics and provides an explanation for some of
their Monte Carlo results. We show that the severe size distortions observed by
Elder and Kennedy in their work are due to the presence of nuisance parameters
in the data generation process, but ignored in the test regression. This renders
the size of their tests unacceptable when implemented as they suggest. In a small
Monte Carlo exercise correct size for the statistics is obtained when an adequate
test regression is considered and indicative results for power are presented showing



that there is an advantage from using a t-test for a unit root rather than the Dickey-
Fuller (1981) statistics based on the F'—distribution when 7, is zero in truth. This is
understandable given the one-sided nature of the former and the two-sided nature of
the latter, but no blanket recommendation that this form of the test should always
be used obtains.
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