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Abstract

This note proposes a computationally simple empirical Edgeworth expansion for the limiting
distribution of a Studentized estimator of a semiparametric single index model. The estimator
in question is the density−weighted averaged derivative estimator implemented according to
the method of Powell, Stock and Stoker (1989). The coefficients of the expansion are derived
from the cumulants of a bootstrap estimate of the distribution of the Studentized estimator.
Monte Carlo evidence indicates finite−sample performance comparable to that of the
empirical Edgeworth expansions proposed by Nishiyama and Robinson (2000).
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1 Introduction
Much of the literature over the past two decades dealing with the first-order as-
ymptotic theory of semiparametric estimators has focused on estimators that nest
an estimated nonparametric component. The slow rate of convergence of the em-
bedded nonparametric estimators would suggest that the finite sample behaviour
of the overall semiparametric procedure can be quite different from the attractively
quasi-parametric behaviour suggested by first-order asymptotic approximations.
Higher-order asymptotic theory, in contrast to finite-sample theory, appears to be
both mathematically tractable and capable of shedding light on the finite-sample
behaviour of semiparametric estimators.

In this connection Nishiyama and Robinson (2000) proposed Edgeworth ex-
pansions for the distribution of density-weighted averaged derivative estimators
of a semiparametric single-index model (cf. e.g., Powell et al., 1989) with a view
to developing a practical method of improving the accuracy of any resulting infer-
ences.

This note proposes a computationally simpler alternative to the Edgeworth
correction proposed by Nishiyama and Robinson (2000) for the Studentized ver-
sion of the density-weighted averaged derivative estimator. The alternative pro-
posed here is based on cumulants of a bootstrapped estimate of the distribution
of the Studentized estimator and is also shown in simulations to furnish excel-
lent smooth approximations to the tail behaviour of the Studentized statistic. The
next section of this note provides a brief overview of the density-weighted aver-
aged derivative estimator. The method of Edgeworth correction proposed here is
also described. Monte Carlo evidence presented in Section 3 indicates the abil-
ity of the simple Edgeworth correction to deliver distributional approximations
that equal or exceed in quality those furnished by the first-order standard normal
approximation.

2 Edgeworth corrections for the Studentized aver-
aged derivative estimator

2.1 The model
Consider a sequence (Yi, X

T
i )T , i = 1, . . . , n, where Yi and Xi are scalar and

k × 1 random variates, respectively. Assume that the regression function r(X) ≡
E[Y |X] has the single index form r(X) = R(XT β) for some function R : < → <



and some k-variate column vector β. The single-index form nests a number of
models that have proven useful in empirical practice, include probit, logit and
Tobit, as well as various transformation models.

In each of these cases maximum likelihood yields
√

n-consistent, efficient
and asymptotically normal estimates of β if the researcher is willing to assume a
parametric form for the regression function R(·). Misspecification of R(·) leads
in general to inconsistency. On the other hand, regarding R(·) as nonparametric
allows only for identification of β up to scale, since

µ̄ ≡ −E[r′(X)f(X)] = cβ, (1)

where c = −E[R′(XT β)f(X)] and f denotes the density of X . From integration
by parts we have that

µ̄ = 2E[Y f ′(X)]. (2)

Given the sample (Yi, X
T
i )T , i = 1, . . . , n, the quantity given by (2) is estimated

by the density-weighted averaged derivative

U =

(
n

2

)−1 ∑
i<j

Uij, (3)

where

Uij = (Yi − Yj)K
′
ij, (4)

K ′
ij =

1

hk+1
K ′

(
Xi −Xj

h

)
, (5)

and where K : <k → < is an even and differentiable kernel function with∫
K(u)du = 1. Here h > 0 is a bandwidth that converges to zero as n →∞.

Nishiyama and Robinson (2000, Theorem 4) proposed a feasible empirical
Edgeworth expansion for an arbitrary linear combination of the Studentized vector
Σ̂− 1

2 U , where Σ̂ is a jackknife estimate

Σ̂ ≡ 4

(n− 1)(n− 2)2

n∑
i=1

{
n∑

j 6=i

(Uij − U)

}{
n∑

l 6=i

(Uil − U)T

}
(6)

of the asymptotic covariance matrix of
√

n(U − µ̄). In particular, Nishiyama and
Robinson (2000, Theorem 4) proposed an expansion of the distribution function
of the statistic

Ẑ ≡ √
n(vT Σ̂v)−

1
2 vT (U − µ̄), (7)
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where v is an arbitrary k-vector.1 The expansion is to order qn, where qn is a sum
of n−

1
2 and some other terms, the order of which depends on the bandwidth h. The

remainder term is shown to be of order o(qn). Monte Carlo evidence indicates that
the expansion of Nishiyama and Robinson (2000, Theorem 4) has the potential to
perform quite well in approximating the distribution of Ẑ, subject to good choices
of bandwidth and kernel order. The derivation and computation of the correction
terms in their expansion is however somewhat complex. The next section of this
note proposes a much simpler Edgeworth correction for the distribution of Ẑ.

