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Abstract

We examine some aspects of estimating sample autocovariances for spatial processes.
Especially, we note that for such processes, it is not possible to approximate the expectation
by the sample mean, like in the case of time series data. Then, we propose a consistent
nonparametric estimation of sample autocovariances for an irregularly scattered spatial
process, derived from a transformation of the initial process. We also suggest an
L_2−consistent weighting matrix. Monte Carlo simulations are used to evaluate the
performance of the proposed estimators in finite samples.
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1 Motivation

General forms of dependence are rarely allowed for in cross-sectional data, although
routinely permitted in time series. A major reason is that time series typically come
with a time label giving the data a natural ordering and a structure which is absent
in cross-sectional data. In practice, this makes estimation and inference more difficult
for cross-sectional data with dependence than that for time series.

Spatial dependence is defined as a special case of non-zero covariance structure for
cross-sectional observations at pairs of locations. Contrary to time series models, until
quite recently, little attention has been paid to models for spatial data. The problem
follows from the fact that spatial processes are characterized by a system of dependence
which, by nature, involves multi-directional motion whereas the dependence in time is
uni-directional. This particular characteristic of spatial stochastic processes precludes
the simple transposition of time series methodologies as noticed by Anselin and Bera
(1998).

Recently several studies have developed specific methods to estimate models based
on spatial data. Kelejian and Prucha (1998, 1999) suggested a generalized spatial
two-stage least squares procedure for estimating a spatial autoregressive model with
autoregressive disturbance. Conley (1999) proposed a generalized method of moments
estimation based on the concept of agents’ economic distances. The study of Saj-
jan (2000) extended the m-dependence concept to two-dimensional lattice processes,
and derived central limit theorems for such processes via generalization of time series
methods. Chen and Conley (2001) developed a semiparametric spatial framework us-
ing panel data models. The present paper is more in line with the work of Driscoll and
Kraay (1998) which stated a consistent covariance matrix estimation with spatially
dependent panel data. They presented some mixing conditions under which a simple
extension of common nonparametric covariance matrix estimation techniques yields
standard error estimates that are robust to very general forms of individual and serial
dependence as the time dimension becomes large.

However, our study differs from that of Driscoll and Kraay (1998) in two points.
First, the GMM estimator of Driscoll and Kraay (1998) is based on panel data and
the model is identified using the cross-sectional averages of the transformation of the
orthogonality conditions. As a result, their asymptotic approximation is based on

√
T -

consistency. Here, we are interested in estimating spatial autocovariances in a purely
cross-section framework. Our results can be extended to panel data. Unlike Driscoll
and Kraay (1998), our results are applicable even if T is small. We present conditions
under which consistency can be obtained via a simple transformation of the initial
spatial process. This implies that spatial covariates can be identified from the n spatial
data available without having to specify the form of the spatial dependence. Secondly,
we show that, based on this consistent estimation of the sample autocovariances, one
can derive easily a consistent estimator of a weighting matrix.

First let us start with a time series example. Estimation procedures developed by,
among others, Hansen (1982) and Domowitz and White (1984) allow to compute GMM
estimators based for example on time series data. These procedures make use of an
orthogonality condition E[ht(θ)] = 0, where θ is a k × 1 vector of parameters to be
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estimated, and ht(θ) is a r × 1 vector of functions of the data and parameters, where
r ≥ k. The GMM estimator proposed by Hansen (1982) is obtained by choosing θ such
that

θ̂GMM = arg min
θ∈Θ

hT (θ)′ŴThT (θ), (1)

where hT (θ) = 1/T
∑T

t=1 ht(θ) defines the vector of sample moments and ŴT is a
random, symmetric weighting matrix. Hansen (1982) and Domowitz and White (1984)
have showed that the asymptotic covariance matrix of θ̂GMM is given by

ψT = (H ′

TWTHT )
−1
H ′

TWTSTWTHT (H ′

TWTHT )
−1
, (2)

where ST = 1/T
∑T

s=1

∑T
t=1E[hs(θ̂)ht(θ̂)

′

], HT = 1/T
∑T

t=1E[ ∂
∂θ
ht(θ̂)] is the (r × k)

matrix of partial derivative and WT is a nonrandom matrix such that plim (ŴT −
WT ) = 0. We know that a consistent estimation of the asymptotic covariance matrix
is important for the computation of asymptotic confidence intervals and hypothesis
testing. It is also known that estimation of ST is difficult and is also more important
since the formation of an optimal GMM estimator required that ŴT is a consistent
estimator of S−1

T , as demonstrated by Hansen (1982). The simplest estimator of ST

takes the form

ŜT = Ω̂0 +
m
∑

j=1

[

Ω̂j + Ω̂′

j

]

