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Abstract

Under the assumption that the utility function is real analytic, we construct a complete metric
on the equilibrium manifold with fixed total resources such that a minimal geodesic joining
any two regular equilibria intersects the set of critical equilibria in a finite number of points.
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1 Introduction

In a recent work (Loi and Matta 2004), a complete metric on the equi-
librium manifold was constructed satisfying the property that a minimal
geodesic joining two regular equilibria intersects the codimension one stra-
tum, S1, of critical equilibria, Ec, in a finite number of points. This geodesic
represents an efficient path joining two regular equilibria, (p, ω) and (p′, ω′),
where efficiency means that the distance between (p, ω) and (p′, ω′) is mini-
mized and that this path intersects the set of critical equilibria S1 transver-
sally, i.e., in a measure zero set. The economic meaning of this geodesic is
evident if we consider that there exist infinite paths joining two arbitrary
equilibria because of the arconnectedness property of the equilibrium man-
ifold (Balasko 1988). Each of these paths identify a redistribution policy
of resources and a metric is constructed in order to choose the path (the
geodesic) which enjoys the desirable economic properties of minimizing dis-
tance and discontinuities of prices originated in the set of critical equilibria.

Two complete Riemannian metrics were proposed: gΦ and g. The met-
ric gΦ was constructed on the natural parametrization Φ of the equilibrium
manifold (see Balasko 1988 and Section 2 below). It represented a partial
solution to the problem of choosing an efficient path. In fact one had to
slightly deform its geodesic in order to intersect S1 transversally. Conversely,
the metric g represented a complete solution to the problem. It was obtained
by deforming gΦ in a neighborhood of S1. It is worth noting that the atten-
tion of the authors was concentrated on S1, being the only stratum of Ec

which can disconnect the equilibrium manifold.
In this paper, under the assumption that the utility function is real an-

alytic, we show that gΦ is indeed a complete solution to the problem of
choosing an efficient path.

A justification for this assumption can be found in Kannai (1974), where
he showed that monotone convex preferences orders can be approximated by
strictly monotone preferences orders and by analytic ones. The idea, roughly
speaking, is that the space of real analytic preferences is dense in the space
of continuous preferences, once a topology is constructed on the space of
preferences in order to reflect, in that space, the concept of closeness. We
can observe that with similar approximation arguments one can show that
a continuous consumer can be approximated arbitrarily close by a smooth
one (see Mas-Colell 1974 and Ch. 2 in Mas-Colell 1985) and this leads us to
standard smooth consumer theory, where utility function is assumed to be
smooth in order to get a smooth demand function.

This paper is organized as follows. Section 2 recalls the economic set-
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ting. Section 3 contains the main results. Section 4 sums up our result and
addresses further direction of research.

2 Preliminaries

We consider a pure exchange economy with l goods and m consumers. Let
S = {p = (p1, . . . pl)|pj > 0, j = 1, . . . l, pl = 1} be the set of normalized
prices. Let Ω = (Rl)m denote the space of endowments ω = (ω1, . . . , ωm),
ωi ∈ Rl. We assume that the standard assumptions of smooth consumer’s
theory are satisfied (see Balasko 1988). The problem of maximizing the
smooth utility function ui : Rl → R subject to the budget constraint p ·ωi =
wi gives the unique solution fi(p, wi), i.e., consumer’s i demand. Let E be
the closed set of pairs (p, ω) ∈ S × Ω satisfying the following equations:

m∑
i

fi(p, p · ωi) =
m∑
i

ωi.

The set E is a smooth submanifold of S×Ω globally diffeomorphic to (Rl)m.
An explicit global parametrization of E is given through the map defined by:

Φ : E → S × Rm × R(l−1)(m−1) ∼= Rlm

(p, ω1, . . . ωm) 7→ (p, p · ω1, . . . , p · ωm, ω̄1, . . . , ω̄m−1), (1)

where ω̄i denotes the vector of Rl−1 defined by the first (l−1) -coordinates of
ωi. Let F(p,w) be the fiber associated with (p, w) = (p, w1, . . . wm) ∈ S ×Rm,
namely the subset of E consisting of pairs (p, ω) such that p ·ωi = wi. It is a
linear manifold of dimension (l − 1)(m− 1) embedded in E. Let π : E → Ω
be the natural projection, i.e. the smooth map defined by the restriction to
E of (p, ω) 7→ ω. Let Ec be the set of critical equilibria, namely the pairs
(p, ω) ∈ E such that the derivative of π at (p, ω) is not onto. Let us assume
that total resources are fixed. Let r ∈ Rl denote the vector representing
the total resources of the economy and Ω(r) denote the space of economies
associated with the fixed total resources, i.e., Ω(r) = {ω ∈ (Rl)m|

∑
i ωi = r}.

