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Abstract

In this paper, we extend the model of R and D network formation by Goyal and
Moraga−Gonzàlez (2001) by allowing for imperfect spillovers among linked firms. We show
that the complete network maximizes industry profit if spillovers for linked firms are below a
threshold level. Furthermore, this threshold level turns out to be high in absolute terms in
concentrated markets: when the number of firms is low, small departures from the case of
perfect spillover imply that firms’ private incentives to form links cannot be excessive with
respect to their collective interest. This implies that the Goyal and Moraga−Gonzalez
argument, for which excessive private incentives could explain the empirical stylized fact of
R and D alliances instability, is no longer valid in these cases.
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1. Introduction 
 
In their seminal paper on R&D network formation, Goyal and Moraga-Gonzàlez (2001) (GM 
from now on) prove the following result. Assume that firms are Cournot competitors in the 
product market. In the class of symmetric networks (where all firms have the same number of 
links), industry profits are maximized at an intermediate level of collaborative activity: that 
is, industry profits are maximized by a network which is neither empty nor complete 
(Proposition 7, p. 696). 

In Proposition 6 (p. 695), GM show that the complete network is pairwise stable, in 
the sense that firms do not have unilateral incentives to sever one of their existing links. 
Although the authors cannot prove that such a structure is in general the unique pairwise 
stable network, Propositions 6 and 7 together may suggest that firms have individual 
incentives in forming links that are excessive with respect to their collective interest. This 
could explain, according to the authors, the robust stylized fact on the instability and high rate 
of failure of collaborative agreements between firms (Kogut 1988, Podolny and Page 1998): 
 
“Our results (…) provide an explanation for why a large number of strategic alliances are unstable 
or terminated early, and they also explain why some alliances work well. In highly competitive 
markets, firms would “collectively” prefer not to form many collaborative ties, since in this way they 
could obtain higher profits. However, a pair of individual firms gain competitive advantage over the 
rivals by forming a collaboration and thus increase their profits. This implies that firms may have 
incentives to form too many links, which would lead to poor overall performance.” (GM, p. 688) 
 

In this paper, we extend their model of R&D networks, by allowing for imperfect 
spillovers among linked firms. We show that the complete network maximizes industry 
profits if spillovers for linked firms are below a threshold level. Furthermore, this threshold 
level turns out to be high in absolute terms in concentrated markets: when the number of 
firms is low, small departures from the case of perfect spillover imply that firms’ private 
incentives to form links cannot be excessive with respect to their collective interest. This 
implies that GM argument is no longer a candidate to explain R&D alliances instability in 
these cases1. 

The paper is structured as follows. Section 2 describes the model. In section 3 we 
prove our result. Section 4 concludes. 

 
2. The model 

 
We consider a three-stage game ,Γ  which coincides with the one presented in Goyal and 
Moraga-Gonzàlez (2001). In the first stage, firms can form collaborative links, which give 
raise to a well specified R&D network. Given the network structure, firms choose non-
cooperatively their R&D effort. Given the level of R&D efforts, the cost function of each 
firm is determined. Finally, given costs, firms compete in the market. 

Let { }nN ,..,1=  be the set of firms. The R&D network resulting from the first stage is 
denoted by g. When we write ,gij∈  this implies that there is a collaborative link between i 
and j. We define { }gijiNjgNi ∈∈= :}{\)(  as the set of firms having a collaborative link 
with i. Also, we indicate with )()( gNgn ii =  the cardinality of the set of partners for firm i 
in g. 
                                                 
1 The model by GM is extended by Song and Vannetelbosch (2005) to analyze the role of government policies. 
However, they focus on a three firms’ industry and do not consider the issue of networks which maximize 
industry profits. 
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If g is the network resulting from the first stage, we denote by )(gΓ  the 
corresponding subgame. In such a subgame, firms fix their level of R&D expenditures 
correctly anticipating the Cournot outcome of the last stage. Firm i's action in this stage is 
given by ],,0[ cei ∈  where ie  is the effort put by firm i in the R&D activity. The cost 
associated with ie  is given by .)( 2

ii eeC =  Consequently, Niiee ∈= )(  is the action profile of 
).(gΓ  Given the R&D investments e, the unit cost of production for Ni∈  is determined by: 
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This implies that R&D spillovers among non-linked firms are 0 (as in GM when they discuss 
the general case with n firms), while the spillover for linked firms is .10 ≤< β  The case 
discussed in GM implies .1=β   

The main motive for which spillovers among linked firms could be imperfect is 
related to the nature of knowledge accumulated through R&D investment. There is evidence 
that this knowledge is to some extent “tacit” and then not perfectly transmittable across firms. 
Even in the case of transmission of codified knowledge, receiving firms need (tacit) 
knowledge to interpret the piece of codified knowledge, and then “absorptive capacity” can 
be imperfect (Cowan and Foray 1997). 