, Ω̂j =
T
∑

t=j+1

ht(θ̂)ht−j(θ̂),

where the bound m is the number of sample autocovariances Ω̂0 used to form ŜT .
Time domain techniques to compute ST that is positive semi-definite suggest the use

of spectral procedures and are motivated by the fact in the covariance stationary case,
the limit of ST is 2π times the spectral density of ht(θ̂) at frequency zero. Although
these procedures are difficult to apply in practice, they are technically possible in time
series framework, but not in spatial framework. So, our focus in this paper is to obtain
a spatial analogue of Ω̂j and ŜT . These estimators are easy to compute in practice and
robust to misspecifications of the underlying spatial processes.1

In the remaining of this paper, In Section 2 we propose a nonparametric estimation
of an irregularly scattered spatial process. We show that the suggested estimator is
consistent in probability. Then we derived a consistent weighting matrix, which is
proved to converge in norm L2. In Section 3 the Monte Carlo simulations are carried
out to evaluate the performance of the proposed estimator.

2 Estimation of Spatial Autocovariance

Contrary to time series, there is typically no natural order for arranging a spatial
sample, due to its multi-directional motion. The spatial autocovariance function cannot
then be approximated from the sample analogue as is the case for time series. We will

1It should be noted that to form a spatial GMM estimator, orthogonality conditions for spatial
stochastic processes are required. Examples of such conditions can be found, among others, in Kelejian
and Prucha (1998, 1999) and Conley (1999).
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outline the reason later. At this stage, we have two possibilities. First, we can suppose
that the underlying data generating process follows from regularly scattered spatial
sites. However, in practice spatial data rarely exhibit such a characteristic. Instead,
we consider the case of irregularly scattered spatial data which seems more natural.

Let s ∈ R
d be a generic data location in a d-dimensional Euclidean space and

{U(s), s ∈ D ⊂ R
d} be a second-order stationary spatial process with zero mean and

finite variance.

Definition 1 For a distance lag τ ∈ R
d, we define the autocovariance function as

Cn(τ) = cov [U(s+ τ), U(s)] ≡ E [U(s+ τ)U(s)] . (3)

Later in Assumption 1 we will explicitly assume that U(.) is a stationary process
in the sense that its autocovariance is a function of the distance but not the locations.
This is similar to the covariance stationarity in time series. See Cressie (1991) for more
details.

For a given distance lag τ , one wishes to obtain a consistent estimation of the
spatial autocovariance function Cn(τ) associated with U(s). In the sequel, index n will
be omitted to ease presentation when it is not necessary.

Definition 2 From U(s), let us define the random variable Z(τ) as

Z(τ) = U(s+ τ)U(s). (4)

The cloud of points denoted NU constructed from the n realizations u(s) of U(s) allows
us to define a cloud of points denoted NZ associated with the n(n − 1)/2 realizations
z(τ) of Z(τ) by setting

z(τ) = u(s+ τ)u(s). (5)

The difficulty here is that one has only one observation for a distance τ between two
points of the sample. It is then not possible to construct an estimator of E[Z(τ)] as
an empirical mean of a large sample like in the case for time series data. To overcome
this issue, we propose to fit the cloud of points NZ by a smooth function which will be
a consistent approximation of relation (3). The intuition is the following.

Assuming Cn(τ) to be regular and the sample points to be uniformly distributed,
Cn(τ) can be estimated by smoothing the scatter plot NZ using the kernel method.
Intuitively, the smoothing function should provide a consistent nonparametric estima-
tion for Cn(τ) which is then robust to spatial correlation of unknown form. Several
assumptions are needed to construct this estimator and to prove its consistency.

Assumption 1 {U(s), s ∈ [a, b]} is a second-order stationary spatial process with zero
mean. Furthermore, assume that there exists a spatial autocovariance function Cn(τ)
for U(s) such that Cn(τ) is C∞.

E(U(s)) = 0, for all s ∈ D, (6)

and E(U(s)U(s + τ)) is a function of the distance τ but not the location s, and thus
can be written as Cn(τ). Furthermore, we assume that

Cn(τ) → 0 as |τ | → ∞. (7)
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Assumption 2 We define the following sets:
(i) I = {i1, · · · , in} is a set of n coordinates with ij having a uniform distribution

U[a,b],
(ii) Λ = {τ = |i− i′|/(i, i′) ∈ I} with max{0, τ −∆(n)} < i− i′ < ∆(n) + τ , where

∆(n) denotes the maximum distance or the maximum allowable error,
(iii) Ψτ

n = {(i, i′) ∈ I × I/ |i− i′| ∈ B(τ,∆(n)), τ ∈ Λ}, where B(τ,∆(n)) is an
open ball, and n here indicates the number of coordinates,

(iv) limn→∞ ∆(n) = 0.

