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Abstract

This paper examines the role of education in technology adoption in a multi-agent finite-time
dynamic game setting. It is assumed that education decreases prior variance on the best
action in using a new technology in the target-input Bayesian model, experience accumulates
in a community (social learning; information spillover), and the experience, however, is not
transferrable from one technology to another. The paper shows that, depending on the
schooling distribution, the equilibrium creates different dynamic patterns of technology
adoption.

I thank Yasuyuki Sawada, Noriyuki Yanagawa, Masayuki Kudamatsu, Tomohiro Machikita, and the referee for their helpful
comments. This research was financially supported by the Japan Society for the Promotion of Science.
Citation: Ono, Yusuke, (2006) "Technology adoption in a community of heterogeneous education level: Who are your good
neighbors?." Economics Bulletin, Vol. 15, No. 8 pp. 1-11
Submitted: January 19, 2006.  Accepted: September 6, 2006.
URL: http://economicsbulletin.vanderbilt.edu/2006/volume15/EB-06O30002A.pdf

http://economicsbulletin.vanderbilt.edu/2006/volume15/EB-06O30002A.pdf


1. Introduction

In this study, we focus on a community where people with different levels of

education decide whether or not to adopt new technologies. We mean two things

by the word of community. First, everyone faces the same environment in terms of

using technologies. Second, members in a community can observe the other mem-

ber’s activities and learn how to use the technologies; in other words, information

is somewhat shared. A member’s adoption of a technology therefore has influence

on the other members’ decisions.1 Highly educated people are supposed to be able

to guess well how to handle technologies.

Under these presuppositions, the improvement of the education level for some

members in a community may have influence on the technology adoption behaviors

in the whole community and the output level of the other members. These effects

may be regarded as externalities of education. In our model, different kinds of

externalities of education on output are found. They include negative externalities

as well as positive ones. Our model shows that those whose education level is low

are likely to undergo negative externalities.

In this paper, we use the target-input model which considers the effects of

learning-by-doing and learning from others. In this respect, our model is simi-

lar to the model of Foster and Rosenzweig(1995) though the setting is unlike in

some regards.2 Since our interests are the influence of the neighbors’ education

level, we formulate the role of education in the context of the target-input model,

partly following the way of Rosenzweig(1995).

Jovanovic and Nyarko(1996) also examines learning-by-doing and the choice of

technology in the framework of the target-input model. However, the presupposi-

tions of our model are different from those of theirs in some ways. For example, we

assume that agents dynamically optimize their output whereas agents are myopic

in the model of Jovanovic and Nyarko(1996). Further, education is not formulated

in Jovanovic and Nyarko(1996).

This paper consists of four sections and appendixes. In the next section, our

theoretical model is formulated. According to the model, technology adoption in a

community of heterogeneous education level is explored in section 3. The analysis

shows externalities of education on output. The last section concludes the paper.

All formal proofs are shown in appendix A. The social optimality of an equilibrium

is discussed in appendix B.

1Bardhan and Udry(1999) calls this “the externality generated by social learning”.
2For example, we consider a menu of technologies as Jovanovic and Nyarko(1996) does.
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2. Model

Setting Economic agents are engaged in production activities in a community.

They are risk-neutral. They produce qnt(z), using technology n ∈ {0, 1, . . .} with

input z in period t where qnt(z) = γn[1 − (ynt − z)2]. The framework on which

we are based is the target-input model.3 γ is a real value which is bigger than

1. The value of γ is known. ynt is the optimal level of input for technology n in

period t where ynt = θn + wnt. wnt is distributed as a normal random variable

with mean 0 and variance σ2
w < 1. wnt is independent over agents and periods.

The distribution of wnt is known and common to all the agents in the community.

The agents have priors over θn that are normal distributions with mean µ0 and

variance σ2
0. σ2

0 = 1/e where e is the agent’s education level, which is a positive

real value. The agents’ optimal choice for z is ẑnt = Et(ynt) = Et(θn).

Et(qnt(ẑnt)) = γn[1 − vart(θn) − σ2
w].

In this setting, we examine a game with two players. The players are named

i and j. Their education levels are denoted by ei and ej. The game begins with

an adoption of a technology. Suppose that the level of this initial technology is 0.

