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Abstract

Different kinds of asymmetries between players can occur in core allocations, in that case the
stability of the concept is questioned. One remedy consists in selecting robust core
allocations. We review, in this note, results that all select core allocations in NTU games with
different concepts of robustness. Within a unified approach, we deduce the existence of
allocations in: the partnered core, the social stable core, the core intersected with average
prekernel, the weak inner core. We use a recent contribution of Bonnisseau and Iehle (2003)
that states the existence of core allocations with a transfer rate rule equilibrium under a
dependent balancedness assumption. It shall turn out to be manipulable tools for selecting the
core.
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1 Introduction

The core of a cooperative game is the set of efficient payoffs for the grand coalition that
cannot be improved by any coalition of players. One critic arising from the core concept in
cooperative NTU games is that some core allocations may exhibit asymmetric dependencies
(Reny and Wooders, 1996)1 or inefficiencies if players agree for a transfer of utility (Qin,
1993, 1994). For example, at a core allocation, some players could contribute more than
others. Then, the stability of the concept is questioned since the best contributors are
likely to receive rewards for their participation. A remedy consists in selecting the core,
that is, defining a criterion to find a utility vector that each member of the grand coalition
finds acceptable. Hence, by selecting the core, we mean prescribing specific core allocations
satisfying division schemes or stable matchings that are robust with respect to asymmetries
or inefficiencies. We review, in this note, non-emptiness results with different concerns and
frameworks that all selects specific core allocations in NTU games.

We propose a unified treatment based on a recent notion of balancedness with a transfer
rate rule, generalizing the extant notions, and called dependent balancedness. The idea
behind the notion is to consider a transfer rate rule depending on the payoffs to define a
notion of balancedness whereas the usual transfer rate of the literature is supposed to be
constant. It turns out that the class of dependent balancedness games is exactly the class
of games with non empty cores 2.

Going beyond the non-emptiness of the core, it is also proved in Bonnisseau and Iehlé
(2003) that dependent balancedness is a sufficient condition to get the existence of core
allocations with a transfer rate rule equilibrium. All the following selections of the core
will coincide with a core allocation with a transfer rate rule equilibrium. For instance, the
authors deduce from their existence result the non-emptiness of the partnered core of Reny
and Wooders (1996). This specific core selection is the set of core allocations such that,
for any pair players i, j, if the player i cannot achieve her core payoff without player j then
player j cannot either achieve her core payoff without player j.

As further applications, three other results will illustrate the role of the transfer rate rule
equilibrium, giving hints on its manipulation.

First, we turn to the non-emptiness of a social stable core. To define such a concept,
Herings et al. (2003) introduce a power index for each players in the coalitions. And then,
they prove the non-emptiness of the set of equipotent allocations in the core: the social
stable core.

The second core selection is the average prekernel intersected with the core. The prekernel
is the NTU extension of the usual notion of prekernel at stake in TU games. Though no
interpretation is attached to the prekernel, it can be seen as a fair sharing allocation with
respect to a surplus measure of the players. We improve the existence result originally
given in Orshan et al. (2003), by considering the class of ∂-balanced games.

Lastly, we propose an existence result for a core allocation in the spirit of the original

1See also Bennett and Zame (1988) and Bennett (1997) for further developments on conflicts over gains
from cooperation.

2See details in Bonnisseau and Iehlé (2003); Predtetchinski and Herings (2004).
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notion of inner core (Qin, 1993, 1994). x is in the inner core if it is feasible for the grand
coalition, and there exists a transfer rate λ such that x is in the core of the λ-transfer
game. The inner core is included in the core, hence it can be seen as a selection of the
core. We exhibit a result for the non-emptiness of a weak inner core.

To deduce these results as corollaries of the abstract result of Bonnisseau and Iehlé (2003),
we construct explicitly a transfer rate rule for which the games are dependent balanced.

