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Abstract

Traditional models of factor demand rely upon convex and symmetric adjustment costs:
however, the fortune of this highly restrictive model is due more to analytical convenience
than to actual empirical relevance. In this note we first examine the model of employment
adjustment under the more realistic hypothesis of fixed costs, show that it can be cast in the
form of a Double Censored Random Effect Tobit Model, derive its likelihood function, and
finally evaluate the empirical performance of the ML estimators through a Monte Carlo
experiment. The performances, although strongly dependent on the degree of censoring,
appear promising.
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1 Introduction

Traditional models of factor demand rely upon convex and symmetric adjustment costs:

the marginal cost of varying the quantity of an input used in the production process

is assumed (i) to increase with the size of the adjustment, and (ii) to be the same for

positive and negative changes. Adjustment costs of this shape can generate the partial

adjustment dynamics assumed in much empirical work. However, the fortune of this highly

restrictive model is due more to analytical convenience than to actual empirical relevance:

while convex costs implies frequent changes of small size, in practice micro behavior is

often characterised by lumpy adjustment, with rare large changes and many periods of

inaction (cf.e.g., Davis and Haltiwnger, 1991, Gavosto and Sestito, 1993). Consequently,

over the last decade there have been several efforts to explore alternative models. In

this note we first examine the model of employment adjustment under the hypothesis of

fixed costs, show that it can be cast in the form of a Double Censored Random Effect

Tobit Model and derive its likelihood function (section 2), and then evaluate the empirical

performance of the ML estimators through a small Monte Carlo experiment (section 3).

Some Conclusions are finally drawn (section 4).

2 Modelling Employment Adjustment with Fixed Costs

Consider a single firm i operating with the objective to maximise the discounted expected

value of future profits. In presence of fixed costs this implies that the adjustment of

labour inputs (L) is carried out if the shadow value of the marginal worker, i.e. if the

cost of not adjusting (cNA), exceeds in absolute value the fixed cost of the adjustment

(cA), either because hiring costs are smaller than expected revenues net of wage costs or

firing costs are smaller than expected losses (we are assuming symmetry of the costs in

order to simplify notation, but the extension to non-symmetric costs is trivial). Define as

target employment (L∗) the labour inputs needed in order to deliver the desired amount of

output in standard operating conditions (no extra-time nor labour hoarding), and measure

disequilibrium with the difference between non-adjustment and adjustment costs. Under

the assumption of static expectations or, equivalently, rational expectations and target

employment following a random walk, a sufficiently large disequilibrium in period t will

cause an immediate shift to the new target level of employment (cf. Hammermesh and

Pfann, 1996):

Lit+s =

{
Lit−1 if |cAt| > |cNAt|
L∗

it else
s = 0, 1, . . . (2.1)

The cost of not adjusting is the present value of the difference of the future streams of net

total revenues delivered by L∗
it and Lit−1 workers. Define revenues (R), costs per worker
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(W ) and net revenues R = R − W . Then, assuming costs and revenues are linear we

have that cNAt =
∑

s>0(
1

1+r
)sR(L∗

it − Lit−1) = (1+r)
r
R(L∗

it − Lit−1), where r is the relevant

discount rate, and thus (Hamermesh,1989):

Lit+s =

{
Lit−1 if |L∗

it − Lit−1| < ∆min

L∗
it else

s = 0, 1, . . . (2.2)

where now the threshold is ∆min = cA(1+r
r
R)−1. The target employment can be written

as a static function of a set of explanatory variables (e.g., output and costs), say L∗
it =

f(xit, β, εit), as all the intertemporal effects are assumed to be embedded in the adjustment

rule (in other words, we are defining target employment as the long-run equilibrium value

of employment conditional on the x′s). For estimation purposes it is convenient to rewrite

model (2.2) in terms of the target relative change in employment; defining ∆ as the log

difference operator, ∆∗Lit = ln(L∗
it) − ln(Lit−1). Under the assumption that the firm i

in period t − 1 is in equilibrium, the target change is a function of the log differences of

the explanatory variables; dropping the simplifying assumption of symmetric costs and

rearranging further we obtain:

