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ON WESNER’S METHOD OF SEARCHING FOR CHAOS ON

LOW FREQUENCY

MARIAN GIDEA AND DAVID QUAID

Abstract. An alternative to Wesner’s method of detecting deterministic be-

havior and chaos in small sample sets is presented. This new method is applied

to analyze the dynamics of several stock prices.

1. Introduction

It is widely believed that the laws of the efficient market hypothesis (partly de-
veloped by E. Fama [4] in 1965) govern the financial markets. One of the assertions
of this theory is that the dynamics of the commodities and stock prices are of ran-
dom nature (this goes back to Bachelier [2]). There is no claim that the market
would be 100% efficient all the time. It is possible that some price can follow a
deterministic process over a short period of time before it returns to a stochastic
behavior. This motivated numerous strategies to search for deterministic chaos in
economics and financial time series.

A chaotic system is a deterministic system that exhibits sensitive dependence
on initial conditions. A new empirical method of searching for chaos in small data
sets was developed by N. Wesner in a series of recent papers [11, 12].

In this note, we will comment on the mathematical background of Wesner’s
method and present an alternative strategy for searching for determinism in low
frequency financial time series. We will also present the results of numerical ex-
periments on chaotic and stochastic systems illustrating the applicability of the
method.

2. Mathematical background

In this section we briefly review some notions on dynamical systems. For details,
see [1, 6] and the references listed therein. A dynamical system consists of a set
of possible states, modelled as a subset X of a Euclidean space (called the phase
space), and a continuous map F : X → X. The orbit of a point x ∈ X is the
set {x, F (x), F 2(x), . . . , F t(x), . . .}, where F t (t ∈ N) denotes the t-th iterate of
F . An orbit is called periodic provided F t(x) = x for some t ≥ 1. For almost
every orbit, one can compute the Lyapunov exponents, measuring the exponential
convergence/divergence rates of orbits that are small perturbations of the initial
orbit. The convergence/divergence rate depends on the direction of the perturba-
tion. The number of Lyapunov exponents equals the dimension of the phase space.
Negative Lyapunov exponents account for convergent nearby orbits, while positive
Lyapunov exponents account for divergent nearby orbits.

An orbit is called chaotic if it is neither periodic nor asymptotic to a periodic
orbit, and has a positive Lyapunov exponent. A set S ⊆ X is said to be invariant
provided F (S) ⊆ S. The restriction F : S → S induces a dynamical system on S.
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Stochastic Process
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Deterministic Process

Figure 1. Dependence of proportion of false nearest neighbors
on the reconstructed phase space dimension in the cases of deter-
ministic and stochastic processes.

The invariant set S is a chaotic set provided that it is the forward limit set of a
chaotic orbit which itself is contained in its forward limit set. In the sequel we will
assume that S is a chaotic set for F .

In practice, one does not have prior knowledge of a process F : S → S, and
often can only measure an observable quantity h(F (x)) ∈ R associated to it. The
successive measurements s(t) = h(F t(x)) of the observable, starting with an initial
time t0 and at time intervals of τ from one another, produce a time series

(s(t0), s(t0 + τ), s(t0 + 2τ), . . . , s(t0 + (i − 1)τ), . . .).

In the sequel, we will chose units of time such that τ = 1.
It is possible to reconstruct the qualitative behavior of the original process F

only from its time series. In this order, we consider a reconstructed phase space
consisting of delay coordinate vectors of the type

y(t) = [s(t), s(t − 1), s(t − 2), . . . , s(t − (m − 1))],

where m, the dimension of reconstructed phase space, is chosen conveniently large.
We consider a mapping G on the reconstructed phase space defined by

G(y(t)) = y(t + 1).

A theorem due to Takens and extended by Sauer, Yorke, and Casdagli states that for
generic h and τ , the reconstructed phase space constitutes an embedded copy (with
no self-crossings) of S in R

m, provided m is chosen sufficiently large. Moreover, the
action of G on the reconstructed phase space reproduces the action of F on S.

An important aspect of this construction is how big the dimension m has to be
chosen. One way to estimate m is through the proportion of false nearest neighbors
(see [8]). For each point y(t) in the reconstructed phase space, one searches for its
nearest neighbor y(t′) in R

m. The nearest neighbor of y(t) is a point y(t′) 6= y(t)
such that

d(y(t), y(t′)) ≤ d(y(t), y(t′′)) for all t′′ 6= t.