2.2 A simple Edgeworth correction for the Studentized statistic
It is proposed that the distribution Fn(z) of the Studentized statistic Ẑ given in (7)
be approximated by the formula

Fn(z) ≈ Φ(z)−φ(z)

[
ρ3Ẑ(z2 − 1)

6
+

3ρ4Ẑ(z3 − 3z) + 2ρ2
3Ẑ

(z5 − 10z3 + 15z)

72

]
.

(8)
Here Φ(·) and φ(·) denote the standard normal distribution and density functions,
respectively, and ρjẐ (j ∈ {3, 4}) denotes the jth standardized cumulant of Ẑ. In
particular, for j = 3, 4,

ρjẐ =
κjẐ

σj

Ẑ

, (9)

where κjẐ and σẐ denote the jth cumulant and standard error, respectively, of Ẑ.
It is clear that ρjẐ for j = 3, 4 are unknown; in order to make the approxi-

mation given in (8) operational it is proposed that the corresponding standardized
cumulants of the bootstrapped empirical distribution of Ẑ appear in the corre-
sponding places in (8).

In other words, the researcher would resample her data (Yi, X
T
i )T , i = 1, . . . , n

randomly with replacement B times, each time computing the bootstrapped ver-
sion

Ẑ∗
b ≡

√
n(vT Σ̂∗

bv)−
1
2 vT (U∗

b − U)

of Ẑ using the simulated data contained in the bth resample (b = 1, . . . , B). The
standardized population cumulants ρ3Ẑ and ρ4Ẑ would then be estimated using
the third and fourth standardized cumulants, respectively, of the uniform discrete
distribution with support points Ẑ∗

b , b = 1, . . . , B.

1It should be noted that the validity of a full multivariate expansion for Ẑ has not been estab-
lished and that a Cramér-Wold device would not be applicable for this problem.
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3 Numerical Evidence

3.1 Normal Tobit
I first consider the same basic Monte Carlo design as was presented in Nishiyama
and Robinson (2000). Simulated observations (Yi, X

T
i )T , i = 1, . . . , n were

generated using the Tobit model Yi = (XT
i β + εi) · 1(XT

i β + εi ≥ 0), where
Xi ∈ <2 and (XT

i , εi) are iid N(0, I3). With this model, r(X) = (XT β) ·[
1− Φ(−XT β)

]
+ φ(−XT β) and µ̄ = −1

8π
β. The Monte Carlo design yields

comparisons of the finite-sample performance of approximations to the distribu-
tion of Ẑ given in (7). I set v to be (1, 0)T and β = (1, 1)T . The bootstrapped
empirical distribution of Ẑ was computed by generating 200 resamples of size n
with replacement from each simulated dataset.

The Monte Carlo experiments presented below use a second-order bivariate
kernel function derived from the product of two standard normal density func-
tions, i.e., K(u1, u2) = φ(u1)φ(u2). This is in contrast to the case presented in
Nishiyama and Robinson (2000), where kernel functions of order L ∈ {4, 8, 10}
were used. The second-order kernel avoids any problems arising out of negative
values at certain values of its argument and is assumed to correspond to what is
more popular in empirical practice.

The experiments presented here consider sample sizes n ∈ {100, 400}. Only
results for n = 100 are presented, as the results for the larger sample size were
essentially identical. The number of Monte Carlo replications used was set to 500.

Table 1 allows for an assessment the performance of approximate confidence
intervals for vT µ̄ = − 1

8π
≈ −.0398 implied by the N(0, 1) and simple Edgeworth-

A approximations proposed in this note. Approximate 80% confidence intervals
are compared to the “true” confidence intervals based on the empirical distribu-
tion of Ẑ. Each interval estimate presented in Table 1 was computed using the
second-order kernel mentioned above over a range of different bandwidths. The
endpoints of the intervals represent averages over 500 Monte Carlo replications
of the endpoints of the interval estimates based on the empirical distribution of Ẑ
and the N(0, 1) and Cornish-Fisher approximations. In particular, note that the
interval implied by the N(0, 1) approximation may be corrected by inverting the
Edgeworth approximation proposed in Section 2.2, thus yielding a Cornish-Fisher
expansion for a given quantile of the sampling distribution of Ẑ. As such, if wγ

denotes the γ-quantile of the distribution of Ẑ, its Cornish-Fisher approximation
is given by

wγ ≈ zγ + p11(zγ) + p21(zγ), (10)
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where zγ denotes the γ-quantile of a N(0, 1) random variate, and where the for-
mulae for p11(·) and p21(·) are as given in Hall (1992, p.88–89). Let w∗