1.1 Game description and the general result

We will use the following notations3: N = {1, ..., n} is the finite set of players; N is the
set of the non-empty subsets of N , i.e. the coalitions of players; for each S ∈ N , LS is
the |S|-dimensional subspace of RN defined by LS = {x ∈ RN | xi = 0, ∀i /∈ S}; LS+

(LS++) is the non negative orthant (positive orthant) of LS; for each x ∈ RN , xS is the
projection of x into LS; 1 is the vector of RN whose coordinates are equal to 1; 1⊥ is the
hyperplane {s ∈ RN |

∑
i∈N si = 0}; proj is the orthogonal projection mapping on 1⊥;

ΣS = co{1{i} | i ∈ S}; mS = 1S

|S| ; Σ = ΣN and Σ++ = Σ ∩ RN
++.

A game (VS, S ∈ N ) is a collection of subsets of RN indexed by N . x ∈ RN is called a
payoff; VS ⊂ RN is the set of feasible payoffs of the coalition S; S(x) = {S ∈ N | x ∈ ∂VS}
is the set of coalitions, for which x ∈ RN is an efficient payoff; W := ∪S∈NVS is the union
of the payoffs sets.

We will assume in the remainder of the paper that the two following assumptions are
satisfied.

Assumption H1. (i) V{i}, i ∈ N , and VN are non-empty. (ii) For each S ∈ N , VS is
closed, VS − RN

+ = VS, VS 6= RN , and, for all (x, x′) ∈ (RN)2, if x ∈ VS and xS = x′S, then
x′ ∈ VS.

Assumption H2. There exists m ∈ R such that, for each S ∈ N , for each x ∈ VS, if
x /∈ int V{i} for all i ∈ S, then xj ≤ m for all j ∈ S.

Note that under Assumption H1, there exist continuous mappings pN from RN to ∂VN , pW

from RN to ∂W , λN and λW from 1⊥ to R such that, for all x ∈ RN , pN(x) = proj(x) −
λN(proj(x))1 and pW (x) = proj(x) − λW (proj(x))14. Let us recall now the definitions of
core and dependent balancedness, and, the main result obtained by Bonnisseau and Iehlé
(2003).

Definition 1.1 Let (VS, S ∈ N ) be a game. A payoff x is in the core of the game if
x ∈ VN \ int W .

Definition 1.2 Let (VS, S ∈ N ) be a game satisfying Assumption H1: (i) A transfer rate
rule is a collection of set-valued mappings ((ϕS)S∈N , ψ) such that for all S ∈ N , ϕS is
upper semi-continuous with non-empty compact and convex values from ∂VS to ΣS, and, ψ
is upper semi-continuous with non-empty compact and convex values from ∂VN to Σ. (ii)

3For any set Y ⊂ RN , co(Y ), ∂Y , int Y will denote respectively its convex hull, boundary, interior. For
any set-valued mapping Γ, Gr Γ will denote its graph.

4See Bonnisseau and Iehlé (2003) for more details.
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The game (VS, S ∈ N ) is dependent balanced if there exists a transfer rate rule ((ϕS)S∈N , ψ)
such that, for each x ∈ ∂W , if co{ϕS(x) | S ∈ S(x)} ∩ ψ(pN(x)) 6= ∅, then x ∈ VN .

Theorem 1.1 Let (VS, S ∈ N ) be a game satisfying Assumptions H1 and H2. If it is
dependent balanced with respect to the transfer rate rule ((ϕS)S∈N , ψ), there exists a core
allocation x such that: co{ϕS(x) | S ∈ S(x)} ∩ ψ(x) 6= ∅.

2 Applications: four selections of the core

Theorem 1.1 downsizes the core into specific core allocations with transfer rate rule equilib-
rium. In the following applications, the stake is to define indexes for contribution, power or
transfer and to prescribe an allocation in the core of the game satisfying a division scheme
with respect to these indexes. Thanks to Theorem 1.1, we unify different models where
such a prescription is proposed. The following results are all deduced as corollaries, the
proofs are given in Appendix.

2.1 The partnered core (Reny and Wooders, 1996)

To get a first application of this result, consider the following corollary of Theorem 1.1,
due to Reny and Wooders (1996) and already proved in Bonnisseau and Iehlé (2003). We
recall before the notion of ∂-balancedness.

∂-balancedness. The game is ∂-balanced if for all x ∈ ∂W and any balanced family of
coalitions B ⊂ N such that x ∈ ∩S∈BVS then x ∈ VN .