Typically, only one such y(t′) exists. The idea of the false nearest neighbors method
is that, if m is less than the embedding dimension, y(t′) may appear to be the
nearest neighbor of y(t) in R

m only due to the self-crossings still present in the
reconstructed phase space, and the pair (y(t), y(t′)) may not correspond to a pair
of nearest neighbors in S. As m reaches the minimal embedding dimension and
the self-crossing in the reconstructed phase space are eliminated, the proportion of
false nearest neighbors approaches zero. See Figure 1.
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3. Wesner’s method

In [11, 12], Wesner introduces a new method to detect deterministic chaos in
small data sets, based on the method of nearest neighbors (see [5, 7]). Near-
est neighbors may not remain nearest neighbors under iteration, as their mutual
distances change according to the Lyapunov exponents. Typically, if y(t′) is the
nearest neighbor of y(t), then G(y(t′)) = y(t′ + 1) remains the nearest neighbor of
G(y(t)) = y(t + 1) provided that the Lyapunov exponent at y(t) in the direction
of y(t′) − y(t) is non-positive. In this case, y(t′) is a persistent nearest neighbor of
y(t). The proportion of persistent nearest neighbors (PPNN) is given by

PPNN =
number of persistent nearest neighbors

N − m + 1
,

where N is the number of observations in the time series and N − m + 1 is the
number of m-delay coordinate vectors that can be formed from the time series.
The proportion of persistent nearest neighbors typically grows with the embedding
dimension. The number

D =
PPNN

m

is introduced in [11, 12] as a measure of determinism. Based on numerical ex-
periments, Wesner proposes a value of D ≥ 0.1 as characteristic for deterministic
processes in contrast to a value of D < 0.1 as characteristic for stochastic processes.

The choice of the benchmark value of 0.1 in Wesner’s method seems arbitrary.
There are indeed examples of low dimensional deterministic systems for which Wes-
ner’s method does not detect chaos. One such example will be discussed in the next
section. Also, it is not clear why Wesner’s formula requires a division by the phase
space dimension m (other than keeping the numbers bounded). We would also like
to remark that even when determinism is found through this procedure, it is no
guarantee that there is chaos. For example, an irrational rotation of the circle,
which is usually regarded as non-chaotic, leads to D = 1 > 0.1.

4. An alternative to Wesner’s method

We propose an alternative method for detecting determinism and chaos based on
the proportion of persistent nearest neighbors (PPNN). This proportion accounts
for the non-divergent nearby trajectories in the system, and reflects the existence
of non-positive Lyapunov exponents. Numerical experiments for deterministic sys-
tems show that PPNN typically grow for a while with the dimension m of the
reconstructed phase space, until they enter a plateau regime that spreads out over
some range of dimensions. After they leave the plateau regime, the PPNN either
continue to grow or start decreasing at some point. As a first example we compute
PPNN for an x-coordinate time series of the Henon Map:

Dimension PPNN Dimension PPNN Dimension PPNN
2 0.4914 9 0.4689 16 0.5504
3 0.4854 10 0.4910 17 0.5661
4 0.4888 11 0.4972 18 0.5904
5 0.4810 12 0.5172 19 0.5947
6 0.4860 13 0.5382 20 0.6160
7 0.4795 14 0.5502
8 0.4832 15 0.5415
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Figure 2. Dependence of PPNN on the phase space dimension
in the case of the Henon Map.
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Figure 3. Dependence of PPNN on the phase space dimension
in the case of a roulette.

We note that for 4 ≤ m ≤ 10 the corresponding PPNN values stay approximately
constant at 0.4826. See Figure 2. We applied linear regression to the PPNN values
and found the slope −0.0007 of the regression line, which is away from 0 by less
than the standard error of the estimate 0.0014. The fact that PPNN stabilizes
(temporarily) at a level 0.4826 less than 1 show that, besides non-positive Lyapunov
exponents, there must exist positive Lyapunov exponents, and so chaotic dynamics.

In contrast, for stochastic processes, the PPNN typically keep growing with
respect to the phase space dimension. When the dimensions m become very large,
the PPNN start to decrease. This behavior is illustrated in Figure 3 for the roulette
wheel of the online Casino Tropez.