Finally, given the unit cost ),,( egci  firms compete in the market choosing quantities. 
],0[),( Aegqi ∈  denotes the action taken by firm i at this stage. The inverse demand function 

is linear: .),(∑
∈
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Ni

i egqAp  In the Cournot-Nash equilibrium, quantities are given by: 
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Net profits are given by:  
 
                                                  )()),((),( 2

iii eCegqeg −=Π                                                 (3)   
 
In this paper, we will exclusively focus on symmetric networks. Networks are 

symmetric when all the firms have the same number of links, i.e. .  )( ikgni ∀=  Then, a 
symmetric network can be characterized by a number k identifying the number of links for 
each firm. GM define k as the degree of collaborative activity. When ,1−= nk  we obtain the 
complete network. We will call kg  a symmetric network of degree k. 

Consider now a representative firm i in a symmetric network of degree k. Given the 
network kg  and other firms’ investments, the representative firm i maximizes ),( egiΠ  in ie  
subject to ].,0[ cei ∈  We need to consider three types of firms: a) firm i; b) k  firms linked to 
firm i (subscript l); c) 1−− kn  firms not linked to i (subscript m). This results in a specific 
cost structure for each type of firm: 
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Plugging (4a-4c) into firm i’s profit function and deriving with respect to ,ie  we obtain the 
following first order condition2: 
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Invoking symmetry across all firms, we impose ).( k

mli geeee ===  Rearranging the first 
order condition, we obtain the equilibrium effort: 
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Plugging (6) into (4a), one obtains the unit cost of production for the representative firm: 
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Plugging (7) into (2), and then (2) and (6) into (3), we finally obtain the level of profits for a 
symmetric network of degree k: 
 

                                             22

222

))1)(()1((
))()1(()()(

+−−+
−−+−

=Π
kknn

knncAg k

ββ
β                                        (8)                        

 
Since every firm obtains the same level of profits in a symmetric network, the network which 
maximizes industry profits is the network which maximizes (8). 

 
3. Results 

 
We can now prove our result. 
 
Proposition: The complete network maximizes industry profits for ,*ββ ≤  where *β  is the 
unique solution to ).()( 21 −− Π=Π nn gg  
Proof: Suppose that k is a continuous variable in the range [ ]1,0 −n . If we derive )( kgΠ  
with respect k, we obtain that the first derivative has the same sign as 

])()1)(132[( 32 knnknF ββ −−+−−= .  
In ,0=k  F is positive and independent of β  ( 0132 23

0
>−+=

=
nnF

k
 4≥∀n ). If 

,1−= nk  we have ]))1(()1)(1)1(32[( 32
1

−−−+−−−=
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ββ . This quantity is 
positive when ,0→β  negative in ,1=β  and its first derivative with respect to β  is negative 

                                                 
2 It can be verified that second order conditions are satisfied.  
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(being equal to ,)1)(1()1( 22 +−−−+ nnn ββ  which is negative since 1−< nβ  and 
11 +<−+ nn β ). This implies that a value β  exists for which 0=F  at 1−= nk . Finally: 

 

[ ] 0)()1(3 22 <−−+−=
∂
∂ knnF ββ
β

 

 
These relations together imply that there are two relevant cases to consider: i) the first 

derivative of the profit function is always positive. This is true for .ββ ≤  In this case the 
complete network maximizes profits; ii) the first derivative is positive and then negative. 
Then, treating k as continous, there will exist a value 1* −< nk  for which ,0=F  and the 
profit function is maximized at 1* −< nk . 

