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Abstract

This paper shows that pricing catastrophe bonds boils down to computing first−passage time
distributions of jump−diffusion processes. It derives a generic valuation expression by
assuming that the jump risk is not systematic and then performs simulations, which can stress
the sensitivity of insurance bond values to changes in underlying parameters.
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1. Introduction 
 
Catastrophe bonds (or catbonds) are examples of specialized securities that increase the ability 
of insurers to provide insurance protection while transferring the risk to investors around the 
world. Their proceeds are contingent upon occurrences of natural catastrophes or insurance 
claims from these events. The first successful catastrophe bonds were issued by USAA to 
cover its US east cost hurricane exposure (US$ 477 in June 1997) and by Swiss Re to cover 
California earthquake losses (US$ 137 in July 1997). Transactions on the market for 
catastrophe risk are documented in Froot (2001) and The Alternative Risk Transfer Portal 
(www.artemis.bm). 
 
Catastrophe bonds are typically engineered as follows. The hedger (e.g. a firm in the energy 
sector or an insurance company) pays a premium in exchange for a pre-specified coverage if a 
natural hazard materializes (generally a reinsurance policy for regulatory and tax reasons); and 
investors purchase a catbond for cash. The total amount (premium + cash proceeds) is directed 
to a tailor-made fund, called a special-purpose company (SPC), which issues the catbond to 
investors and purchases Treasury bonds. Therefore, investors hold insurance-linked assets 
whose cash flows – coupons and / or principal – are contingent on the risk occurrence. If the 
covered events take place during the risk-exposure period, the SPC compensates the firm and 
there is full or partial forgiveness of the repayment of principal and / or interest. Otherwise, 
the investors receive their principal plus interest equal to the risk free rate plus a risk-
premium.  
 
On the one hand, actuarial-science-based calculus cannot be applied to catastrophe bonds, as it 
tends to price insurance contingent claims as random sums where weights are taken according 
to the historical probability. Indeed, the law of large numbers breaks down when confronted 
by infrequent and severe catastrophe risks. On the other hand, there is little academic research 
devoted to the pricing of insurance-linked securities. Examples within an arbitrage-free 
framework are: Cummins and Geman (1995) who provide formulas for CBOT-traded 
derivatives (catastrophe insurance futures and call spreads), whereas the present contribution 
deals with OTC derivatives; Briys (1998) who derives a simple formula for non-catastrophic 
insurance-linked bonds. Lee and Yu (2002) who price catastrophe bonds, but are primarily 
interested in analyzing default risk, and therefore, specialize their paper to the case where 
catbonds are directly issued by insurers. 
 
The present paper evaluates catastrophe bonds within an arbitrage-free framework. It shows 
that pricing catbonds boils down to computing first-passage time distributions of jump-
diffusion processes, as bondholders are short on digital options based on risk-tracking indices. 
It vindicates a well-defined arbitrage price, notwithstanding discontinuities in underlying 
processes. It then reports fairly accurate simulations and further conducts a comparative static 
analysis that stresses the sensitivity of prices of catbonds to exposure to nature risk. 
 
The remainder of the paper is organized as follows. Section 2 presents the valuation 
framework. Section 3 performs simulations. Section 4 summarizes the article. For ease of 
exposition, most proofs are in an appendix.  
 
 

2. Method 
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In this section, we establish the binary structure of insurance-linked securities and we extend 
and adapt the jump-diffusion model of Merton (1976) to develop a valuation framework that 
allows for catastrophic events, interest rate uncertainty, and non-traded underlying state 
variables.   
 
2.1. Product structure    
 
Catbond payoffs can be thought of as corporate bonds with insurance risk instead of default 
risk. The bondholder accepts to lose interest payments or a fraction of the principal if an index 
standing for natural risk or associated insurance claims, whose value at date t is denoted It, 
hits a pre-specified threshold K. More specifically, if the index does not reach the threshold 
during a risk exposure period T, the bondholder is paid the face value F. Otherwise, he 
receives the face value minus a write-down coefficient in percentage w. We allow the bond 
maturity T’ to be longer than the risk exposure period T to account for possible lags in the 
risk-index assessment at expiration. We specialize the paper to the case where the risk index 
starts below the barrier. This boundary is supposed to be fixed.  
 