After that, the game proceeds as follows:

(1) Each player produces with the ex ante optimal input level, ẑnt. Suppose that

each player can know the input and output levels of all the players after their pro-

duction. Hence they know the true levels of optimal input and use the information

to update their beliefs about all the technologies used in their production.

(2) They decide simultaneously whether they adopt a new technology or not.

Adoption of a new technology increases the technology level by 1. Each player

knows the other player’s choice after their decisions.

(3) The step (1) and (2) are repeated once more.

(4) The step (1) is done again.

In this game, the players determine the adoption of a new technology twice.

Their objective is to maximize the discounted sum of expected output of produc-

tion for the three periods. In the first period, they begin to produce with the initial

technology. After the first production, they decide whether or not to adopt a new

technology. In the second period, they produce with the technologies selected by

the decisions of the first period. After this second production, their second de-

cisions about technologies for the production of the third period are done. We

assume that the players act on a subgame perfect Nash equilibrium composed of

pure strategies.
3The production function in our model is the same as the one in Jovanovic and Nyarko(1996)

except that the latter allows n to take real values.
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Skills In our production function, the expected outcome with ẑnt is γn[1 −
vart(θn) − σ2

w]. This value decreases with vart(θn). Hence vart(θn) reflects the

skills for using technology n.

vart(θn) =
1

e + xnt/σ2
w

where xnt is the cumulative number of times prior to period t that technology n

is used for production.

In the setting of our model, people can learn how to use a technology if they use it

or if their neighbors do. All experience of using a technology is socially experienced

in the respect that information obtained by the experience is shared by all the

members. We assume that experience is not transferrable from one technology to

another. xnt reflects the accumulation of the social experience of using technology

n in the community up to period t. Individual skills for a technology are improved

by the social experience of using it. In fact, vart(θn) decreases with xnt.

In our model, education is a source of the skills, too. For all n and t, vart(θn)

decreases with e. Whereas xnt is beneficial only for technology n, education is

useful for all the technologies. Literacy education is a good illustration of this.

Literate people can take advantage of documented information. Besides, they can

build a general framework for using technologies since the experience of reading

many books may accustom them to thinking in a theoretic manner. Thus literacy

may be effective in using even the technologies which are not used before.

In the framework of the target-input model, two advantages of education are

formulated by Rosenzweig(1995). The first one is the improvement of access to

information sources and the second one is that of the ability to decipher new

information. Our model follows Rosenzweig’s formulation about the first one. On

the other hand, the second one is not formulated in our model. It follows from this

supposition that we consider the situation where it is easy to interpret information

obtained through production activities.

In our production function, the expected marginal value of education is

γn

(e + xnt/σ2
w)2

.

This declines with xnt; in other words, education is more valuable when the tech-

nology is new to the community. It is evident that xnt counts more when e is

small; that is, the social experience of using a technology is more important to less

educated people. xnt and e are supposed to be substitutes in our framework.4

4On the other hand, schooling and experience may be complements in the framework of
Rosenzweig(1995). The complementarity in the context of heterogeneous worker-firm matching
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Education Level and Technology Adoption Let r(n, x, e) denote the func-

tion of γn(1 − 1
e+x/σ2

w
− σ2

w). An agent of education level e produces output level

r(n, x, e) when the agent uses technology n with the accumulation of the social

experience x. As for y > z, we define e(y, z) as the real value which satisfies both

r(n, y, e(y, z)) = r(n + 1, z, e(y, z)) and e(y, z) > −z/σ2
w. Although n is used for

the definition, e(y, z) does not depend on n.5 r(n + 1, z, e) increases more rapidly

with e than r(n, y, e) does. Hence, if e > e(y, z), r(n + 1, z, e) is bigger than

r(n, y, e) and if −z/σ2
w < e < e(y, z), r(n+1, z, e) is less than r(n, y, e). Evidently,

e(y, z) is increasing with y and decreasing with z.6

In our model, the more educated are more likely to adopt a new technology. This

is due to the assumption of the initial advantage of education in reducing prior

variance σ2
0; our specification is σ2

0 = 1
e
. If we assumed that the more educated were

able to obtain more information from each use of the technology, highly educated

people might stick to the old technology because of its advantage of accumulated

information. Whether or not the more educated are more likely to adopt a new

technology would depend on the balance between the initial advantage and the

learning advantage of education.