Corollary 2.1 Let (VS, S ∈ N ) be a ∂-balanced game satisfying Assumptions H1 and H25.
Suppose that for each pair of players i and j, there is a continuous mapping cij: ∂W → R+

such that cij is zero on V (S) ∩ ∂W whenever i /∈ S and j ∈ S. Then there exists a core
allocation x such that, for each i ∈ N :

ηi(x) :=
∑
j∈N

(cij(x)− cji(x)) = 0.

The mappings cij can be interpreted as credit/debit mappings. Then, one can see ηi(x)
as the measure of the grand coalition’s net indebtness to i or as i’s net credit against the
grand coalition. The previous result states the existence of a core allocation where the net
credits of the players are all equal to 0. The result of Reny and Wooders (1996) has been
originally applied to a stable matching problem. They state indeed that any balanced game
has a non-empty partnered core, which is the set of core allocations such that, for any pair
players i, j, if the player i cannot achieve her core payoff without player j then player j
cannot either achieve her core payoff without player j. Formally, a payoff x ∈ ∂W is said
to be partnered if the family S(x) satisfies, for all i, j ∈ N , Si(x) ⊂ Sj(x) ⇒ Sj(x) ⊂ Si(x),
where Si(x) = {S ∈ S(x) | i ∈ S}, and the partnered core is the set of all partnered core
allocations.

5In Reny and Wooders (1996), the result is stated for balanced games, it is slightly improved by
considering ∂-balanced games.
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2.2 Social stable core (Herings et al., 2003)

In Herings et al. (2003), the authors propose a generalization of NTU games. Firstly,
they assume the possibility of internal organizations, that is, inside a given coalition, the
members can choose among several possibilities of organization, it give rise to a multiplicity
of possible payoffs sets for the given coalition 6. Secondly, a power mapping that describes
the power of agents inside each organization is introduced. Under a balancedness condition,
it is shown that there exists an allocation lying in the core of the generalized NTU game
and such that the agents are equally powerful.

For each coalition S ∈ N , there is a finite number kS of possible internal organizations.
Denote IS = (IS

1 ...I
S
kS

) these organizations. Let I be the union over S of all internal

organizations. For each S ∈ N , each I ∈ IS, define a payoff set vI ∈ RN . Now, define the
power of an agent within an internal organization by a power vector function p from I to
RN

+ \ {0}. For each S ∈ N , each I ∈ IS, p(I) ∈ LS+ \ {0}. A socially structured game is
described by (N, I, v, p). In Herings et al. (2003), the authors restate Assumptions H1 and
H2 for this generalized game. We omit their statements, it is an easy matter to check that
it amounts to consider that the game (VS, S ∈ N ), where for each S ∈ N , VS = ∪I∈ISvI ,
satisfies Assumption H1 and H2. Define the power cone of a payoff x as: PC(x) = {y ∈
RN | y =

∑
I∈I(x) λIp(I), λI ≥ 0, for all I}, where I(x) = {I ∈ I | x ∈ ∂vI}.

Definition 2.1 For a socially structured game, (N, I, v, p), a payoff vector x ∈ RN is
socially stable if:

1 ∈ PC(x).

A core allocation is a payoff vector x ∈ RN such that x ∈ vI for some I ∈ IN and x /∈ int vI

for all I ∈ I. A socially stable core is the set of socially stable core allocations.

Assumption SSG If a payoff vector x is socially stable then x ∈ vI for some I ∈ IN 7.

We deduce the following result given in Herings et al. (2003).

Corollary 2.2 Let (N, I, v, p) be a socially structured game and suppose that (VS, S ∈ N ),
where for each S ∈ N , VS = ∪I∈ISvI , satisfies Assumption H1 and H2. Under SSG, the
socially stable core is non-empty.

To prove the result, we will consider the transfer rate rule ((ϕS)S∈N , ψ) where: ψ = mN ,

and, for all S ∈ N and all x ∈ ∂VS, ϕS(x) = co{ p(I)P
i∈S pi(I)

| I ∈ I(x) ∩ IS}.
It is an easy matter to extend the result to parameterized games. It suffices to apply
Theorem 3.1 of Bonnisseau and Iehlé (2003). Furthermore, the parameterization could
allow us to define a sharper model of internal organization, continuously depending on the
parameter set.