γ denote the
estimate of wγ in (10) with the corresponding standardized cumulants of the boot-
strapped empirical distribution appearing in place of ρ3Ẑ , ρ4Ẑ in the expressions
for p11, p21. The corresponding confidence interval is given by

(
Ẑ − n−

1
2

(
vT Σ̂v

)
w∗

1−α
2
, Ẑ − n−

1
2

(
vT Σ̂v

)
w∗

α
2

)
. (11)

The effect of bandwidth choice on the bias and width of the interval estimates
of µ̄ is evident from a glance at Table 1. In particular, the larger bandwidths of
h = 0.6, 0.4 lead to “true” confidence intervals that are narrow but centred to
the left of the target value of µ̄ = −0.0398, while the smaller bandwidths of
h = 0.3, 0.2, as expected, lead to true confidence intervals that are approximately
centred about µ̄, but are rather wider than is the case when a greater degree of
smoothing is applied in the construction of Ẑ.

In contrast to some of the evidence presented in Nishiyama and Robinson
(2000, Figures 24–27), the interval estimates based on the N(0, 1) and Cornish-
Fisher approximations are virtually identical across each of the simulations that
were conducted. This is to be expected, given the normal Tobit design used in this
section. The next section presents results of a Monte Carlo experiment indicating
the ability of the simple Edgeworth correction to improve upon the distributional
approximation yielded by first-order theory.

3.2 A semi-logarithmic model
Here observations (Yi, X

T
i )T , i = 1, . . . , n are generated in accordance with the

semi-logarithmic model log Yi = XT
i β + εi, where XT

i β = Xi1β1 + Xi2β2. The
semiparametric averaged derivative estimator is relevant when the researcher is
unwilling to make any assumptions regarding the form of the transformation func-
tion T (·), where T (Yi) = XT

i β+εi, other than that it is increasing in its argument.
The performance of the Studentized statistic under the null hypothesis H0 : β1 = 0
is the focus of this experiment.

In contrast to the previous experiment, Xi is drawn from a standardized χ2
3

distribution centred about its mean, i.e., Xi ∼ 1√
2·3(χ

2
3 − 3), while the error term

is simulated as εi ∼ W − 1
2
, where W is uniformly distributed on the unit in-

terval. Sample sizes of 100 and 400 were considered, although as the results for
n = 400 are qualitatively similar, only results for n = 100 are presented. The
estimator was constructed using the same second-order kernel function used in
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Section 3.1, but this time with the bandwidth selected to minimize asymptotic
mean squared error.2 A total of 6500 Monte Carlo simulations were employed
to approximate the sampling distribution of the test statistic Ẑ. The bootstrapped
cumulant estimates were generated from 1600 bootstrap resamples of size n with
the resampling conducted on the first of the 6500 Monte Carlo samples mentioned
previously.

Figure 1 clearly illustrates the ability of the simple Edgeworth expansion to
improve on the standard normal approximation with respect to the approximation
of tail probabilities under the restriction imposed by the null hypothesis.
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the variance and squared bias, respectively, of the averaged derivative estimator. Cf. Powell and
Stoker (1996, Section 4.4).

6



Table 1: Confidence intervals for µ̄ = −1
8π
≈ −.0398, n = 100

80% Confidence Intervals
h = 0.6

True (−0.0514,−0.0316)
N(0, 1) (−0.0361,−0.0206)
Cornish-Fisher (−0.0361,−0.0206)

h = 0.4
True (−0.0541,−0.0303)
N(0, 1) (−0.0461,−0.0223)
Cornish-Fisher (−0.0462,−0.0223)

h = 0.3
True (−0.0568,−0.0246)
N(0, 1) (−0.0526,−0.0190)
Cornish-Fisher (−0.0526,−0.0191)

h = 0.2
True (−0.0664,−0.0168)
N(0, 1) (−0.0708,−0.0052)
Cornish-Fisher (−0.0708,−0.0052)
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Figure 1: Upper tail probabilities for Ẑ under H0 : β1 = 0
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