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1 Introduction

The Ordinal Shapley Value (OSV ) is a way to allocate gains realized by cooperation

in general economic environments. It is invariant with respect to the utility representa-

tion of the agents’ preferences and enjoys several desirable properties such as efficiency,

monotonicity, anonymity, and individual rationality (see Pérez-Castrillo and Wettstein

2005). It provides a reasonable outcome for a large class of environments even where

competitive equilibria or core allocations may fail to exist.

The OSV is a normative solution concept. An alternative approach to the problem of

sharing gains from cooperation consists of proposing mechanisms whose equilibria yield

“good” outcomes.1 In this paper, we propose the use of a bidding mechanism, which

combines and adapts to exchange economies proposals suggested in Pérez-Castrillo and

Wettstein (2001) and (2002). Informally, the mechanism proceeds as follows: In stage 1

the agents bid to choose the proposer. Each agent bids by submitting an n-tuple of real

numbers, one number for each agent (including himself). The number submitted by agent

i for an agent j, is a commitment to forego a commodity bundle in case j is chosen as the

proposer. The bids submitted by an agent must sum up to zero. The agent for whom the

aggregate bid (sum of bids submitted for him by all agents including himself) is the highest

is chosen as the proposer. Before moving to stage 2, all the agents (including the proposer)

pay the “bid” (i.e., the promised commodity bundles) they submitted for the proposer. In

stage 2 the proposer offers a feasible allocation of the total initial resources. The offer is

accepted if all the other agents agree. In case of acceptance each agent receives the bundle

suggested for him in this allocation. In the case of rejection all the agents other than the

proposer play the same game again where the new initial endowments incorporate the

allocations paid and received by the end of stage 1.

We prove that the proposed bidding mechanism implements in Subgame Perfect equi-

librium the OSV correspondence for economies with at most three agents.

1See Moore and Repullo (1988) and Maniquet (2003) for papers dealing with implementation in general

environments. Winter (1994), Dasgupta and Chiu (1996) and Vidal-Puga and Bergantiños (2003) deal

with the implementation of the Shapley value in Transferable Utility games.
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2 The Ordinal Shapley Value and the Bidding Mech-

anism

We consider a pure exchange economy E consisting of a set N = {1, 2, ..., n} of agents and
k ≥ 2 commodities. Agent i ∈ N is described by {ºi, wi}, where wi ∈ Rk is the vector of

initial endowments and ºi is a continuous and monotonic preference relation defined over

Rk.We denote by Âi and ∼i the strict preference and indifference relationships associated

with ºi, and e ≡ (1, ..., 1) ∈ Rk.

For this economy, Pérez-Castrillo andWettstein (2005) propose and prove the existence

of a solution concept, called the Ordinal Shapley Value (OSV ), the construction of which

relies on the notion of concessions. The use of concessions allows to “measure” the benefits

from cooperation. Concessions are made in terms of the reference bundle e.

Definition 1 The Ordinal Shapley Value is defined recursively.

(n = 1) In the case of an economy with one agent with preferences º1 and initial
endowments a1 ∈ Rk, the OSV is given by the initial endowment: OSV (º1, a1) = {a1} .
For n ≥ 2, suppose that the solution has been defined for any economy with (n− 1) or

less agents.

(n) In the case of an economy (ºi, ai)i∈N with a set N of n agents, the OSV ((ºi, ai)i∈N)

is the set of efficient allocations (xi)i∈N for which there exists an n−tuple of concession
vectors (ci)i∈N , ci ∈ Rn−1 for all i ∈ N that satisfy:

n.1) for all j ∈ N, there exists y(j) ∈ OSV
¡
(ºi, ai + cjie)i∈N\j

¢
such that xi ∼i y(j)i

for all i ∈ N\j, and
n.2)

P
i∈N\j

cji =
P

i∈N\j
cij for all j ∈ N.

By definition, the OSV is efficient. It is also consistent in the sense that any set of

(n − 1) agents is indifferent between keeping their allocation or taking the concessions
made by the remaining agent and reapplying the solution concept to the (n− 1) economy
(property n.1). Moreover, to ensure fairness, the concessions balance out (property n.2).