Formally, bondholders receive at T’: 
 

F 1TI, K > T + (1 – w) F 1TI, K ≤  T = F – w F 1TI, K ≤ T                                                     (1) 
 
where 1A stands for the indicator function of set A, and TI, K is the first passage time of I 
through K. Therefore, bondholders have a short position on a one-touch digital up-and-in 
option on the risk-tracking index I.   
 
Let (Ω, ℑ , P) define a probability space, where Ω is the set of states of the world, ℑ  is a σ-
algebra of subsets of Ω and P is a probability measure on ℑ . Processes are defined on this 
probability space and on a trading horizon [0, T’]. {W1t: 0 ≤ t ≤ T’} and {W2t: 0 ≤ t ≤ T’} are 
two standard Brownian motions. {Nt: 0 ≤ t ≤ T’} is a Poisson process with an intensity 
parameter λp. {Uj: j ≥ 1} is a sequence of identically and independently distributed (i.i.d.) 
random variables with values in ]0; +∞[. Uj occurs at time τ j defined by (Nt), that is, τ j = inf {0 
≤ t ≤ T’, Nt = j}. (W1t), (W2t), (Nt), and (Uj) are independent. For all t in [0, T’], let Ft be the σ-
field generated by the random variables W1s, W2s, Ns for s ≤ t, and Uj 1{ j ≤ Nt } for j ≥ 1. The 
filtration {Ft: 0 ≤ t ≤ T’} represents the information flow reaching market players. (Ft) is 
further augmented to encompass all P-null events. The four sources of randomness (W1t), (Nt), 
(Uj), and (W2t) account for non-catastrophic nature risk, the occurrences of catastrophes, the 
size of catastrophes, and the uncertainty of interest rates, respectively.  
 
2.2. Assumptions 
 
We assume that financial markets are frictionless: there are no transaction costs or differential 
taxes, trading takes place continuously in time, borrowing and short selling are allowed 
without restriction and with full proceeds available, and borrowing and lending rates are 
equal. In addition:  
 
Assumption 1: Interest rates obey an Ornstein-Uhlenbeck process   
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The risk-free spot interest rate r follows, under the historical probability P: 
 

dr(t) = a(b – r(t)) dt + σr dW2t                                                                                   (2) 
 
where a, b, and σr are constants.    
 
Assumption 2: Risk index dynamics: Poisson jump-diffusion process 
 
(It)t≥0 is right-continuous and satisfies under the historical probability P: 
 

dIt  / It - = µ(t) dt + σ(t) dW1t + Jt dNt                                                                        (3) 
 
where It - stands for the underlying value just before t. µ(.) is the drift parameter and can be 
stochastic. σ(.) is the deterministic volatility parameter of the Brownian component of the 
process. (Nt) is a Poisson process accounting for the expected number of jumps per time unit. 
(Jt) depicts the stochastic size of the jumps: 
 

Jt = Σn=1, +∞ Un 1]τn -1,τn] (t)                                                                                          (4) 
 
where (Uj) and (τ j) were previously defined. Thus, at time τ j, the jump of It is given by: ∆Iτj = 
Iτj - Iτj- = (Iτj-) Uj. Therefore, Jt dNt is a handy notation to designate a compound Poisson 
process. In addition, the Uj’s are log-normally i.i.d..    
 
Poisson jump-diffusion processes are adapted to catastrophe bonds in that they fit in the case 
of reported insurance losses and may be used as a proxy for some physical indices. As for 
insurance claims, the Wiener process reflects small catastrophes and randomness in reporting, 
while the Poisson process represents major catastrophes. The former process is vindicated on 
the ground that although small catastrophes occur in discrete time, claim reporting by 
policyholders is continuous. As for physical indices, both catastrophic and non-catastrophic 
events must be simultaneously accounted for. For instance, abnormal rainfall may raise the 
level of rivers to non-catastrophic heights or trigger catastrophic land sliding, or the wind 
speed may vary from a breeze to a hurricane.  
 