Denote with ⎣ ⎦*k  the floor of *k  (i.e. the greatest integer less than or equal to *k ) and 
with ⎡ ⎤k  the ceiling of *k  (i.e. the least integer greater than or equal to *k ). If we let k take 
only integer values, and given the behavior of ),( kgΠ  the actual maximum is 

⎣ ⎦ ⎡ ⎤{ })(),(max
** kk gg ΠΠ . Define as β  the value for which 0=F  at .2−= nk  For any ,ββ ≥  

the maximum will be in some 2−< nk . Consider finally ).()( 21 −− Π−Π nn gg  Since it is 
positive in ,β  negative in β  and continous, from Weierstrass intermediate value theorem 

there is at least one β  where 0)()( 21 =Π−Π −− nn gg  (Weierstrass intermediate value 
theorem states that if f is a function which is continuous at any point of the interval [a,b] and  
f(a)f(b)<0 then f(x)=0 at some ),( bax∈ ). Notice that if this value is unique (call this 
value *β ), then for all *ββ ≤  the complete network maximizes industry profit. Proving 
analytically that )()( 21 −− Π−Π nn gg  has a unique solution turns out to be difficult, since it is a 
polynomial of high order both in β  and n. However, numerical solutions, reported above, 
show that it is actually unique. Then, the proposition follows. ■ 
 

Table 1 reports the exact value of *β  as a function of n. This value is independent 
from A and ,c  since these parameters enter the profit function only as a factor .cA−  From 
the table we see that *β  is high in concentrated markets: it is about 0.91 with ,4=n  0.79 
with 6=n  and 0.75 for .8=n  *β  is decreasing with n, but it is above 0.65 even for a very 
large number of firms.  
 

Table 1: *β  as a function of n  
 

   n 4 6 8 10 12 14 16 18 20 
*β  0.9097 0.7944 0.7505 0.7274 0.7131 0.7034 0.6964 0.6911 0.6869 

                    
  n 30 40 50 60 70 80 90 100 200 

*β  0.6749 0.6691 0.6657 0.6635 0.6619 0.6607 0.6598 0.6591 0.6559 
 
The intuition for our result is straightforward. The reason why GM obtain an 

intermediate degree of collaboration as optimal relies on the fact that equilibrium effort is 
declining in k.  Indeed, if ,1=β  from equation (6) we obtain:  
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The negative relation between R&D efforts and degree of cooperation is due to two effects. If 
a firm increases its number of collaborators, by increasing its R&D effort it reduces the cost 
of more firms, making them tougher competitors. Furthermore, since each firm has more 
links, it operates ceteris paribus at lower costs, and this reduces the incentive to invest in 
R&D for non-linked firms.   

This negative relation leads to a unit cost that is non-monotonic in k: when k 
increases, firms have access to more firms’ R&D efforts, but these are lower. When k is large, 
the unit cost can actually increase with k. Finally, effort enters profits in two ways: through 
the quantity produced (which is non-monotonic in k) and through investement costs in R&D 
(which are declining in k). GM shows that the net effect is such that the complete network is 
never profit maximizing. 

When ,1<β  the negative effect of an increase in k is smaller, since the cost reduction 
obtained by linked firms is lower, and non linked firms operate at a higher cost, ceteris 
paribus. From equation (6), we obtain:  
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When β  is sufficiently low, the net effect of the forces discussed above is such that the 
complete network maximizes profits.  
 

4. Conclusion 
 
In this paper we showed how the result obtained in the GM model of R&D networks 
concerning the symmetric network structure which maximizes industry profits depends on 
their assumption of perfect spillovers between linked firms. When spillovers are imperfect, 
the complete network is industry profit-maximizing if spillovers are sufficiently low. 

We did not discuss, in this paper, the notions of stability of the R&D network. 
However, the result we want to stress is that, when ,*ββ ≤  firms’ private incentives in 
forming links (captured for instance by a notion of pairwise stability) cannot be excessive 
compared to firms’ collective incentives (captured by industry profit-maximizing networks). 
This means that, in this case, the misalignment of private and collective incentives cannot be 
used to explain the stylized fact of the instability of R&D collaborative agreements. 

Whether *β  is “high” or “low” in absolute terms may be a matter of empirical 
scrutiny. We argued that, in principle, there are reasons why spillovers can be imperfect 
among linked firms, and this should be taken in account when considering GM results. More 
generally, our result suggests that, when discussing the properties of R&D networks, one 
should consider the interplay of technological effects of cooperation, here captured by the 
spillover parameter ,β  and the nature of market competition. 
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