In fact, Pérez-Castrillo and Wettstein (2005) show that the concessions associated with

OSV allocations satisfy the stronger condition that they are symmetric, that is, the
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concession cij of agent i to agent j is equal to the concession cji of agent j to i. Also, the

matrix of concessions associated with any OSV allocation is unique.

The bidding mechanism to implement the OSV is recursively defined as follows:

If there is only one agent {i}, he receives his initial endowments, so he obtains utility
ui(wi). (If only one player plays, there is no bidding stage.)

Given the rules of the mechanism for at most n − 1 agents, the mechanism for N =

{1, . . . , n} proceeds as follows:
t = 1: Each agent i ∈ N makes bids bij ∈ <, one for every j ∈ N, with

P
j∈N bij = 0.

Hence, at this stage, a strategy for player i is a vector (bij)j∈N ∈ Hn, where Hn =n
z ∈ <n|

P
j∈N zj = 0

o
.

For each i ∈ N , define the aggregate bid to player i by Bi =
P

j∈N bji . Let α =

argmaxi(Bi) where an arbitrary tie-breaking rule is used in the case of a non-unique

maximizer. Once the proposer α has been chosen, every player i ∈ N pays biαe and

receives (Bα/n) · e.
t = 2: The proposer α offers a feasible allocation (x1, ..., xn) ∈ Rkn given the initial

resources (wi)i∈N .

t = 3: The agents other than α, sequentially, either accept or reject the offer. If an

agent rejects it, then the offer is rejected. Otherwise, the offer is accepted.

If the offer is accepted, each agent i receives xi. Therefore, the final payoff to an agent

i is ui(xi). On the other hand, if the offer is rejected, all players other than α proceed

to play the same game where the set of agents is N\{α} and the initial resources for
these players are (wi− (biα −Bα/n) e)i∈N\{α}; while player α is on his own with resources

wα − (bαα −Bα/n)e. The final payoff to α is uα(wα − bααe+ (Bα/n)e). The final payoff to

any agent i 6= α is the payoff he obtains in the game played by N\{α}.

3 The implementation for economies with at most

three agents

We start by proving several properties of the OSV allocations for economies with two

agents.
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Lemma 1 (a) For a two-agent economy, both agents are indifferent among the OSV

allocations.

(b) The concession c is the same for every OSV allocation and is a continuous function

of the initial endowments.

(c) Let x ∈ OSV ((ºi, wi)i=1,2) and x0 ∈ OSV ((ºi, wi + λe)i=1,2), λ > 0. Then,

xi0 Âi xi for i = 1, 2.

Proof. (a) As shown in Pérez-Castrillo and Wettstein (2004), the OSV for a two-

agent economy consists of the efficient allocations (x1, x2) such that x1 ∼ w1 + ce and

x2 ∼ w2 + ce for some c ≥ 0. Consider now x, y ∈ OSV ((ºi, ai)i=1,2) and denote by

c = c12 = c21 and d = d12 = d21 the concessions associated respectively with x and y. Then,

x1 ∼1 a1+ce, x2 ∼2 a2+ce, y1 ∼1 a1+de, and y2 ∼2 a2+de. It is immediate that x1 ≺1 y1

if and only if x2 ≺2 y2. The efficiency of both allocations x and y implies x1 ∼1 y1 and
x2 ∼2 y2.
(b) The previous argument also shows that c = d, while the continuity of preferences

implies that the concession varies continuously with the initial endowments.

(c) There exist c and c0 such that: x1 ∼ w1 + ce, x2 ∼ w2 + ce, x01 ∼ w1 + (λ + c0)e

x02 ∼ w2+(λ+ c0)e. The allocation x0 is Pareto efficient in (ºi, wi+λe)i=1,2 whereas x is

feasible, yet not Pareto efficient for the economy (ºi, wi + λe)i=1,2. Hence, it must be the

case that λ+ c0 > c and x0i Âi xi for i = 1, 2.

The next theorem shows that the set of Subgame Perfect equilibrium outcomes (SPE)

of the bidding mechanism coincides with theOSV for economies with at most three agents.

Theorem 1 The bidding mechanism implements the Ordinal Shapley Value in Subgame

Perfect Equilibrium in economies with n ≤ 3.

Proof. The proof proceeds by induction.