Assumption 3: Investors are neutral toward nature jump risk (A31) and non-catastrophic 
changes in the risk index can be replicated by existing quoted securities (A32), as well as 
changes in interest rates 
 
Assumption (A31) means that investors acknowledge that natural catastrophe risk can be 
diversified away when it comes to pricing contingent claims upon environmental risk. The 
underlying rationale is that localized natural catastrophes are barely correlated to global 
financial markets. Therefore, we follow along the lines drawn by Merton (1976), “jump risk is 
not systematic”. Lee and Yu (2002) take the same stance to price default-risky catbonds. This 
assumption is important in that risk-neutral pricing could not be applied otherwise, and 
instead, it would be necessary to introduce equilibrium valuation in line with Lucas (1978) or 
other techniques, such as the variance-minimizing hedging approach or utility-indifference 
techniques. As for Assumption (A32), we may for instance argue that continuous changes in 
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the risk index can be mimicked by instruments such as energy and power derivatives, weather 
derivatives or contingent claims on several commodities.  
 
 

3. Results 
 
In this section, we derive a generic valuation expression for insurance-linked securities, and 
then we perform simulations and lay down some comparative static outcomes.  
 
3.1. Arbitrage price 
 
Lemma 1. There exists a well-defined arbitrage price for exchange-traded contingent claims 
upon the risk index. More specifically, let CI be such a contingent claim. Then,  
 

CI(t) = E Q (D(t, T’) CI(T’) |‌ Ft)                                                                                  (5) 
 
where Q is the risk-adjusted probability measure under which the discounted price process of 
securities traded in financial markets is a martingale, and this expectation operator is 
conditional upon the information, Ft, available to investors at Time t. The stochastic discount 
factor D(t, T’) is given by exp(-∫t, T’ r(u) du). The dynamics of I and r under Q are described 
by: 
 

dIt /It - = (µ(t) – λ(t) σ(t)) dt + σ(t) dW1t’ + Jt dNt                                                    (6) 
and 

dr(t) = a(b’ – r(t)) dt + σr dW2t’                                                                                 (7) 
 
where λ(.) is the market price of nature risk, and W1’ and W2’ are independent Q-standard 
Brownian motions. Last, b’ = b – λr σr / a, with (– λr) the risk premium for riskfree bonds.   
 
Proof: See Appendix A. □ 
 
Proposition 1. Let IB(t) be the price of a zero-coupon insurance bond at time t and TI, K the 
first passage time of I through K. We suppose that all cash payments are done at date of 
maturity T’. Then,  
 
                    IB(t) = F P(t, T’) {1 – w E Q (1TI, K ≤ T | Ft ) }                                                            (8) 
 
where P(t, T) is given by the Vasicek (1977) formula: 
 
                   P(t, T’) = exp[-(T’- t) R(T’- t , r(t))] 
with 
                    R(θ, r) = R∞ - 1/(aθ) [ (R∞ - r) (1-e-aθ) - σr 

2/(4a2) (1- e-aθ)2 ]  
and  
                    R∞ = b’ - σr 

2/(2a2)  
 
Proof: See Appendix B. □ 
 
3.2. Monte Carlo simulations 
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Proposition 2. The core subroutine to assess E Q ( 1TI, K ≤ T) is:  
 
  In+1 = In {1 + [(µ(T n / N) – λ(T n / N) σ(T n / N)] ∆t  
 

+ σ(T n / N) g(0,1)√∆t + Σj=1, N(λp ∆t) [exp(gj(kv,δ))]}                           (9) 
 
and 
                    rn+1 = a b’ ∆t + (1 – a ∆t) rn + σr g2(0,1)√∆t                                                          (10) 
 
where N is the number of steps, ∆t = T / N, kv = E(ln(U1)), δ 2 = var(ln(U1)), and where 
g(0,1), g2(0,1), and gj(kv,δ) follow independent normal distributions with respective 
parameters (0,1) and (kv, δ). N(λp ∆t) is simulated by using that, if Nθ is a Poisson random 
variable with intensity θ, then,  
 
                    Nθ = Σn≥1 n1{UF1 UF2…UFnUFn+1 ≤ e-θ ≤ UF1 UF2 … UFn}                                                    (11) 
 
where (UFi ) i≥1 are uniformly i.i.d. on [0,1].  
 
Then, we track if the index hits the barrier during the risk exposure period by incrementing by 
1 if I breaks K along a given sample path, and obtain E Q (1TI,K ≤ T) by averaging over the 
number of trajectories.  
 
Proof: The whole scheme straightforwardly comes from the Q-dynamics determined in 
Lemma 1 and we need not elaborate. □ 
 
3.3. Exposure to nature risk  
 
Prices of insurance-linked securities decrease when the exposure to nature risk increases, be it 
through a shorter distance between the actual index level and the barrier, a larger index 
volatility, a longer risk exposure period, or sharper parameters of the Poisson process, as 
documented in Table 1. Indeed, in all these circumstances, the probability of hitting the 
threshold is higher. In addition, prices of catastrophe bonds are increasing in the market price 
of nature risk, as the risk-adjusted drift decreases.  
 