We assume that ei and ej are less than e(2, 0). When both the players choose

their technologies at the first period, they have already produced with the initial

is discussed in Yamauchi(2004). The complementarity is a plausible and interesting feature.
Nevertheless, we assume that schooling and experience are not complements but substitutes. The
reasons are as follows: First, assuming substitutability gives us clear and vital implications in our
model. Under substitutability between schooling and experience, experience is more important
to lowly educated people than highly educated people. Therefore lowly educated people are
likely to be damaged when they lose their experience accumulated in the initial technology. Our
discussions in this paper are based on this intuition. Second, the assumption makes our model
simple and computationally tractable. In our setting, education level affects only initial prior
variance σ2

0 in a simple way. Third, assuming substitutability rather than complimentarity is
reasonable under some situations. For example, if the decipher of information obtained through
experience is easy enough, not assuming complimentarity is valid.

5Dividing r(n, y, e(y, z)) = r(n + 1, z, e(y, z)) by γn > 0, we get

1 − 1
e(y, z) + y/σ2

ω

− σ2
ω = γ(1 − 1

e(y, z) + z/σ2
ω

− σ2
ω).

6Define rx(n, x, e) ≡ ∂r(n,x,e)
∂x > 0 and re(n, x, e) ≡ ∂r(n,x,e)

∂e > 0. Since y > z,

re(n, y, e(y, z)) < re(n + 1, z, e(y, z)).

Hence
∂e(y, z)

∂y
=

rx(n, y, e)
re(n + 1, z, e) − re(n, y, e)

> 0

and
∂e(y, z)

∂z
=

−rx(n + 1, z, e)
re(n + 1, z, e) − re(n, y, e)

< 0.
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technology. Hence x02 is equal to 2. The players have to produce with no accumu-

lation of the social experience if they adopt a new technology; that is, x12 equal

to 0. Hence, the initial technology is desirable for those whose education level is

less than e(2, 0). If they were myopic, they would never adopt a new technology

at the first period. In our model, however, the players are assumed to optimize

their payoffs dynamically.

Let ki and kj denote players’ first decisions where 1 means adoption, 0 no adop-

tion. Let (ki, kj) denote a subgame which starts at the second period after the

players’ first decisions ki and kj. There are four subgames, (0, 0), (1, 0), (0, 1) and

(1, 1). The players’ second choices are functions from the set of the subgames to

{0, 1}. We call the functions li and lj.

The dynamics of the social experience xnt are specified as follows:

x01 = 0, x02 = 2, x03 = 4 − ki − kj

x12 = 0, x13 = ki + kj

x23 = 0.

Let mi and mj denote technology levels for the third production;

mi = ki + li(ki, kj)

and

mj = kj + lj(ki, kj).

The objective functions of the players are

vi(ki, li; kj, ei) ≡ r(0, x01, ei) + δr(ki, xki2, ei) + δ2r(mi, xmi3, ei)

and

vj(kj, lj; ki, ej) ≡ r(0, x01, ej) + δr(kj, xkj2, ej) + δ2r(mj, xmj3, ej)

where δ is the players’ discount rate.

At the second period, player i’s second choice li(ki, kj) is determined in such

a way to maximize player i’s third production r(mi, xmi3, ei) where mi = ki +

li(ki, kj). This decision making depends on x03, x13 and x23, which are determined

by ki and kj. Hence, ki and kj dictate li(ki, kj) through the accumulation of the

social experience, xn3. Player i’s first production r(0, x01, ei) is not affected neither

ki nor kj and player i’s second production r(ki, xki2, ei) does not depend on kj. It

is therefore the existence of the third period that makes decision making dynamic

and strategic.

We solve the game by backward induction. We define l∗i (ki, kj) as player i’s

second choice which maximizes player i’s third production given (ki, kj). It is
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meant by l∗i (ki, kj) = 1 that player i should adopt a new technology at the subgame

(ki, kj). Player i should adopt a new technology if

r(ki, xki3, ei) < r(ki + 1, xki+1,3, ei).