∆∗Lit = ∆xitβ + εit (2.3)

∆Lit =


∆∗Lit if ∆∗Lit ≤ θ−i
0 if θ−i < ∆∗Lit < θ+

i

∆∗Lit if ∆∗Lit ≥ θ+
i

(2.4)

where ∆Lit = ln(Lit) − ln(Lit−1) is the actual relative change in employment, xit =

(x1it, ...xkit) are k exogenous variables (per-worker return, factor inputs and so on) ob-

served on each firm i in t = 1, . . . , T , i = 1, . . . , n, and β = (β1, ...βk) is the coefficient

vector. Two remarks on model (2.4) are in order: (i) since this type of model is typically

used for panels with a small T , it can also be thought of as a local linearisation of a more

complex non linear labour demand function; (ii) for our purposes, it is best seen as Dou-

ble Censored Tobit Model, with the thresholds (θ+, θ−) not known. Indeed, these can be

conceived as variables likely to depend upon a large number of factors, both economy-wide

(e.g., economic cycle) and firm-specific (e.g., size, technology and state of industrial rela-

tions), as in the threshold regression model (Dagenais, 1975). A different way to take into

account the unobserved heterogeneity is to consider a general Chamberlain-like model (for

a discussion see Wooldridge, 2002, p. 541). Let (a) ∆xi be the vector of the average over

time of the determinants, (b) ν−i and ν+
i be independent idiosyncratic noises satisfying

ν−i |∆xi ∼ N(0, σν−), ν+
i |∆xi ∼ N(0, σν+). Then, we can assume θ−i = γ−∆xi + ν−i < 0,

θ+
i = γ+∆xi + ν+

i > 0. If xit contains a time-constant variable to make identification

possible we assume that its coefficient in γ+ and γ− is zero. Model (2.4) may be rewritten

as a ”friction model”. The standard form of these class of models (Rosett, 1959) is:

yi =


y∗i − α2 if y∗i > α2

0 if α1 < y?
t < α2

y∗i − α1 if y∗i < α1

(2.5)
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where y∗i = xiβ+εi, and the thresholds α1(< 0) and α2(> 0) are known. The log-likelihood

function can be found in Maddala (1983). Rearranging (2.4) according to (2.5) we obtain

an extension of the Random Effect Tobit model (Wooldbridge, 2002, p. 541) in case of

double censoring ”at random”. Then, under assumptions (a) and (b), the model assumes

the following expression:

∆∗Lit = ∆xitβ + εit

∆Lit =


∆∗Lit − θ−i if ∆∗Lit ≤ θ−i
0 if θ−i < ∆∗Lit < θ+

i

∆∗Lit − θ+
i if ∆∗Lit ≥ θ+

i

(2.6)

where the noise ε satisfies (εit | ν−i , ν+
i ,∆xi) ∼ N(0, σε), for i = 1, ..., n and t = 1, ...T .

The log-likelihood essentially combines the structure of those of Random Effect Tobit and

friction models, and assuming that the first differences (∆Li1,∆Li2, ....∆LiT ) are mutually

indipendent conditional on (∆xi, θ
+
i , θ

−
i ), it has the following expression:

logL(ψ|∆L,∆xi, ai, bi) =
n∑

i=1

logFi (2.7)

where ψ = (β, γ−, γ+, σε, σa, σb) is the vector of parameters of interest,

Fi(∆Li|∆xi, ν
−
i , ν

+
i ;ψ) =∫ ∫ [∏T

t=1 ft(∆Lit|∆xi, ν
−
i , ν

+
i ;ψ)

]
1

σ
ν−
i

φ(
ν−i
σ

ν−
i

) 1
σ

ν+
i

φ(
ν+

i

σ
ν+
i

)dν−i dν
+
i

(2.8)

and

ft(∆Lit|∆xi, ν
−
i , ν

+
i ;ψ) =

∏
∆Lit<0

1
σε
φ

(
∆Lit−∆xitβ+γ−∆xi+ν+

i

σε

)
∏

∆Lit=0

[
Φ

(
γ+∆xi+ν−i −∆xitβ

σε

)
− Φ

(
γ−∆xi+ν−i −∆xitβ

σε

)]
∏

∆Lit>0
1
σε
φ

(
∆Lit−∆xitβ+γ+∆xi+ν−i

σε

)
.