Table 1. Catastrophe bond price and nature risk  
 
Intensity λp  0 0.5 1 2 
     
X = 0.5 760 555 400 235 
X = 0.8 370 270 200 140 
     
E(ln U1) = 0.1 760 555 400 235 
E(ln U1) = 0.2 760 540 390 225 
     
σ = 0.2 895 595 410 240 
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σ = 0.5 760 555 400 235 
     
T = 0.5 860 755 635 455 
T = 1 760 555 400 235 
     
λ = 0.1 760 555 400 235 
λ = 0.2 785 570 420 245 
     
Riskfree bond  905 905 905 905 
 
This table exhibits the variation of prices of catastrophe bonds according to risk exposure, 
where the index follows a jump-diffusion process: Poisson intensity, index-barrier distance, 
jump size, index volatility (diffusion component), and risk exposure period. Default 
parameters: F = 1000, X = I/K = 0.5, w = 0.9, T = T’ = 1 year, σ = 0.5, E(ln U1) = 0.1, δ = 
0.2, r = 0.1, a = 0.1, b’ = 0.1, σr = 0.03, µ = 0.2, and λ = 0.1. Each line corresponds to 
replacing exactly one of the default parameters. Number of simulations: 5000. 
 
 

4. Conclusion 
 
This article simulated catastrophe bonds within an arbitrage-free framework. A well-defined 
arbitrage price for catastrophe bonds has been vindicated, notwithstanding discontinuities in 
underlying processes. We showed that their valuation boils down to determining first-passage 
time distributions, as bondholders have a short position on one-touch digital options on risk-
tracking indices that follow Poisson jump-diffusion processes. Then, we resorted to numerical 
simulations. 
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Appendix 
 
A. Proof of Lemma 1.   
 
Let Q be the unique martingale measure, equivalent to the objective probability measure P, 
with complete financial markets. Making use of Assumption (A32), we introduce W1’ and W2’ 
the Q-standard Brownian motions that are routinely derived from the P-standard Brownian 
motions W1 and W2 by means of the Girsanov theorem.  
 
To fix ideas, let I’ be the process which dynamics are described by the geometric-Brownian 
component of the jump-diffusion process set by Formula (3). Then, any attainable contingent 
claim CI’ has a well-defined price given by: CI’(t) = E Q (D(t, T’) CI’(T’) | Ft). Now, due to 
Assumption (A31), investors use the same arbitrage price when it comes to contingent claims 
upon I. Indeed, since they are neutral toward nature jump risk, the risk-adjusted probability 
measure Q is used to evaluate non-attainable contingent claims CI upon I: CI(t) = E Q (D(t, T’) 
CI(T’) | Ft); which yields Formula (5).  
 
We now only have to account for the index non-tradability to identify the dynamics of I under 
Q. We introduce the market price of nature risk, λ, associated with I’. Using again 
Assumption (A31), this approach can be extended to I. Finally, the jump component remains 
the same under Q due to the independence of (W1t), (W2t), (Nt), and (Uj), and we obtain the 
dynamics of Formula (6). Formula (7) for interest rates is usual.  
 
B. Proof of Proposition 1.  
 
Using Lemma 1 and Formula (1) gives: 
 

IB(t) = E Q (D(t, T’) F (1 – w 1TI, K ≤ T ) | Ft) 
                            = F E Q (D(t, T’) | Ft)) – w F E Q (D(t ,T’) 1TI, K ≤ T | Ft)                                (B1) 
 
By definition, P(t, T’) = E Q (D(t, T’) / Ft)). In addition, since W1’ and W2’ are independent 
under Q, and since r does not appear in the risk-adjusted drift of I, then D(., T’) and 1TI,K ≤ T 
are independent under Q. So, we have:  
 
                   E Q (D(t, T’) 1TI, K ≤ T ) | Ft) = E Q (D(t, T’) | Ft) E Q (1TI, K ≤ T | Ft)                          (B2) 
 
We obtain:  
 
                   IB(t) = F P(t, T’) { 1 – w E Q ( 1TI, K ≤ T | Ft)}                                                          (B3) 
 