Hence l∗i (ki, kj) = 1 if ei > e(xki3, xki+1,3). For example, if (ki, kj) = (1, 0), xki3 =

x13 = 1 and xki+1,3 = x23 = 0. Therefore l∗i (1, 0) = 1 if ei > e(1, 0). If (ki, kj) =

(0, 1), xki3 = x03 = 3 and xki+1,3 = x13 = 1, and therefore l∗i (0, 1) = 1 if ei > e(3, 1).

If (ki, kj) = (0, 0), xki3 = x03 = 4 and xki+1,3 = x13 = 0. If (ki, kj) = (1, 1), xki3 =

x13 = 2 and xki+1,3 = x23 = 0. Since ei is less than e(2, 0), l∗i (0, 0) = l∗i (1, 1) = 0.

Notice that l∗i depends on ei but does not on ej. As for player j, l∗j (ki, kj) = 1 if

ej > e(xkj3, xkj+1,3).

There is a threshold value of the education level for the adoption at the first

period. A player with education level more than e∗k should adopt a new technology

at the first period, given the other player’s first decision k ∈ {0, 1}.7 The lemma

in appendix A shows the existence of e∗k.

e∗k depends on γ, σ2
w and δ. We provide a numerical example in this paragraph,

assuming γ = 1.04, σ2
w = 0.1 and δ = 0.8. Under this configuration, e∗0 satisfies8

r(1, 0, e∗0) + δr(2, 0, e∗0) = r(0, 2, e∗0) + δr(0, 4, e∗0).

e∗1 satisfies9

r(1, 0, e∗1) + δr(1, 2, e∗1) = r(0, 2, e∗1) + δr(1, 1, e∗1).

We obtain e∗0 ≈ 13.6721 and e∗1 ≈ 13.6546. Calculus teaches us that

∂e∗0
∂δ

= − r(2, 0, e∗0) − r(0, 4, e∗0)

re(1, 0, e∗0) + δre(2, 0, e∗0) − re(0, 2, e∗0) − δre(0, 4, e∗0)

and
∂e∗1
∂δ

= − r(1, 2, e∗1) − r(1, 1, e∗1)

re(1, 0, e∗1) + δre(1, 2, e∗1) − re(0, 2, e∗1) − δre(1, 1, e∗1)

where re ≡ ∂r
∂e

= γn

(e+x/σ2
w)2

. The increase of δ implies that the future output

counts more. Technology adoption in the first period increases the future output.

Therefore the increase of δ makes technology adoption more advantageous and

people more likely to adopt a new technology; that is, e∗0 and e∗1 decrease.
∂e∗0
∂δ

is

composed of two factors;

r(2, 0, e∗0) − r(0, 4, e∗0) ≈ 0.0129616

7A Player’s payoff is affected by the other player’s first choice of the technology but is not
by the second choice. Hence, the threshold value does not depend on the other player’s second
decision and therefore does not on the other player’s schooling.

8See appendix A. v∗
10(e

∗
0) = v∗

00(e
∗
0).

9See appendix A. v∗
11(e

∗
1) = v∗

01(e
∗
1).
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and

− 1

re(1, 0, e∗0) + δre(2, 0, e∗0) − re(0, 2, e∗0) − δre(0, 4, e∗0)
≈ −110.705.

The former is the future output increased by technology adoption. The increase

of δ strengthens this advantage of technology adoption. The latter denotes how

much e∗0 reacts to this intensified advantage of technology adoption. Similarly we

can regard
∂e∗1
∂δ

as the product of

r(1, 2, e∗1) − r(1, 1, e∗1) ≈ 0.0130639

and

− 1

re(1, 0, e∗1) + δre(1, 2, e∗1) − re(0, 2, e∗1) − δre(1, 1, e∗1)
≈ −253.633.