Define
E(r) = {(p, ω) ∈ S × Ω(r)|

∑
i

fi(p, p · ωi) = r},

denote by π : E(r) → Ω(r) the restriction of the natural projection to E(r)
and by Ec(r) the set of critical points of π. Let

B(r) = {(p, w) ∈ S × Rm|
∑

i

fi(p, wi) = r)}.
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For (p, w) ∈ B(r), let F(p,w)(r) be the fiber over (p, w), i.e., the pairs (p, ω) ∈
E(r) such that p · ωi = wi. The restriction of the map (1) to E(r) defines a
diffeomorphism, still denoted by Φ,

Φ : E(r) → B(r)× R(l−1)(m−1). (2)

Balasko (1988) showed that E(r) is a smooth manifold of dimension l(m−1),
F(p,w)(r) is a smooth submanifold of E(r) of dimension R(l−1)(m−1) and B(r)
is a smooth manifold diffeomorphic to Rm−1. The set of critical equilibria
Ec(r) is the disjoint union of closed smooth submanifolds Si, i = 1, . . . , inf(l−
1, m− 1) of E(r). The manifold Si has dimension l(m− 1)− i2 and Si = ∅
for i > inf(l− 1, m− 1) (see Balasko 1992 for further properties of the set of
critical equilibria).

3 Main results

We consider a finite pure exchange economy as described in section 2 and
we introduce the further assumption that the utility function u : Rl → R is
real analytic. The following lemma and its corollary are implications of this
assumption.
Lemma 3.1 If the utility function u : Rl → R is real analytic, then the
demand function f : S × Ω → Rl is real analytic.

Proof: Balasko (1988) showed that under the standard assumptions of
smooth consumer theory the demand function f is a diffeomorphism. Let
us consider its inverse g : Rl → S × R, defined by the formula g(x) =
(gradnu(x), x · gradnu(x)). It is evident that it is real analytic because the
utility function is assumed to be real analytic. Hence the demand function
is real analytic being the inverse of a real analytic diffeomorphism. �

Corollary 3.2 If the demand function f : S ×Ω → Rl is real analytic, then
the equilibrium manifold E(r) is real analytic. Moreover, the set of critical
equilibria Ec(r) is the disjoint union of closed real analytic submanifolds Si

of E(r).

Proof: Recall that the equilibrium manifold E(r) is the closed subman-
ifold of pairs (p, ω) ∈ S ×Ω satisfying the equations

∑m
i fi(p, p · ωi)− r = 0.

Hence E(r) is real analytic being zeros of real analytic equations. The second
part follows from the definition of critical equilibria (see Balasko 1988, Ch.4).

�
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We now consider the Riemannian metric constructed on the natural
parametrization defined by formula (1).

We recall that a Riemannian metric g on a n-dimensional smooth man-
ifold X is a correspondence which associates to each point p of X an inner
product <,>p on the tangent space TpX such that for every local parametriza-
tion x : U ⊂ Rn → X, with x(x1, . . . , xn) = q ∈ x(U) and ∂

∂xi
(q) =

dxq(0, . . . , 1, . . . , 0),

gij(x1, . . . , xn) =<
∂

∂xi

(q),
∂

∂xj

(q) >q

is a smooth function on U . A smooth manifold with a Riemannian metric g
is called a Riemannian manifold.

Any Riemannian manifold can be equipped with the structure of metric
space. Given any two points x, y ∈ X, the distance between x and y, denoted
by d(x, y), is defined as the infimum of the lengths of all curves γxy, where
γxy is a piecewise differentiable curve joining x and y. Let(X, g), X ⊂ Rn,
be a Riemannian manifold and let I ⊂ R be an open interval. A smooth
curve γ : I → X is a geodesic if its acceleration vector γ

′′
(t0) is orthogonal

to Tγ(t0)X for all t0 ∈ I.
A Riemannian manifold (X, g) is said to be complete if for every pair of

points x, y ∈ X there exists a geodesic γ joining them such that its length
equals d(x, y) (see Chapter 7 in Do Carmo 1992). Observe that a geodesic γ
is in general not unique. We call such a geodesic a minimal geodesic between
the points x and y.