(2.9)

The partial effect can be evaluated at the mean value taking the first derivative of

m(γ̂−∆xi −∆xitβ̂, σ̂
2) +m(∆xitβ̂ − γ̂+∆xi, σ̂

2)

where m(c, σ2) = Φ(c/σ)c+ σφ(c/σ) with respect to the elements of x.

3 Monte Carlo Experiment

To evaluate the empirical performance of the ML estimates we conducted a small Monte

Carlo experiment. As already mentioned above, the empirical analysis we are mimicking

are typically based on panels with a small time dimension, here fixed at T = 3; further, we
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also make the computationally convenient assumption of a small cross-section dimensions,

namely n = 100. Hence, in the labour demand function we may assume (i) a constant

rate of technical progress; (ii) market conditions homogeneous across firms. Thus,the

Monte Carlo Data Generating Process (DGP) is based on model (2.6). The target change

in employment is assumed to be a function of two explanatory variables, which may

be taken to represent respectively output growth (∆x1, generated as a standard normal

deviate) and wage costs growth (∆x2, generated as a log normal deviate). We consider

two different treshold specifications:

1. θ+
i = γ+

0 + ν+
i and θ−i = γ−0 + ν−i ;

2. θ+
i = γ+

0 + γ+
1 ∆x1i + ν+

i and θ−i = γ−0 + γ−1 ∆x1i + ν−i ;

In case (1) the tresholds are assumed to fluctuate randomly across firms around an un-

known mean value, while in case (2), following a Chamberlain-type approach, to be a

stochastic function of the average over time of one of the explanatory variables of the

target change in employment. Case (1), although obviously not as general as case (2),

is worth examining in that it represent a first advance with respect to the standard em-

ployment demand models based on convex costs. In case (2) the thresholds are explicitly

modelled, but as they are assumed to depend on the same explanatory variables of target

employment, the approach is clearly still somehow restrictive. However, the fully general

case is technically and computationally extremely heavy, and has thus been left for future

research. Since the degree of censoring is likely to affect heavily the performance of the

estimators, for each experiments we considered a Low Censure case, with a fraction of

censored observation averaging about 25%, and High Censure case, where on the average

around 60% of the observations are censored in each period. Thus, in the former case

about 3× 100× 0.75 = 225 employment changes are observed overall, while in the latter

case this figure drops to only about 3× 100× 0.40 = 120 changes. The design parameter

governing the degree of censoring is the constant in the treshold expression, as obviously

the higher this is in absolute value, the higher the will be the degree of censoring. Fi-

nally, given also that a number of pilot experiments had to be run, the number of Monte

Carlo replications has been fixed at 100 in order to keep within reasonable limits both

the computational cost and the calendar time required (on a fast UNIX workstation with

programs written in GAUSS, the simulations for the case (1) and (2) require just over 12

and 22 hours respectively).

Let us now discuss the results. The Monte Carlo means and standard errors of the es-

timates for case (1), i.e. with the tresholds assumed to fluctuate randomly across firms

around unknown constants, and case (2), when they are assumed to depend on ∆x1,

are reported respectively in Table 1 and 2. In both cases the data are assumed to be

standardised so that σε = 1.

As expected, the performance of the estimators is not entirely satisfactory in the High

Censure case both in terms of distance of the point estimates to the DGP values and
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dispersion. However, the confidence intervals always include the DGP values, while gen-

erally excluding zero (exceptions to the latter statement are the estimates of γ+
1 and γ−1

with the more general model for the thresholds and high censure, table 2). Given the

difficulty of the task, it is thus fair to conclude that the ML estimators manage to fall

always reasonably close to the DGP values. Much better results in high censoring cases

can be expected with the larger sample sizes typically available in microeconometric stud-

ies, difficult to handle in the context of a Monte Carlo experiment but fully feasible in a

single estimation run (the computational cost of our n=100, 100 Monte Carlo replications

is roughly comparable to the cost of a single estimation with n=10,000).