We obtain
∂e∗0
∂δ

≈ −1.43492 and
∂e∗1
∂δ

≈ −3.31345; e∗1 moves more sensitively with the

change of δ than e∗0 does. We can calculate
∂e∗k
∂γ

and
∂e∗k
∂σ2

w
likewise.10 The different

sensitivities of e∗0 and e∗1 to the change of γ, σ2
w and δ lead to the two different

cases, e∗0 > e∗1 and e∗0 < e∗1.
11

10

∂e∗0
∂γ

= − rγ(1, 0, e∗0) + δrγ(2, 0, e∗0) − rγ(0, 2, e∗0) − δrγ(0, 4, e∗0)
re(1, 0, e∗0) + δre(2, 0, e∗0) − re(0, 2, e∗0) − δre(0, 4, e∗0)

≈ −243.856

∂e∗1
∂γ

= − rγ(1, 0, e∗1) + δrγ(1, 2, e∗1) − rγ(0, 2, e∗1) − δrγ(1, 1, e∗1)
re(1, 0, e∗1) + δre(1, 2, e∗1) − re(0, 2, e∗1) − δre(1, 1, e∗1)

≈ −212.244

where rγ ≡ ∂r
∂γ = nγn−1(1 − 1

e+x/σ2
w
− σ2

w),

∂e∗0
∂σ2

w

= −
rσ2

w
(1, 0, e∗0) + δrσ2

w
(2, 0, e∗0) − rσ2

w
(0, 2, e∗0) − δrσ2

w
(0, 4, e∗0)

re(1, 0, e∗0) + δre(2, 0, e∗0) − re(0, 2, e∗0) − δre(0, 4, e∗0)
≈ −20.1706

∂e∗1
∂σ2

w

= −
rσ2

w
(1, 0, e∗1) + δrσ2

w
(1, 2, e∗1) − rσ2

w
(0, 2, e∗1) − δrσ2

w
(1, 1, e∗1)

re(1, 0, e∗1) + δre(1, 2, e∗1) − re(0, 2, e∗1) − δre(1, 1, e∗1)
≈ −35.0925

where rσ2
w
≡ ∂r

∂σ2
w

= −γn( x
(σ2

w)2(e+x/σ2
w)2 + 1).

11Numerical examples are as follows:

e∗0 e∗1 γ σ2
w δ

13.6721 > 13.6546 1.04 0.1 0.8
11.6463 < 11.8753 1.05 0.1 0.8
14.1244 < 14.4612 1.04 0.08 0.8
13.8266 < 13.9875 1.04 0.1 0.7

For example, this table shows that the increase of γ from 1.04 to 1.05 decreases e∗0 more than
e∗1 and thereby e∗0 becomes less than e∗1. The bold numbers in the table mean that they have
changed from γ = 1.04, σ2

w = 0.1 and δ = 0.8.
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Whether e∗0 > e∗1 or e∗0 < e∗1 has some implications. For example, if e∗1 > e∗0,

there is ei which satisfies e∗1 > ei > e∗0. At that time, player i should not adopt

a new technology if player j does, and player i should do if player j does not; in

other words, player j’s adoption discourages player i’s adoption.

The subgame perfect Nash equilibrium(SPNE) in our model is denoted by

(k∗
i , k

∗
j , l

∗
i , l

∗
j )

where k∗
i maximizes vi(ki, l

∗
i ; k

∗
j , ei) and k∗

j maximizes vj(kj, l
∗
j ; k

∗
i , ej). Whether or

not (k∗
i , k∗

j ) constitutes a SPNE depends on the distribution of ei and ej. There

is a SPNE with k∗
i = 0 and k∗

j = 0 if and only if ei ≤ e∗0 and ej ≤ e∗0, k∗
i = 1 and

k∗
j = 1 if and only if ei ≥ e∗1 and ej ≥ e∗1, k∗

i = 1 and k∗
j = 0 if and only if ei ≥ e∗0

and ej ≤ e∗1, and k∗
i = 0 and k∗

j = 1 if and only if ei ≤ e∗1 and ej ≥ e∗0.

Patterns of Technology Adoption in a Community We can denote each

player’s history of technology adoption over two periods by natural numbers,

{0, 1, 2, 3}. A number ω contained in this set has a dyadic expansion of d1(ω)d2(ω).

For instance, d1(2) = 1 and d2(2) = 0. If dt(ω) = 1, ω means that a technology

was adopted at period t. For example, the natural number 1 means that technol-

ogy adoption happened only at the second period since its dyadic expansion is 01.

There are ten ways of technology adoption of two players over two periods.12 We

categorize them into the following four groups.