6The reader can imagine that possibilities of a coalition are described by special pairwise links between
its members that give rise to different networks, (e.g. see networks formation in Jackson (2003)).

7This balancedness notion is sandwiched between the notion of b-balancedness of Billera and that of
dependent balancedness.
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2.3 Average prekernel (Orshan et al., 2003)

As another application, one can also prove the existence of an element lying in the core
intersected with the average prekernel (also called bilateral consistent prekernel) as defined
in Orshan and Zarzuelo (2000), see also Serrano and Shimomura (2001). The average prek-
ernel is the consistent extension of the usual prekernel at stake in TU games. Furthermore,
the most interesting feature is that the following concept for multi-player games coincides
with the Nash solution and intersects the core in a general class of games. We show how
we can deduce this existence result under an assumption of balancedness.

Define additionally, for each coalition, the set of individually rational payoffs, IS = VS ∩
(∩i∈S(int V{i})

c). Before introducing the average prekernel, we need two additional as-
sumptions on the game, namely non-levelness (NL) and smoothness (SM).

Assumption NL. For each S ∈ N , ∂VS is non-leveled, that is: if x, y ∈ ∂VS, x ≥ y and
y ∈ IS, then xi = yi.

Assumption SM. At each point x ∈ ∂IN , there exists a unique vector p(x) such that∑
i∈N pi(x) = 1. Moreover, for all x ∈ ∂IN , p(x) > 0 and p is a continuous map.

Let us now define the individual excess functions, bilateral surplus functions and total loss
functions as follows:
For each x ∈ RN , for each S ∈ N , for k ∈ S, the individual excess of k with respect to S
at x is :

ek(S, x) =

{
max{yk − xk | (yk, x−k) ∈ VS} if {yk | (yk, x−k) ∈ VS} 6= ∅
−∞ otherwise

For every k, ` ∈ N , k 6= `, define the surplus of k with respect to ` at x to be sk`(x) =
max{ek(S, x) | S ∈ N , k ∈ S, l /∈ S}.
For every k ∈ N and x ∈ ∂IN denote fk(x) =

∑
` 6=k (pk(x)sk`(x)− p`(x)s`k(x)) the total

loss of player k at x. Let f(x) be the vector (f1(x), ..., fn(x)).

Definition 2.2 The average prekernel of (V,N) is the set:

{x ∈ ∂VN | f(x) = 0}.

In Orshan et al. (2003), the authors have shown the non-emptiness of the core intersected
with the average prekernel in ∂-separating games, here the result is improved by considering
the larger class of ∂-balanced games8.

Corollary 2.3 Let (VS, S ∈ N ) be a game satisfying Assumptions H1, H2, NL and SM.
If it is a ∂-balanced game then there exists a core allocation that belongs to the average
prekernel.

We will deduce the result from Corollary 2.1, but it amounts to consider the transfer rate
rule ((ϕS)S∈N , ψ) where: ψ(x) = mN − f̃(x), (f̃(x) = f(x) up to a normalization), and for
all S ∈ N , ϕS = mS.

8A ∂-separating game is ∂-balanced. See Orshan et al. (2003).
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2.4 Inner core (Qin, 1994)

The inner core is an alternative way of downsizing the core. The main results have been
obtained by Qin (1993, 1994).

Let (VS, S ∈ N ) be a game compactly generated. And let λ ∈ RN
+ . Define a real valued set

function vλ on the set of all non-empty subsets ofN by vλ(S) = max
{∑

i∈S λi · yi | y ∈ VS

}
.

Define the fictitious λ-transfer game (V λ
S , S ∈ N ) associated with vλ: for each S ∈ N , the

fictitious λ-transfer payoffs sets are: V λ
S =

{
y ∈ RN |

∑
i∈S λi · yi ≤ vλ(S)

}
.