Assumption 3 There exists a function K defined onto [0,∆(n)], positive, strictly de-
creasing, with K(0) = 1 and K(∆(n)) = 0.

Proposition 1 Given Assumptions 1–3, a consistent nonparametric estimator Ĉn(τ)
of Cn(τ) is such that

Ĉn(τ) =
∑

(i,i′)∈Ψτ
n

K (||i− i′| − τ |)U(i)U(i′)
p−→

n→∞

Cn(τ). (8)

Proof. See the appendix.

The estimator (8) is nonparametric in that the form of the spatial correlation be-
tween the U(s) at different τ does not need to be specified. The interest of this result
is that it provides a consistent estimation of spatial covariance of unknown form di-
rectly from the n data points. Note how this contrasts with a parametric framework.
Indeed, in such a situation, one might estimate n(n − 1)/2 parameters from n data
points. Since it is impossible to estimate parametrically such covariance terms directly
from n data points due to identification issues. It is then necessary to impose suffi-
cient constrains on the spatial interactions such that a finite number of parameters
characterizing the correlation can be consistently estimated. This is usually achieved
in parametric framework by posing a spatial contiguity matrix; see e.g. Anselin and
Bera (1998) for a nice survey.

Once we have Ĉn(τ) at hand, a consistent estimation of the weighting matrix, say,
Vn can be formed easily using for example nearest neighbor procedures (k − nn). See
e.g. Härdle (1990) for details on the k − nn method.

First of all, note from (8) that Ĉn(τ) is symmetric by construction. The weights are
defined as ωij for i 6= j with the restriction of uniform boundedness. Then a consistent

estimator V̂n of Vn is

V̂n = Ĉn(0) +
1

2

∑

(i,j)∈Ψτ
n

j 6=i

ω (||i− j| − τ |) Ĉn(τ), (9)

with Ĉn(0) denoting the variance at zero lags. We may expect that the estimator V̂n

formed by smoothing sample autocovariances with weights ω(.) that approach one as
n→ ∞, should be consistent. The consistency of (9) is stated below.
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Proposition 2 Given Assumptions 1–3 and Proposition 1















Ĉn(0) +
1

2

∑

(i,j)∈Ψτ
n

j 6=i

ω (||i− j| − τ |) Ĉn(τ)















− Vn
L2−→

n→∞

0. (10)

Proof. See the appendix.

3 Monte Carlo Simulations

This section presents the results from a small Monte Carlo (MC) simulation that exam-
ines the finite sample properties of lour estimator. The experiment uses the simplest
possible generating data process (GDP) where location and distances are fixed. Firstly,
data are generated from a gaussian process spatially correlated Y (s). Secondly, from
these data, we compute the realization associated to the variable Z(h) = Y (s)Y (s+h).
Finally, the cloud of points obtained is smoothed using the kernel method. Note that
to simplify, the simulation uses one dimensional spatial process (s ∈ R).

We assume that the data are uniformly distributed. The first step consists in
generating the vector of coordinate x (sorted in increasing order) of points yi of the
sample. Then, we define the matrix D of distances between different points as

D =









0 |x1 − x2| ... |x1 − xn|
|x2 − x1| :

: :
|xn − x1| ... ... 0









The matrix of spatial correlation above is computed by assuming that the spatial
dependence is of the form

cov(y1, y2) = exp{−α |x1 − x2|}

which is computed the above by setting set α = 0.5. The vector of observations for the
variable of interest is then generated as follows. In a first step, a gaussian vector of zero
mean and unit variance is generated. The vector of observations spatially correlated is
obtained by multiplying y by the matrix of correlation.2 Now we range the distances
in increasing order in the vector h, and we create the vector of theoretical correlations
associated to each component of h. Now, for each distance hi, we can compute an
observed correlation using a pair of associated observations. By observed correlation,
we mean a realization of the variable Z(h) = Y (s)Y (s+h). For the estimation, we use
Bartlett kernel

k(x) =

{

1 − |x| , if |x| ≤ 1
0 if not

2Here, we use eigen value decomposition.
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Figure 1: Graphs of simulations

Estimation results are plotted in Figure 1. The figure shows graphs of initial series,
the theoretical correlogram, the spatially correlated series and the estimation. Sim-
ulations are conducted for 500 replications from our fixed location DGP for sample
lengths of 30 observations. Overall, compared to the theoretical correlogram, our esti-
mator seem to perform well in these experiments. However, edge location observations
may seems to matter.