(1) Diffusion: If a player used the same level of technology as the other player

had used before, it appears that the technology diffused among them. Hence we

term this behavioral pattern diffusion. The player who had adopted first is called

leader, and the other one who adopted later follower. The leader has to use new

technologies with no social experience. On the other hand, the follower can utilize

information obtained through the observation of the leader’s using the technology.

{1, 2} and {1, 3} belong to the diffusion.

(2) Separation: Another pattern of community’s technology adoption is the

separation, where a player adopted a new technology and the other did not any.

The social experience of using a new technology is useless to the player who kept

using the initial technology. {0, 1}, {0, 2}, {0, 3} are classified as the separation.

(3) Unison: There is a case where both the players adopted the same level

of technology at the same time. We call this case unison. When the two players

use the same technology in unison, they can collect more information about the

technology than they use it alone. {1, 1}, {2, 2}, {2, 3}, {3, 3} are grouped into

the unison.

12They are {0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}.
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(4) Deepening: If both the players do not adopt any new technologies,

they can deepen their skills of using the initial technologies. Hence, we call this

behavioral pattern deepening. Only {0, 0} is the deepening.

3. How would your Neighbor’s Education Level Affect you?

In this section, we show the effects of your neighbor’s education level on your

output level. There are player i and player j in our game. In this section, the

effects of the rise of ej on player i are examined. All the proofs for the propositions

are given in appendix A.

Each member’s education level has influence on his own behaviors of technology

adoption. Each member’s behaviors of technology adoption determine the com-

munity’s accumulation of the social experience, on which each member’s level of

expected output depends. Hence, a member’s higher level of education affects the

other member’s output level.

Positive Externalities by the Diffusion A member’s higher level of education

is likely to induce technology progress. The diffusion may accompany it and may

be favorable to all.

Proposition 1：If ei < min{e∗0, e∗1} and e(4, 1) < ei, ej < e∗0 implies the deep-

ening and ej > e∗0 implies the diffusion where player i follows player j. Player i’s

expected outcome is higher in the latter than in the former.

This proposition shows that the rise of ej may work better off to player i holding

ei constant. When ej is higher than e∗0, it is better for player j to adopt a new

technology at the first period if player i does not. Given player j’s adoption of

a new technology, it may be desirable for player i to delay the adoption so as to

observe player j’ using the technology. This is the pattern of the diffusion. Since

player i can enjoy technological progress with observation on player j’s production

activities with a high level of technology , the output level of player i can be better

than the deepening.

Negative Externalities by the Diffusion The diffusion does not always ben-

efit all the members in the community. When the education level of the follower

is low, the diffusion is not preferable to the deepening for the follower.

Proposition 2：If ei < min{e∗0, e∗1} and e(3, 1) < ei < e(4, 1), ej < e∗0 implies

the deepening and ej > e∗0 implies the diffusion where player i follows player j.

Player i’s expected outcome is lower in the latter than in the former.

New technologies are used in the diffusion, and therefore less amount of the

social experience is accumulated for the initial level of technology in the diffusion
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than in the deepening. The social experience counts more for less educated people.

Hence less educated people prefer the deepening.

Negative Externalities by the Separation New technologies do not always

diffuse. Those whose education level is very low keep using the initial technology

alone even though the other members adopt new ones.

Proposition 3：If ei < min{e∗0, e∗1} and ei < e(3, 1), ej < e∗0 implies the deep-

ening and ej > e∗0 implies the separation where player i does not adopt any new

technologies. Player i’s expected outcome is lower in the latter than in the former.

In the diffusion, the follower adopts a new technology at the second period. If

the follower’s education level is low, however, it is better not to do. This is the

case of the separation. At this time, lowly educated people are ought to keep using

the initial one alone. Consequently, the accumulation of the social experience for

the initial level of technology becomes less. Hence, the separation is less desirable

to lowly educated people than the deepening.

Positive Externalities by the Unison If people in a community are all highly

educated, they may adopt a new technology in unison at the first period.

Proposition 4：When ei > max{e∗0, e∗1}, ej < e∗1 implies the diffusion or the

separation, ej > e∗1 implies the unison. Player i’s expected outcome is higher in

the latter than in the former.