An allocation x is in the inner core of the game (VS, S ∈ N ) if x ∈ VN and there exists
at least one λ ∈ Σ such that x is in the core of (V λ

S , S ∈ N ). Note that the inner core
is included in the core of (VS, S ∈ N ). The requirements imposed in the definition of the
inner core are very strong. However, Qin (1994) proposes a class of balanced games for
which the inner core is non-empty9. In the following, we relax the definition and deduce
from Theorem 1.1 the non-emptiness of a weak inner core.

The interpretation of this weak concept of inner core differs from the initial inner core. We
consider a group of players who agree for transfer rate rules within each coalition. Then
a global transfer rate rule is prescribed, this rule must belong to the set of admissible
transfer rates, defined below. At this prescribed rate λ, the players can transfer utility
among themselves. The core allocation x is in the weak inner core if x is an efficient point
in the fictitious λ-transfer payoff set of the grand coalition.

Formally, the transfer set induced by the transfer rate mappings is defined as follows: for
each x ∈ ∂W , TS(x) = co{ϕS(x) | S ∈ S(x)}. Then, (λ, x) ∈ Gr TS means that λ is an
admissible transfer rate at the point x. λ defines a fictitious transfer game and one is led
to the following definition.

Definition 2.3 A pair (λ ∈ Σ, x ∈ ∂W ) ∈ Gr TS is said to be internally stable if:

(λ, x) ∈ Gr TS and λ · x ≥ vλ(N).

An allocation x is in the weak inner core of the game (VS, S ∈ N ) if x belongs to the core
of the game and there exists at least one λ ∈ Σ such that (λ, x) is internally stable.

Suppose the players can transfer utility at a prescribed rate λ. The pair (λ, x) ∈ Gr TS is
not internally stable if each player can get a strictly better payoff in the fictitious λ-transfer
payoff set V λ

N . Denote NVN
the normal cone of convex analysis of the set VN .

Corollary 2.4 Let (VS, S ∈ N ) be a game satisfying Assumptions H1 and H2. Suppose
also that VN is a convex set. If it is dependent balanced with respect to the transfer rate
rule ((ϕS)S∈N , NVN

∩ Σ), then there exists an internally stable pair (λ, x) ∈ Gr TS such
that x is in the core of the game.

We omit the proof of the last result which is a direct application of Theorem 1.1. To apply
Theorem 1.1, it suffices to notice that the transfer rate mapping ψ = NVN

∩Σ satisfies the
conditions of Definition 1.2(i).

9The non-emptiness of the inner core is proved in games that cover the class of compactly generated
and balanced-with-slacks games.
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3 A concluding remark

As a related topic, we want to mention that a recent stream of research defines the notion
of extended core, see Gomez (2004); Keiding and Pankratova (2004). The problematic is
the following: in the case of an empty core, which feasible allocations should be considered
as potential candidates for guaranteeing the stability? Briefly, the construction of the
extended core consists in blowing up the feasible payoff set of the grand coalition to get at
least an allocation in the core of the extended game. Then, two tools based on mechanisms,
that either downsize/select the core or blow up the payoffs are now available. They provide
a rich articulation around the core concept.

Appendix

Proof of Corollary 2.2. Let define the induced coalitional game (VS, S ∈ N ) where
for each S ∈ N , VS = ∪I∈ISvI . Let us normalize the power mappings by setting p(I) =

p(I)P
i∈S pi(I)

. Now, define the transfer rates rule ((ϕS)S∈N , ψ). For each x ∈ ∂VN , ψ(x) = mN

and for all S ∈ N and all x ∈ ∂VS, ϕS(x) = co{p(I) | I ∈ I(x) ∩ IS}. It is now routine to
check that the assumptions of Theorem 1.1 are all fulfilled (Assumption SSG is actually a
special case of dependent balancedness).