Appendix proofs

Proof of Proposition 1

By Assumption 2 we have ∆(n) → 0. Also, define

lim
n→∞

Ψτ
n = {(i, i′) ∈ I × I/ |i− i′| = τ, τ ∈ Λ} ≡ Ψτ

∞
, (11)

where we recall that Λ = {τ = |i− i′|/(i, i′) ∈ I}. Since i − i′ = τ + δi ∈ B(τ,∆(n)),
where δi is a small variation (an increment), and B(.) is an open ball. It follows that
limn→∞ |δi| ≤ limn→∞ ∆(n) = 0. That is, as given in Assumption 3, by definition of
function K(.), limn→∞K(δi) = 1. It then follows that

lim
n→∞

Ĉ(τ) =
∑

(i,i′)∈Ψτ
∞

U(i)U(i′). (12)
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To complete the proof, it remains to be shown that one can select ∆(n) such that
the expectation of the cardinality of Ψτ

∞
converges towards infinity for n → ∞. The

conclusion will follow from the law of large numbers. Let Λτ
n = B(τ,∆(n)) ∩ Λ, that

is, the set of sample distances between τ and τ ± ∆(n). Since points coordinates are
uniformly distributed, so are the associated distances. As a result, the expectation of
#Λτ

n is given by

E (#Λτ
n) = #Λ

µ (B(τ,∆(n)))

µ ([a, b])
, (13)

where µ(.) denotes Lebesgue’s measure and # is the cardinality symbol. The cardinality
of #Λ is computed as

#Λ =

(

n

2

)

=
n!

2!(n− 2)!
=
n(n− 1)

2
. (14)

Now observe that µ(B(τ,∆(n))) is the size of B(τ,∆(n)), that is 2∆(n), and µ([a, b])
denotes the length of [a, b], that is b− a. Then, we obtain

E (#Λτ
n) =

n(n− 1)

2

2∆(n)

b− a
. (15)

Finally, one can choose for example ∆(n) = 1/
√
n which implies that

#Ψτ
∞

= lim
n→∞

E (#Λτ
n) = +∞. � (16)

Proof of Proposition 2

For notational convenience, we will suppress the set under the sum symbol. For i = i′

we have τ = 0. Then Cn(0) =
∑

K(0)U(i)U(i′). By Assumption 3, K(0) = 1. Then
Cn(0) =

∑

i U
2(i). One deduces that Vn =

∑

i U
2 +

∑

(i,j) ωij(.)(
∑

(i,i′)K(.)U(i)U(i′)).

To show that V̂n converges in probability towards Vn, let us apply Chebychev’s inequal-
ity, that is for every η > 0,

P
[

‖V̂n − Vn‖ > η
]

≤ E‖V̂n − Vn‖
2

η2
. (17)

The job turns out to prove that E‖V̂n − Vn‖
2

= op(1). To show this, decompose V̂n

and Vn as V̂n,1 = Ĉn(0), V̂n,2 = Ĉn(τ), Vn,1 = Cn(0) and Vn,2 = Cn(τ). Then we have

∥

∥

∥
V̂n − Vn

∥

∥

∥
=
∥

∥

∥
V̂n,1 + V̂n,2 − (Vn,1 + Vn,2)

∥

∥

∥
,

=
∥

∥

∥
(V̂n,1 − Vn,1) + (V̂n,2 − Vn,2)

∥

∥

∥
.

(18)

Using the triangular inequality we obtain

∥

∥

∥
V̂n − Vn

∥

∥

∥
≤
∥

∥

∥
V̂n,1 − Vn,1

∥

∥

∥
+
∥

∥

∥
V̂n,2 − Vn,2

∥

∥

∥
. (19)
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Note that V̂n,1
p→ Vn,1 since Cn(0) is a constant limit for Ĉn(0). From Proposition 1,

we know that V̂n,2
p→ Vn,2. From the last part of (18) and using Minkoswski inequality

we have

(

n
∑

i=1

‖V̂n,i − Vn,i‖
2
/n

)1/2

=

(

n
∑

i=1

‖(V̂n,1i − Vn,i1) + (V̂n,2i − Vn,i2)‖
2
/n

)1/2

≤
(

n
∑

i=1

‖V̂n,1i − Vn,1i‖
2
/n

)1/2

+

(

n
∑

i=1

‖V̂n,2i − Vn,2i‖
2
/n

)1/2

= op(1) + op(1) = op(1).

The conclusion follows as we have shown that each term of the inequality converges in
norm L2 as n→ ∞. �
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