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Abstract

The great fish war game by Levhari and Mirman (1980) is studied under the limiting aver-
age utility criterion. It turns out that a stationary equilibrium in this game has a turnpike
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1. Introduction

It is commonly believed that free noncooperative exploitation of a common-property
resource leads to the tragedy of the commons. This phenomenon simply means overex-
ploitation and overconsumption. The great fish war game by Levhari and Mirman (1980)
illustrates this issue in a very clear and appealing manner. It turns out that overcon-
sumption increases when the agents (the owners of the resource) accept discounting as a
time preference and the discount factor tends to zero (or equivalently, the discount rate
grows up). Some arguments against discounting in social planning were presented long
back by Pigou (1920) and Rawls (1971). They argued that positive discounting reflects
some bias against future generations. The results of Levhari and Mirman (1980) confirm
this opinion to some extent. Dutta and Sundaram (1993) show that the owners can avoid
the tragedy of the commons by reducing consumption in some states. They study dis-
continuous (piece-wise linear) equilibrium strategies which look unrealistic. According to
Dutta and Sundaram (1993) the players should drastically reduce consumption in some
good states.

In this note, we examine Levhari and Mirman’s example from some new viewpoints.
Our main objective is to study the limiting stationary equilibrium as the discount factor
tends to one. It turns out that this strategy profile constitutes an equilibrium in the game
with the limiting average utilities and has a kind of turnpike property. An interesting
feature of this limiting equilibrium is that it leads to a higher steady state compared
with the steady states in all discounted games, and at the same time, so-called ”perma-
nent” consumption is higher as well. Therefore, it seems that accepting the undiscounted
(limiting average) utility leads to an equilibrium that is good for the present and next
generations.

Our second objective is to give a precise description of symmetric Markov equilibria
and corresponding utilities in the finite horizon games and prove their convergence as the
horizon tends to infinity. The extrapolation method of Levhari and Mirman (1980) used
to solve the infinite horizon discounted game is in such a way clarified and justified.

Various extensions or modifications of Levhari and Mirman (1980) can be found in
Fischer and Mirman (1992), Datta and Mirman (1999) and their references. A related
dynamic game was studied by Sundaram (1989) using a fixed point theorem.

Further and more detailed comments are given in the concluding remarks.

2. The model

Suppose that there are m agents (the owners) each of whom can extract a renewable
resource, e.g., fish. The resource stock develops over time according to a (biological)
growth rule given by

xt+1 = xα
t , 0 < α < 1.

We assume that xt ∈ X := [0, 1] called the state space. The boundary point x = 1 is
the stable steady state of the resource population after a normalization when there is no
extraction. We shall consider the symmetric case where the instantaneous utility function
of every agent i is ui(c) := log c, c ∈ X. Let ci

t be a resource consumption of agent i in
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period t. The aim of this agent is to maximize his utility U i(ci
1, c

i
2, ...) subject to

xt+1 =


xt −

m∑

j=1

cj
t




α

. (1)

A strategy for agent i specifies a planned consumption level for i after each possible
history of the game. Let Πi denote the set of all possible strategies for agent i. In our
further analysis some special subclasses of Πi are important. Let F be the set of all
functions f : X 7→ X such that f(x) ≤ x for each x ∈ X. A Markov strategy for agent i
is a sequence πi = (f i

1, f
i
2, ...) where f i

t ∈ F for each t. Thus, a Markov strategy for agent
i specifies a consumption level of i in every period t as a function of the stock xt at the
beginning of this period. If πi = (f i, f i, ...) with f i ∈ F, then πi is called a stationary
strategy and is identified with f i.

Any profile π = (π1, π2, ..., πm) of strategies and an initial stock x1 uniquely determine
a sequence (ci

1, c
i
2, ...) of consumption levels for agent i. In this paper, we shall consider

three utility functions:
(a) the finite horizon discounted utility

U i
h(π)(x1) :=

h∑

t=1

βt−1 log ci
t

where β ∈ (0, 1) is a fixed discount factor and h < ∞ is a finite horizon 1 of the game,
(b) the infinite horizon discounted utility

U i
β(π)(x1) :=

∞∑

t=1

βt−1 log ci
t,

(c) the undiscounted or limiting average utility

U i(π)(x1) := lim inf
h→∞

1

h

h∑

t=1

log ci
t.

The utility functions defined above have an interesting common feature. If player i con-
sumes nothing in some period his utility is −∞. Therefore, the players cannot extract
everything during the play if the game has to be continued. Whenever they do that ev-
erybody’s utility is −∞.

For any π = (π1, π2, ..., πm) and σi ∈ Πi, we write (π−i, σi) to denote π with πi replaced
by σi.