One of the simplest examples of complete Riemannian manifold is the
Euclidean space Rn, whose metric, gcan, is defined by the standard inner
product. In this case the (unique) geodesic passing through a point x with
direction v ∈ Rn is simply the straight line x + tv with t ∈ R.

Let us consider the diffeomorphism Φ : E(r) → Rl(m−1). Let the linear
map dΦp : TpE(r) → TΦ(p)Rl(m−1) be the differential of Φ. Given a point
p ∈ E(r) and two vectors v, w ∈ TpE(r), we can transfer on E(r), via the
diffeomorphism Φ, the metric gcan of Rl(m−1) by defining

(gΦ)p(v, w) = gcan(dΦp(v), dΦp(w)).

This means that the pair (E(r), gΦ) is a ‘picture’ of (Rl(m−1), gcan) and,
then, all the properties satisfied by gcan are also satisfied by gΦ. In particular,
gΦ is complete and there exists a unique minimizing geodesic joining two
arbitrary points of E(r). For other interesting properties of the metric gΦ we
refer the reader to Loi and Matta (2004).

The following theorem represents our main result. It is shown that the
metric gΦ enjoys the property that its geodesic intersects the set of critical
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equilibria in a finite number of points. We observe that gΦ represents a com-
plete (unique) solution to the problem of choosing an efficient path joining
two regular equilibria.

Theorem 3.3 If the utility function u is real analytic, the metric gΦ satis-
fies the property that the geodesic γ joining two arbitrary regular equilibria
intersects the set of critical equilibria Ec in a finite number of points.

Proof: Let x and y be two arbitrary regular points of E(r). Consider
the (minimal) geodesic γ : [0, 1] → E(r) joining them, i.e., γ(0) = x and
γ(1) = y. Observe that, by the definition of gΦ, γ is simply the preimage
of the straight line on Rl(m−1) joining Φ(x) and Φ(y) via the (real analytic)
map Φ : E(r) → Rl(m−1). Hence γ is real analytic. Let us assume, by
contradiction, that γ intersects Ec(r) in an infinite number of points. Then
there exists at least a Sj, 1 ≤ j ≤ inf(l− 1, m− 1) which intersects γ([0, 1])
non transversally. Let (−δ, δ) ⊂ [0, 1] be such that γ(−δ, δ) ⊂ Sj. Let us
consider the real analytic functions Fj : [0, 1] → R defined by

Fj(t) = hj(γ(t)),

where hj : E(r) → R is a real analytic function such that Sj = h−1
j (0). Then

Fj(−δ, δ) = 0 implies that Fj(t) = 0 for all values of t ∈ [0, 1]. In particular,
Fj(0) = 0 (and Fj(1) = 0), which gives the desired contradiction being x
(and y) a regular equilibrium. �

4 Conclusion

We have showed that, under the assumption that the utility function
is real analytic, the metric gΦ gives a complete solution to the problem of
joining two regular equilibria with a path minimizing distance and catas-
trophes, i.e., discontinuities of prices originated when it crosses the set of
critical equilibria. Furthermore gΦ has the feature of representing a well de-
fined algorithm to determine such a path. In fact in Loi and Matta (2004)
a complete solution was found by deforming (in an arbitrary manner) the
metric gΦ in a neighborhood of S1. In such a way we could construct differ-
ent geodesics which share the desired property. In contrast, our result does
not depend on any deformation. The geodesic here constructed is unique,
being the correspondent of the straight line of the isometric Euclidean space
Rl(m−1).
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Many directions of research still have to be investigated. In particular,
we believe that the connection between Riemannian metric and economics
deserves further research. In fact the construction of a metric reflects the
problem one wants to solve. Here we were concerned with the issue regarding
distance and catastrophes, which represent the two arguments of our (non
explicitly defined) cost function, and our metric has been constructed to give
a solution to the problem of minimizing such a function. Many other issues
could be relevant and the metric can represent a useful tool to deal with
them.
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