This proposition applies, for example, when those who are lowly educated get ed-

ucated and the difference of education becomes narrower. Since ei > max{e∗0, e∗1},
player i adopts a new technology at the first period. When ej is less than e∗1, player

j does not adopt a new technology at the first period. On the other hand, if ej

is more than e∗1, all the players adopt a new technology together at the first pe-

riod. Thereby the social experience for technology level 1 accumulates more. The

advantage of the unison lies in this intensive accumulation of the social experience.

Who are Exposed to Negative Externalities? The discussions about the

negative externalities by the diffusion and by the separation gives us the following

corollary. The corollary shows that there are negative externalities from which

only backward groups may suffer. Hence if the education level of members in a

community is low, the policies which enhance the education level for only a part

of members may be inappropriate.

Corollary: Assume that ei < min{e∗0, e∗1}. If ei < e(4, 1), player i is worse off

when ej > e∗0 than when ej < e∗0. To the contrary, if ei > e(4, 1), player i is better

off when ej > e∗0 than when ej < e∗0.
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Those whose education level is low are likely to be exposed to negative external-

ities. Disadvantaged people tend to get worse because of the backwardness. This

is an illustration of a vicious circle.

4. Conclusion

In this paper, we have examined the consequences of the rise of the neighbor’s

education level. We can summarize the results in terms of the difference in the

education levels of the members in a community. The heterogeneity of the ed-

ucation levels may cause different behaviors of technology adoption between the

members in a community.13 When technologies are used heterogeneously, the ac-

cumulation of the social experience disperses over the various levels of technology,

and thereby the amount of accumulation per technology becomes less. The social

experience matters more to those whose education level is low, and therefore they

are subjected to negative externalities by the wider gap in the education levels.

13The change from the deepening to the separation or the diffusion is an example.
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Appendix A

Lemma for the existence of e∗k

Lemma：There exists e∗k ∈ [0, e(2, 0)] such that a player with education level

more than e∗k should adopt a new technology at the first period, given the other

player’s first decision k ∈ {0, 1} where 1 means adoption, 0 no adoption.

Proof: Define v∗
00, v∗

10, v∗
01, and v∗

11 as follows:

v∗
00(e) ≡ r(0, 0, e) + δr(0, 2, e) + δ2r(0, 4, e)

v∗
10(e) ≡ r(0, 0, e) + δr(1, 0, e) + δ2 max{r(1, 1, e), r(2, 0, e)}

v∗
01(e) ≡ r(0, 0, e) + δr(0, 2, e) + δ2 max{r(0, 3, e), r(1, 1, e)}

v∗
11(e) ≡ r(0, 0, e) + δr(1, 0, e) + δ2r(1, 2, e).

Notice that vi(ki, l
∗
i ; kj, ei) = v∗

kikj
(ei) and vj(kj, l

∗
j ; ki, ej) = v∗

kjki
(ej).

v∗
1k(e) increases more with e than v∗

0k(e). If v∗
1k(e) = v∗

0k(e) at some real value

between 0 and e(2, 0), the value is unique and suitable for the definition of e∗k. If

v∗
1k(e) > v∗

0k(e) for e between 0 and e(2, 0), 0 is appropriate for the value of e∗k. If

v∗
1k(e) > v∗

0k(e) for e between 0 and e(2, 0), e(2, 0) is appropriate for the value of

e∗k. We can therefore construct e∗k. ■

Proofs for the Propositions

Notice that we use the notations, v∗
00, v∗

10, v∗
01, and v∗

11 in the following proofs.

They are defined in the proof of the lemma.

(1) Proof of proposition 1, 2, and 3

Assume ei < min{e∗0, e∗1}. Under this assumption, k∗
i = 0.

(a) k∗
j = 0 if ej < e∗0. Since l∗i (k

∗
i , k

∗
j ) = l∗j (k

∗
i , k

∗
j ) = 0, the technology adoption

pattern on this SPNE is classified into the deepening. On this SPNE, Player i’s

payoff is v∗
00(ei).

(b) k∗
j = 1 if ej > e∗0.

If ei > e(3, 1), l∗i (k
∗
i , k

∗
j ) = 1. The adoption pattern on this SPNE is the diffusion.