A profile of strategies π∗ = (π1
∗, π

2
∗, ..., π

m
∗ ) is a Nash equilibrium in the finite horizon

game if and only if U i
h(π∗)(x1) ≥ U i

h((π
−i
∗ , σi))(x1) for every agent i and σi ∈ Πi, x1 ∈ X.

Nash equilibria are similarly defined for the infinite horizon games. Since the game is
symmetric, we shall study symmetric Nash equilibria where every agent uses the same

1 Clearly, in the finite horizon case a Markov strategy πi of agent i is a finite sequence of
functions from the set F.
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strategy.

3. The equilibrium strategies

First, we give a full closed-loop solution for the finite horizon games.

Proposition 1. The finite k-step game has a symmetric Nash equilibrium π∗(k) =
(f∗(k), f∗(k), ..., f∗(k)) where f∗(k) = (c1, c2, ..., ck) and

ct(x) =
x

m + αβ + · · ·+ αk−tβk−t
, t = 1, ..., k − 1, ck(x) =

x

m
, x ∈ X. (2)

If x = x1 is the initial stock and Vk(x) := U i
k(π∗(k))(x) is the equilibrium function of

any agent i corresponding to the symmetric equilibrium π∗(k) in the k-period game, then
V1(x) = log(x/m) and

Vn+1(x) = (1 + αβ + · · ·+ αnβn) log x + log Bn+1 (3)

where B1 = 1/m and

Bn+1 :=
Bβ

n(αβ + · · ·+ αnβn)αβ+···+αnβn

(m + αβ + · · ·+ αnβn)1+αβ+···+αnβn . (4)

Moreover,

Vn+1(x) = log c1(x) + βVn((x−mc1(x))α) (5)

= max
0≤c≤x

[log c + βVn((x− (m− 1)c1(x)− c)α)].

Proof. This result follows by backward induction. ¤

In the sequel, we shall use the following notation. If f ∈ F is a stationary strategy of
any agent, then f̄ := (f, f, ..., f) is a stationary multistrategy of the agents.

Proposition 2. The symmetric stationary strategy profile f̄∗ = (f∗, f∗, ..., f∗) where

f∗(x) =
(1− αβ)x

m + (1−m)αβ
, x ∈ X,

constitutes an equilibrium in the β-discounted infinite horizon game. Moreover, for any
x ∈ (0, 1], the equilibrium utilities U i

β(f̄∗)(x) are the same, and if we denote them by Vβ(x),
then

Vβ(x) = lim
n→∞Vn+1(π∗(n + 1))(x) = inf

n
Vn+1(π∗(n + 1))(x).
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Proof. Step 1. First we prove that the sequence {Bn} is decreasing. For this purpose
consider the function φ(y) := (y/(m + y))y, y ∈ (0, 1). Note that

(log φ(y))′ =
φ′(y)

φ(y)
= log

(
y

m + y

)
− y

m + y
+ 1 < 0, y ∈ (0, 1).

Hence, φ is decreasing, and also ψ(y) := φ(y)/(m + y) is a decreasing function. Define

yk :=
(αβ + · · ·+ αkβk)αβ+···+αkβk

(m + αβ + · · ·+ αkβk)1+αβ+···+αkβk .

Since ψ is decreasing, it follows that yn > yn+1 for every n. We now show that {Bn} is
decreasing by induction. Clearly,

B2 =
1

mβ(m + αβ)

(
αβ

m + αβ

)αβ

< B1 =
1

m
.

Suppose that Bn+1 < Bn for some n. Since yn+1 < yn, we obtain Bn+2 = Bβ
n+1yn+1 <

Bβ
nyn = Bn+1, which completes the induction step. We shall prove that the sequence {Bn}

is bounded below by some positive constant. Note that

B1−β
n+1 = Bn+1/B

β
n+1 > Bn+1/B

β
n = yn > lim

k→∞
yk > 0.

Therefore, l := limn→∞ Bn+1 exists and l = infn Bn+1 > 0. Now from Bn+1 = Bβ
nyn and

(4), it follows that

l =
l1
l2

, where l1 =

(
αβ

1− αβ

)αβ/(1−αβ)

, l2 =

(
m + (1−m)αβ

1− αβ

)1/(1−αβ)

. (6)

Step 2. First note that in the (n + 1)-step game

c1(x) =
x

m + αβ + · · ·+ αnβn

depends on n. Hence limn→∞ c1(x) = f∗(x) := (1− αβ)x/(m + (1−m)αβ). Put vβ(x) :=
limn→∞ Vn+1(x). By Step 1, vβ is well-defined (is finite). By letting n → ∞ in (5) and
using (2) and (3), we obtain

vβ(x) = log f∗(x) + βvβ((x−mf∗(x))α) = max
0≤c≤x

[log c + βvβ((x− (m− 1)f∗(x)− c)α)].