Table I

Low Censure (25%) High Censure (60%)

DGP
Estimates

(Monte Carlo s.e.) DGP
Estimates

(Monte Carlo s.e.)

β1 0.40
0.431
(0.051) 0.40

0.573
(0.107)

β2 −0.30
−0.309
(0.024) −0.30

−0.393
(0.047)

γ+
0 0.40

0.477
(0.118) 1.40

1.301
(0.168)

γ−0 −0.20
−0.176
(0.066) −1.20

−1.171
(0.128)

σν+ 0.90
1.016
(0.138) 0.90

0.847
(0.225)

σν− 0.70
0.716
(0.112) 0.70

0.882
(0.161)

target change: ∆∗Lit = β1∆x1t + β2∆x2t + εit;

actual change: ∆Lit = 0 if θ−i < ∆∗Lit < θ+
i ;

thresholds: θ+
i = γ+

0 + ν+
i , θ

−
i = γ−0 + ν−i ;

T = 3, n = 100;

censure: average fraction of censored observations (∆Lit = 0).
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Table II

Low Censure (25%) High Censure (62%)

DGP
Estimates

(Monte Carlo s.e.) DGP
Estimates

(Monte Carlo s.e.)

β1 0.40
0.424
(0.063) 0.40

0.566
(0.114)

β2 −0.30
−0.312
(0.038) −0.30

−0.402
(0.049)

γ+
0 0.40

0.430
(0.112) 1.40

1.447
(0.213)

γ+
1 0.30

0.347
(0.117) 0.30

0.218
(0.150)

γ−0 −0.20
−0.179
(0.082) −1.20

−1.198
(0.163)

γ−1 −0.20
−0.201
(0.085) −0.20

−0.145
(0.105)

σν+ 0.90
1.034
(0.209) 0.90

0.936
(0.269)

σν− 0.70
0.717
(0.154) 0.70

0.865
(0.162)

target change: ∆∗Lit = β1∆x1t + β2∆x2t + εit;

actual change: ∆Lit = 0 if θ−i < ∆∗Lit < θ+
i ;

thresholds: θ+
i = γ+

0 + γ+
1 ∆x1 + ν+

i , θ
−
i = γ−0 + γ−1 ∆x1 + ν−i ;

T = 3, n = 100;

censure: average fraction of censored observations (∆Lit = 0).

4 Conclusions

In this note we derived the likelihood function of a model of employment adjustment

under the hypothesis of fixed costs cast in the form of a Double Censored Random Effect

Tobit Model. The key difference between the two models is the status of the censoring

thresholds, which are assumed known in the latter but not in the former (in fact, modelling

them as a function of a set of explanatory variables may be an important part of the

analysis). Hence, a crucial consequence of adopting the friction model approach is that the

thresholds, or rather their expressions in terms of the chosen set of explanatory variables,

appear as arguments of the Gaussian distribution function in the likelihood. As there is

no reason why the thresholds should be symmetrical or the random noise to be the same

for both thresholds (indeed, the opposite is likely to hold), double integrals are involved in

the computation of the likelihood and the hypothesis that the idiosyncratic noises ν−i and

ν+
i are independent turns out to be crucial. Although at a first sight this assumption may

be appear to be very strong, this may not be the case if we take a vector of explanatory

variables general enough to actually explain all the systematic variability of the thresholds

across firms (very much the same applies to the question of the dynamic structure of these

errors). From the empirical point of view, the computational point about the double

integrals can be more important, as in practice maximum likelihood estimates may be
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difficult to obtain with the large sets of individual data ideally to be used for this type

of models. Monte Carlo experiments with standard maximisation techniques and a small

sample size have given encouraging and interesting results, which can be summarised as

follows: (i) the ML estimates do fall reasonably close to the DGP values; (ii) the quality

of the results depends much more heavily than commonly assumed on the degree of the

censoring. Directions for future research include modelling the variances of the ν ′s across

firms and assessing the performance of alternative estimation strategies, as suggested by

Hajivassilou and Ruud (1994) for the Limited Dependent Variable models.
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