We verified these types of behavior for other classes of systems. We found that
the dependence of PPNN on the dimension of the reconstructed phase space is al-
most complementary to the dependence of the proportion of false nearest neighbors
on the dimension of the reconstructed phase space. Based on numerical experi-
ments, we propose the following criterion for determinism and chaos:

Criterion: A short time series (N ≤ 1000) is declared deterministic if there exists
a range of dimensions m1 ≤ m ≤ m2 with m2 − m1 + 1 ≥ 5 such that, within this
range, the values of PPNN stay at an approximately constant level. If this level is
lower than 1, the time series is declared chaotic.
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Standard Map (K=6.0)
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Figure 4. Dependence of PPNN on the phase space dimension
in the case of the Standard Map (K=6.0).

In order to check that the values of PPNN stay at approximately constant level,
we apply linear regression. We want the slope of the regression line to be very
close to 0. In our experiments, the value of the slope was of the order of 10−3

and was smaller than the standard error of the estimate. The size of 5 for the
range of dimensions in the above was devised experimentally for short time series
(N ≤ 1000). We note that for large dimensions and small data (m ≈ 20 and
N ≈ 200) the PPNN start to decrease in both chaotic and stochastic cases.

In practice, we identify this type of behavior on the graph of PPNN versus the
phase space dimension.

As another example, we consider the standard map, given by

xn+1 = xn + yn+1 (mod 2π), yn+1 = yn + K sin(xn).

For K = 0 the dynamics is non-chaotic. When the parameter K > 0 increases,
the dynamics becomes more and more random-like (although it always remains
deterministic). See [9] for details. The table below shows PPNN and Wesner’s
number computed for some orbit of the Standard Map in the case when K = 6.
For the time series, we considered the x-coordinate of the orbit. We note that
Wesner’s number falls consistently below the benchmark of 0.1. Thus Wesner’s
method does not detect deterministic chaos in this example. In the same time, the
values of the PPNN exhibit the typical behavior of a deterministic system in the
view of our criterion: the values of PPNN for 12 ≤ m ≤ 17 stay almost constant at
0.4579. See Figure 4. Linear regression applied to this data gives a slope of −0.0011,
which differs from 0 by less than the standard error of the estimate 0.0020.

Dimension PPNN Wesner Dimension PPNN Wesner
2 0.1472 0.0736 12 0.4545 0.0378
3 0.2142 0.0714 13 0.4569 0.0351
4 0.2871 0.0717 14 0.4648 0.0332
5 0.3505 0.0701 15 0.4673 0.0311
6 0.4093 0.0682 16 0.4590 0.0286
7 0.3541 0.0505 17 0.4450 0.0261
8 0.2984 0.0373 18 0.4033 0.0224
9 0.3421 0.0380 19 0.45 0.0236
10 0.3862 0.0386 20 0.4972 0.0248
11 0.3563 0.0323
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Figure 5. Dependence of PPNN on the phase space dimension
for several stocks.

5. Numerical experiments

Using our alternative method for detection of determinism, we analyzed several
stock prices: stocks with high beta coefficient (BioTech, FlyI, Genta, Molex), and
stocks with low beta coefficient (ATT, Coke, GE, SBC, Wal-Mart). The stock data
was obtained from Media General Financial Services. For the time series, we used
the daily changes of the stock prices for up to two years. We did not find conclusive
evidence of determinism in these stocks. Some of the corresponding graphs are
shown in Figure 5.

Among these stocks, Wal-Mart was the closest to exhibit a deterministic type of
behavior, with respect to our criterion (for 11 ≤ m ≤ 15). This could be related to
some of the results in [3], where time cycles that appear to govern Wal-Mart stock
price fluctuations were found through the method of moving averages.

6. Conclusions and future work

We proposed a new method for detecting deterministic behavior and chaos in
short time series that is applicable to economic and financial time series. Our
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method is an alternative to Wesner’s method for detection of determinism. It per-
formed well with small data sets and detected determinism in situations where the
original method failed. Our method is supported by numerical experiments. One
should however be aware of the limited reliability of such methods, since recurrent
behavior, even if exists, may not be detectable in small data sets.

We plan to refine this method and to enhance its mathematical foundation.
We also plan to apply these ideas in analyzing other types of time series, such as
the oil price futures. In [10], it is claimed that evidence of chaos was found in
the daily oil price futures from 1983–2003, using the method of Brock, Dechert,
LeBaron, and Scheinkman (BDS), Lyapunov numbers, and neural networks tests.
Our preliminary tests using the method of nearest neighbors resulted in no evidence
of determinism. A detailed analysis of this data will make the subject of a future
project.
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