This is the well-known Bellman equation for discounted negative dynamic programming,
see Strauch (1966) or Stokey et al. (1989). By standard iteration arguments, one can show
that vβ(x) = Vβ(x) = U i

β(f̄∗)(x) = supσi∈Πi U i
β((f̄−i

∗ , σi))(x) for any agent i. ¤

Corollary 1. From Proposition 1 and (6), one can easily obtain that

Vβ(x) =
log x

1− αβ
+

αβ log(αβ) + (1− αβ) log(1− αβ)− log(m + (1−m)αβ)

(1− αβ)(1− β)
.
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Define

g∗(x) = px, ḡ∗ = (g∗, g∗, ..., g∗), p :=
1− α

m + (1−m)α
. (7)

Proposition 3. For each ε > 0, there exists β0 ∈ (0, 1) such that for each β ∈ (β0, 1),
x ∈ X, and every agent i,

U i
β(ḡ∗)(x) + ε ≥ sup

σi∈Πi

U i
β((ḡ−i

∗ , σi))(x). (8)

Proof. Levhari and Mirman (1980) observed that if the agents employ linear strategies,
then the discounted utility is of the form A log x + B and A, B can be found using some
functional equation 2 . Applying the approach of Levhari and Mirman (1980), one can
show that

U i
β(ḡ∗)(x) =

log x

1− αβ
+

αβ log α + (1− αβ) log(1− α)− log(m + (1−m)α)

(1− αβ)(1− β)
(9)

and

sup
σi∈Πi

U i
β((ḡ−i

∗ , σi))(x) =
log x

1− αβ
+

αβ log(αβ) + (1− αβ) log(1− αβ)− log(m + (1−m)α)

(1− αβ)(1− β)
.

Hence, for any x ∈ (0, 1], it follows that

d(β) := U i
β(ḡ∗)(x)− sup

σi∈Πi

U i
β((ḡ−i

∗ , σi))(x) =
(1− αβ)[log(1− α)− log(1− αβ)]− αβ log β

(1− αβ)(1− β)
.

Using de L’Hospital’s rule, one obtains

lim
β→1−

d(β) =
α

1− α
lim

β→1−
[log(1− α)− log(1− αβ) + log β] = 0.

This easily implies (8). ¤

Proposition 4. ḡ∗ is a stationary equilibrium in the game with the limiting average util-
ities.

Proof. Let

v∗ =
α log α + (1− α) log(1− α)− log(m + (1−m)α)

1− α
.

2 One can use approximations by finite horizon discounted utilities as we did in Proposition 2,
but then the derivations (which are more rigorous) are longer.
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From (9), it follows that
v∗ = lim

β→1−
(1− β)U i

β(ḡ∗)(x) (10)

for any agent i and initial stock x ∈ (0, 1]. In other words, the discounted equilibrium
utilities associated with ḡ∗ are Abel summable. It is known that the Abel summability
of a series does not imply (in general) the Cesaro summability, see Appendix H in Filar
and Vrieze (1997). Therefore, we shall determine the finite stage undiscounted utilities,
say Wk, (same for every agent) associated with the multistrategy ḡ∗. Let p be as in (7).
Then by induction one can show that

W1(x) = log(px) and Wn+1(x) = (1 + α + · · ·+ αn) log x + log
(
pn+1(1−mp)Sn

)
,

where

Sn = nα + (n− 1)α2 + · · ·+ 2αn−1 + αn

=
α

1− α

(
n− α− α2 − · · · − αn

)
=

α

1− α

(
n− α(1− αn)

1− α

)
.

Hence

lim
n→∞

Sn

n + 1
=

α

1− α
,

and consequently

U i(ḡ∗)(x) = lim
n→∞

Wn+1

n + 1
= v∗ (11)

for any agent i and x ∈ (0, 1]. Now choose any σi ∈ Πi. From (11), (10), Proposition 3,
and the Hardy-Littlewood theorem, stated as Theorem H2 in Filar and Vrieze (1997), it
follows that

v∗ = U i(ḡ∗)(x) = lim
β→1−

(1− β)U i
β(ḡ∗)(x) (12)

≥ lim inf
β→1−

(1− β)U i
β((ḡ−i

∗ , σi))(x) ≥ U i((ḡ−i
∗ , σi))(x).

Clearly, (12) says that ḡ∗ is a stationary equilibrium in the limiting average case. More-
over, the equilibrium utilities are independent of the initial stock x ∈ (0, 1]. ¤

4. A look at the steady states and concluding remarks

If every agent uses a linear stationary strategy ϕ(x) := cx (0 < c < 1) in an infinite
horizon game, then by (1), xt+1 = xα

t (1−mc)α and therefore

x̄(ϕ̄) := lim
t→∞xt = (1−mc)α/(1−α).