(a) We first prove that every SPE outcome of the bidding mechanism is in the

OSV ((ºi, wi)i∈N) .

For n = 1 the proof is trivial. Note also that for economies with one agent, there is

only one OSV allocation.

Claim 1. In any SPE, any agent i different than the proposer α accepts the proposal x

at t = 3 if xi Â yi for every i ∈ N\{α}, where y ∈ OSV
¡
(ºj, wj − (bjα −Bα/n)e)j∈N\{α}

¢
.
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Proof: First, by induction, in case of rejection the agents expect to obtain an allocation

in the OSV in the economy without the proposer (and where the concessions have been

added to or substracted from their initial endowment); second, by Lemma 1 (a), agents in

a two-agent economy are indifferent among OSV allocations (as is the case for a one-agent

economy).

Claim 2. In any SPE of the game that starts at t = 2, the proposer α proposes

an allocation x that is Pareto efficient and satisfies xi ∼ yi for every i ∈ N/{α}, where
y = OSV

¡
(ºj, wj − (bjα −Bα/n)e)j∈N\{α}

¢
. Moreover, every agent i ∈ N\{α} accepts

any offer x such that xi % yi for every i ∈ N/{α}.
Proof: These are clearly equilibrium strategies for the agents other than the proposer.

As regards the proposer, he cannot gain by switching to another offer that is accepted.

If he makes an unacceptable offer he obtains the bundle wα − (bαα − Bα/n)e) which if

preferred to xα would violate the Pareto efficiency of the proposal x.

Claim 3. In any SPE, Bi = 0 for i ∈ N. Moreover, each agent is indifferent about

the identity of the agent who is chosen as the proposer.

Proof: Denote by M the set of agents for whom the aggregate bid is the largest, that

is, M ≡ {i ∈ N |Bi = maxj∈N Bj}. We first claim that any agent j ∈ N is indifferent

between any agent in M being chosen as the proposer. Indeed, if j would strictly prefer

some particular agent, say i ∈M to win, agent j would slightly increase his bid to agent

i and decrease his bid to the other agents in M so that agent i is chosen as the proposer

for sure. Following the change, by Lemma 1 (b), agent j would be better off.

If M = N, Claim 3 is proven. Suppose, by way of contradiction, that M 6= N and

denote by m (< n) the cardinality of M. Assume, for convenience, 1 ∈M. We now show

that agent 1 can achieve a better outcome by changing the bids he submitted in stage 1.

Consider the following change in the bids by agent 1: b101 = b11 − �, b10i = b1i − 2� for any
i ∈M\{1}, b10j = b1j +(2m−1)� for a particular j /∈M, and b10j = b1j otherwise, with � > 0

and small enough. Then, B1 > B0
1 > B0

i for all i 6= 1. In particular, 1 is chosen as the
proposer for sure. We claim that 1 is strictly better following this change in bids. To see

this, note first that bi1 did not change for any i 6= 1 and B0
1 < B1. Hence, in the economy

with agents N\{1}, after the change in the bids the “initial endowments” change from
(wj−(bj1−B1/n)e)j∈N\{1} to (wj−(bj1−B0

1/n)e)j∈N\{1}. Given B1 > B0
1, by Lemma 1 (c),
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all agents in N\{1} are worse off in the OSV of the second economy than in the OSV

of the former. Hence, at stage 2, agent 1 can offer an allocation that is worse off for all

j ∈ N\{1} and, by Pareto efficiency, better off for himself. Therefore, agent 1 is better
off after bidding according to b10 than after bidding according to b1.

Claim 4. In any SPE, the offer x made by the proposer at t = 2 always belongs to

OSV ((ºj, wj)j∈N) . Moreover, the agents’ bids at t = 1 are bij = cij for all i, j ∈ N, i 6= j,

where c is the matrix of concessions of x, and bii = −
P

j∈N\{i} c
i
j.