Player i’s payoff is v∗
01(ei). v∗

01 > v∗
00(ei) if ei > e(4, 1). On the other hand,

v∗
01(ei) < v∗

00(ei) if ei < e(4, 1). Thus proposition 1 and 2 are proven.

If ei < e(3, 1), l∗i (k
∗
i , k

∗
j ) = 0. The separation is the adoption pattern on this

SPNE. Player i’s payoff is v∗
01(ei). v∗

01(ei) < v∗
00(ei) if ei < e(3, 1). Thus proposition

3 is proven. ■
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(2) Proof of proposition 4

Assume ei > min{e∗0, e∗1}. Under this assumption, k∗
i = 1.

(a) k∗
j = 0 if ej < e∗1. Player i’s payoff is v∗

10(ei). If ej > e(3, 1), l∗j (k
∗
i , k

∗
j ) = 1.

The adoption pattern on this SPNE is the diffusion. If ej < e(3, 1), l∗j (k
∗
i , k

∗
j ) = 0.

The adoption pattern on this SPNE is the separation.

(b) k∗
j = 1 if ej > e∗1. The adoption pattern on this SPNE is the unison. Player

i’s payoff is v∗
11(ei). v∗

11(ei) > v∗
10(ei) if ei < e(2, 0). Thus proposition 4 is proven.

■

Appendix B

Social Optimality

In this appendix, we examine whether or not an equilibrium is social optimal.

This appendix does not directly show the social optimal path given initial edu-

cation levels but compare different cases. We show that the SPNE is not social

optimal under certain configurations. We assume that e∗k is neither 0 nor e(2, 0),

and therefore e∗0 and e∗1 are defined as follows:

r(0, 2, e∗0) + δr(0, 4, e∗0) = r(1, 0, e∗0) + δ max{r(1, 1, e∗0), r(2, 0, e∗0)}

and

r(0, 2, e∗1) + δ max{r(0, 3, e∗1), r(1, 1, e∗1)} = r(1, 0, e∗1) + δr(1, 2, e∗1).

Inefficient Deepening If e(4, 1) < ei < min{e∗0, e∗1} and ej < e∗0, the deepening

is an equilibrium whereas the diffusion is not. However, the deepening is inferior

to the diffusion if ej is near enough to e∗0. Player i is better off in the diffusion

than in the deepening. On the other hand, player j is worse off in the diffusion

than in the deepening by

f(ej) ≡ δr(0, 2, ej) + δ2r(0, 4, ej) − δr(1, 0, ej) − δ2 max{r(1, 1, ej), r(2, 0, ej)}.

f(ej) becomes less than player i’s improvement if ej is near enough to e∗0 because

f : R++ → R is a continuous function and f(e∗0) = 0.

Inefficient Diffusion If ei < min{e∗0, e∗1} and e(3, 1) < ei < e(4, 1) and ej > e∗0,

the diffusion is an equilibrium whereas the deepening is not. However, the diffusion

is inferior to the deepening if ej is near enough to e∗0. Player i is better off in the

deepening than in the diffusion. On the other hand, player j is worse off in the

deepening than in the diffusion by |f(ej)|. |f(ej)| becomes less than player i’s

improvement if ej is near enough to e∗0.
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Inefficient Separation If ei < min{e∗0, e∗1} and ei < e(3, 1) and ej > e∗0, the

separation is an equilibrium whereas the deepening is not. However, the separation

is inferior to the deepening if ej is near enough to e∗0. Player i is better off in the

deepening than in the separation. On the other hand, player j is worse off in the

deepening than in the separation by |f(ej)|. |f(ej)| becomes less than player i’s

improvement if ej is near enough to e∗0.

Another Inefficient Diffusion If ei > e∗0 and e(3, 1) < ej < e∗1, the diffusion is

an equilibrium whereas the unison is not. However, if ej is near enough to e∗1, the

diffusion is less desirable than the unison. Player i is better off in the unison than

in the deepening. On the other hand, player j is worse off in the unison than in

the diffusion by

g(ej) ≡ δr(0, 2, ej) + δ2r(1, 1, ej) − δr(1, 0, ej) − δ2r(1, 2, ej).

g(ej) becomes less than player i’s improvement if ej is near enough to e∗1 because

g : R++ → R is a continuous function and g(e∗1) = 0.
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