Define

x̄β := x̄(f̄∗) =

(
αβ

m + (1−m)αβ

)α/(1−α)

and x̄la := x̄(ḡ∗) =

(
α

m + (1−m)α

)α/(1−α)

.
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Then, x̄β (x̄la) is the steady state in the β-discounted (limiting average) utility game
corresponding with the stationary equilibrium f̄∗ (ḡ∗). Further, we put

cβ :=
f∗(x)

x
=

1− αβ

m + (1−m)αβ
and cla :=

g∗(x)

x
=

1− α

m + (1−m)α
.

Proposition 5. For any β ∈ (0, 1), the following inequalities are true:

x̄la > x̄β, cla < cβ, and g∗(x̄la) = clax̄la > f∗(x̄β) = cβx̄β.

Proof. The first two inequalities are quite obvious. We only prove the last (most inter-
esting) one. Let ξ(β) := log(cβx̄β). It is sufficient to show that this function is increasing
in (0, 1). We have

ξ(β) = log(1− αβ) +
α

1− α
log(αβ)− 1

1− α
log(m + (1−m)αβ).

Hence

ξ′(β) =
α(1− 2αβ + βα2)

(1− α)β(1− αβ)
+

(m− 1)α

(1− α)(m + (1−m)αβ)
.

Since 1− 2αβ + βα2 > 0 and m ≥ 2, we have ξ′(β) > 0. This completes the proof. ¤

Remark 1. The Golden Rule steady state x̄gr used in economic growth theory (see for
example Phelps (1961)), in the case of the Cobb-Douglas production function f(x) := xα,

maximizes the consumption per period of the form xα−x, x ∈ X. Therefore, x̄gr = α
1

1−α .
We would like to point out that x̄gr < x̄la if the recreation is good enough, i.e., α is small
enough. If m = 2, we have x̄gr < x̄la for 0 < α < 0.602269.

Remark 2. (a) Proposition 1 gives a precise description of the equilibrium utility func-
tions for all finite horizon games. It is basic to prove the convergence in the proof of
Proposition 2. The extrapolation method applied in Levhari and Mirman (1980) and
other papers, see for example page 277 in Fischer and Mirman (1992) or page 239 in
Datta and Mirman (1999), is now better understood.

(b) Proposition 3 is related to turnpike theorems in economic theory and implies Propo-
sition 4. The converse implication fails to hold in many mathematically more general
models of dynamic games. Propositions 3 and 4 are new.

(c) The inequalities x̄la > x̄β and cla < cβ are not surprising and x̄la > x̄β says that
overconsumption, typical for discounted games, is to a certain extent reduced. Much more
interesting is the fact that the steady state consumption clax̄la in the limiting average case
is bigger than cβx̄β, for any β. It seems that the limiting average utility (although doubt-
ful in many economic considerations) is very natural to studying extraction models. It
reflects the interest of the present and next generations.

Remark 3. The log Cobb-Douglas framework used in this note plays an important role
in the proofs of Propositions 2 and 3. The only related result showing the convergence of
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Nash equilibrium utilities in finite horizon symmetric games (where the transition func-
tion is of different type) with growing horizon is given in Balbus and Nowak (2004). An
important consequence of the logarithmic framework accepted in this note is the fact that
the equilibrium strategies of the agents are linear functions of the state variable. This
property enables us to obtain the equilibrium functions in the finite horizon games in a
quite simple form. In a more abstract setting, related results to Propositions 2-4 seem to
be difficult to prove. We would like to point out that more general resource extraction
dynamic games with identical utility functions were already studied by Sundaram (1989).
He proved that a symmetric Nash equilibrium exists in a class of lower semicontinuous
stationary strategies for the agents. His proof is based on a fixed point arguments. We
hope that an approximation by finite step games can also be used in the framework of
Sundaram (1989), at least under some additional regularity conditions. One can observe
that in our example the derivative V ′

n(x) of the equilibrium function in the n-step game
is increasing in n for every x ∈ (0, 1]. We believe that this property may play an essential
role in extending our results to more general dynamic games.

Remark 4. Many economic issues concerning ecology or sustainable growth can be stud-
ied using a multigenerational framework or time-inconsistent utilities, see Phelps and
Pollak (1968) and Strotz (1956). More recent works are quoted in Nowak (2006a), where
a stochastic version of Phelps and Pollak (1968) model is treated using a fixed point
technique in an infinite dimensional space. The approach of Phelps and Pollak (1968) has
found a lot of different applications during the last decade, see for example Nowak (2006b)
and the references cited therein. Alj and Haurie (1983) extended the idea of Phelps and
Pollak (1968) by assuming that each generation consists of finitely many players. Such an
idea is applied to the multigenerational resource extraction game with the Cobb-Douglas
production in Nowak (2006b), under the so-called quasi-geometric (or hyperbolic) dis-
counting.
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