To prove Claim 4, denote by x = x(i) ∈ OSV
¡
(ºj, wj − bjie)j∈N\{i}

¢
the proposal that

agent i ∈ N makes if he is chosen as the proposer (we notice that Claim 3 states that

Bi = 0). We are going to prove that x ∈ OSV ((ºj, wj)j∈N). First, according to Claim 2,

x is a Pareto efficient allocation. Moreover, the n−tuple of vectors of bids (bi)i∈N satisfies:
i)ByClaim 3, xk ∼k x(j)k for j ∈ N, k 6= j, where x(j) ∈ OSV

¡
(ºk, ak − bkj e)k∈N\{j}

¢
,

ii)
P

i∈N\{j}
bji =

P
i∈N\{j}

bij for all j ∈ N (by Claim 3, Bj = 0, i.e.,
P

i∈N\{j}
bij = −bjj;

moreover, the rules of the mechanism impose that
P
i∈N

bji = 0, i.e., −b
j
j =

P
i∈N\{j}

bji ).

Therefore, the allocation x is in the set OSV ((ºj, wj)j∈N) taking the matrix of con-

cessions cij = bij for all i, j ∈ N, i 6= j.

(b) We now prove every allocation x in the set OSV ((ºi, wi)i∈N) is an SPE outcome

of the bidding mechanism. We denote c the matrix of concessions of x. We propose the

following strategies for the case of n agents:

At t = 1, each agent i, i ∈ N, announces bij = cij for every j ∈ N\{i} and bii =

−
P

j∈N\{i} c
i
j.

At t = 2, agent i, if he is the proposer, proposes an allocation z that is Pareto efficient

and satisfies that zj ∼ yj for every j ∈ N/{i}, where y ∈ OSV
¡
(ºj, wj − (bji −Bi/n)e)j∈N\{i}

¢
.

(We recall that, according to Lemma 1 (a), in economies with one or two agents either

there is only one OSV allocation or agents are indifferent among the several OSV allo-

cations.)

At t = 3, agent i, if agent j ∈ N/{i} is the proposer, accepts any offer z such that
zi % yi, where y ∈ OSV

¡
(ºk, wk − (bkj −Bj/n)e)k∈N\{j}

¢
and rejects it otherwise.

First of all, we notice that if the agents make the previous bids, then the aggregate

bid to each one is zero. This is a direct consequence of the symmetry of the concessions.

6



Second, if they make these bids, the proposal at t = 2 will certainly be x, given that

x is efficient and guaranties the rest of the agents their OSV of the game without the

proposer and with the proposer’s concessions added to their initial endowment. Hence, if

the agents follow the previous strategies, the final outcome is always x.

We prove that the strategies are indeed SPE strategies. By the induction argument,

what the agents other than the proposer, say agent j, expect after the bids is some

allocation in OSV
¡
(ºk, wk − (bkj −Bj/n)e)k∈N\{j}

¢
. Therefore, it is easy to check that

the previous strategies are SPE strategies from t = 2 on. Consider now the strategies at

t = 1. Remember that we have shown that Bi = 0 for all i ∈ N. If agent i changes his

bid, the proposer will be the agent (or one of the set of agents) to whom i increases his

bid. Denote by α the proposer, and B0
α > 0 the new aggregate bid. If α = i, then the

other agents will face a situation where all their initial endowments increase by the same

amount B0
i/n. By Lemma 1 (c), all these agents are better off in the new situation, hence

agent i is worse off. If the new proposer is α 6= i, then the outside option for agent i will

be a situation where all the agents other than i and α will see their initial endowment

increased by B0
α/n while agent i’s initial endowment will decrease by (n − 1)B0

α/n. An

argument similar to that of Lemma 1 (c) shows that agent i’s situation is worse off after

the change. Therefore, deviating is not profitable.

The major difficulty with extending this result for any number of agents is intimately

related to the transfer paradox (Safra 1984). We briefly explain here this difficulty.

It is crucial for our result that (as stated in Claim 3) the equilibrium aggregate bids

are zero for every agent. For this result, it must be the case that a proposer can not

gain by increasing the bid for himself and facing at the proposal stage agents with larger

endowments. However, similar to the transfer paradox, an agent can be worse off in an

OSV allocation when the initial endowments of all agents (including himself) increase. If

this happens, the proposer may find it “easier” (less costly in terms of his own welfare)

to make an acceptable proposal to the set of agents with larger endowments.

The mechanism constructed provides a non-cooperative foundation for the OSV for

environments with a small number of agents. It also shows that the concessions underlying

the OSV concept can be interpreted in terms of bids.
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