Then there exists a core allocation (for the game (VS, S ∈ N )) x such that co{ϕS(x) |
S ∈ S(x)} ∩ ψ(x) 6= ∅. It can be rewritten as: there exist, for all S ∈ S(x), ρS ∈ R+,
bS ∈ ϕS(x), such that

∑
S∈S(x) ρS = 1 and

∑
S∈S(x) ρSbS = mN . Furthermore, bS ∈ ϕS(x)

is equivalent to: for each I ∈ IS, there exist νS
I ∈ R+ such that

∑
I∈I(x)∩IS νS

I = 1 and

bS =
∑

I∈I(x)∩IS νS
I p(I). If we consider for each S ∈ N and each I ∈ IS, λI =

|N |ρSνS
IP

i∈S pi(I)
,

then one gets the result. Indeed, firstly we remark that:∑
S∈S(x) ρS

∑
I∈I(x)∩IS νS

I p(I) =
∑

I∈I(x)

∑
{S|I∈IS} ρSν

S
I p(I) =

∑
I∈I(x)

λIp(I)
|N | = mN , that

is
∑

I∈I(x) λIp(I) = 1. Secondly it is an easy matter to check that x is in the core of the

game (VS, S ∈ N ) if and only if x is in the core of the socially structured game (N, I, v, p)
in the sense of Definition 2, as was to be proved.

Proof of Corollary 2.3. First, we remark that, without any loss of generality, one can
extend Assumption SM on the whole boundary of the set VN since the core solution lies
on the set of individually rational payoffs.

Lemma 3.1 If the game satisfies the non levelness assumption (NL), the mappings sk`

are non positive and continuous on ∂W .

Proof of Lemma 3.1. First, remark that for each x ∈ ∂W , one has x ∈ IS, so non-
levelness applies. The non positivity is straightforward from Assumption H1. Furthermore,
the mappings sk`, k, ` ∈ N , are well defined on ∂W (consider the coalition T := {k}). We
now show the continuity of the mappings sk` which derives from Assumption NL. Let
k, ` ∈ N , x ∈ ∂W and denote S∗ the set of coalitions (satisfying k ∈ S∗ and ` /∈ S∗)
maximizing ek(., x), i.e. S∗ := argmax {ek(S, x) | S ∈ N , k ∈ S, ` /∈ S}; let xν be a sequence
in ∂W converging toward x and denote, for each ν, Sν the set of coalitions (satisfying k ∈ Sν
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and ` /∈ Sν) maximizing ek(., x
ν), i.e. Sν := argmax {ek(S, x

ν) | S ∈ N , k ∈ S, ` /∈ S}. We
first remark that, since S∗ is a finite set there exists a real m such that for all ν ≥ m,
Sν ⊆ S∗. Consider now some T ∈ N such that T ∈ Sν for each ν big enough (taking
a subsequence if necessary), then from the definition of the mappings ek, there exist two
real numbers yk and yν

k respectively solutions of ek(S, x) and ek(S
ν , xν) and satisfying

(yk, x−k) ∈ ∂VT and (yν
k , x

ν
−k) ∈ ∂VT . Now suppose we do not have the convergence, that

is, there exists ε > 0 such that |yk − yν
k | > ε for all ν sufficiently high. Then, taking the

limit components by components, this contradicts assumption NL. Indeed, it implies that
(limν→∞ yν

k , x−k) and (yk, x−k) belong to ∂VT , but |yk−limν→∞ yν
k | > ε, which is impossible.

The mappings sk` are non positive on the boundary of the game ∂W and continuous from
Lemma 3.1. Let x ∈ ∂W∩VS for some S ∈ N with j ∈ S and i /∈ S, since: argmax{yj−xj |
(yj, x

S\{j}) ∈ VS} = {xj}. We deduce that sji(x) = 0. Let cij(x) := −pj(pW (x))sji(x).
Obviously, from the assumption SM which guarantees the positivity and continuity of the
mapping p, we deduce that, for each pair of players i and j, the mapping cij: ∂W → R+

is continuous and satisfies: cij is zero on V (S) ∩ ∂W whenever i /∈ S and j ∈ S.

We deduce from Corollary 2.1 that there exists a core allocation x such that for each i ∈ N ,∑
j∈N(cij(x)− cji(x)) = 0.

Equivalently, remarking that pW (x) = x on ∂W ,
∑

j∈N pi(x)sij(x)− pj(x)sji(x) = fi(x) =
0. Hence, x is a core allocation that belongs to the average prekernel, as was to be proved.
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