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Abstract

This paper studies the estimation of time series regression when both regressors and
disturbances have long memory. In contrast with the frequency domain estimation as in
Robinson and Hidalgo (1997), we propose to estimate the same regression model with
discrete wavelet transform (DWT) of the original series. Due to the approximate
de-correlation property of DWT, the transformed series can be estimated using the traditional
least squares techniques. We consider both the ordinary least squares and feasible generalized
least squares estimator. Finite sample Monte Carlo simulation study is performed to examine
the relative efficiency of the wavelet estimation.
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1. Introduction 
Long memory processes play an important role in time series analysis and can be found 
in many fields such as physics, engineering, environmental sciences and economics. 
Intuitively, a long memory process is a stochastic process whose autocovariance function 
decays very slowly as the distance between observations tends to infinity. Due to this 
property, traditional time series techniques are no longer applicable. In the current 
literature, estimation and regression analysis about long memory processes is usually 
done in the frequency domain1.  
     In this paper, we look at the regression model where both regressors and disturbances 
have long memory property. Robinson and Hidalgo (1997) examine the asymptotic 
properties of the estimation of this model mainly in the frequency domain, and they show 
that feasible generalized least squares estimator using Fourier transform is aymptotically 
efficient. This paper proposes the estimation of the same model using discrete wavelet 
transform (DWT) of the independent and explanatory variables. DWT is a linear filter, 
when it is applied to a time series, the original time series is decomposed into coefficients 
at different time scales. Compared with Fourier transform in the frequency domain, DWT 
attains properties of the original series at different time scales, and at the same time gives 
information about the time locations at different scales. One important property of DWT 
which makes it ideal for analysis of long memory processes is the so-called de-
correlation property. The de-correlation property ensures the coefficients obtained by 
applying DWT to the original series have very weak correlation (see Fan(2001)). So after 
the DWT, we can use the traditional econometric techniques to analyze long memory 
processes.  
     Since generalized least squares in the frequency domain is most efficient, we examine 
the relative efficiency achieved by the generalized least squares estimator using wavelet 
transformed series. After the DWT is applied to the dependent and explanatory variables, 
ordinary least squares is performed, then using the Cochrane-Orcutt method, we perform 
the generalized least squares regression. Though asymptotic theory cannot be established 
for the wavelet estimation, Monte Carlo simulation study shows that the relative 
efficiency of the estimator achieved by using the wavelet transform is reasonably good.  
     This remaining part of this paper is organized as follows: part II gives a brief 
introduction of DWT and the approximate de-correlation property; part III discusses the 
frequency domain estimation using Fourier transform in the current literature; part IV 
displays the estimation procedure using wavelet methods; part V gives the finite sample 
simulation results of the relative efficiency of the wavelet estimation, and part VI 
concludes. 
 

2. DWT and the De-correlation Property 
We consider the discrete wavelet transform (DWT) for a finite series2. Let T=2J where J 
is a positive integer. Given a sequence { }T

ttX 1= , let Wj,k (j=1,…J; k=0,…,Mj-1) denote the 

                                                           
1 One exception is Robinson and Hidalgo (1997) which also considers the estimation in time domain, I 
would like to thank the editor and referees for pointing this out. 
2 Actually, y can be any finite data set (e.g., cross sectional sample). Since we are focusing on time series 
regression in this paper, we will use time series hereafter. 
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boundary independent DWT coefficients of a series where Mj is the number of boundary 
independent DWT coefficients at level j.  
 
2.1 The Discrete Wavelet Transform3 

A wavelet filter 1
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     It is clear that a wavelet filter must be a difference filter. The scaling filter 1
0}{ −

=
L
llg  is 

the quadrature mirror filter corresponding to the wavelet filter 1
0}{ −

=
L
llh  by the relationship 

gl=(-1)l+1hL-1-l.  
     Let 1
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L
llh  be a Daubechies compactly supported wavelet filter, then the transfer 

function of }{ lh is just the discrete Fourier transform: 
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Similarly, let G(f) be the transfer function of }{ lg . We can write the squared gain 
function of }{ lh as: 
                                                    H(f)=|H(f)|2=DL/2(f)C(f)                                                (2) 

Where C(f)= )(cos)(
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−  is the squared gain function of a high-pass filter, 

and D(f)=4sin2(πf) is the squared gain function of a first order backward difference filter. 
Thus a wavelet filter can be viewed as a two-stage filter. The first stage is a L/2th order 
backward difference filter, while the second stage is a high-pass filter. Hence we know 
wavelet filter }{ lh and scaling filter }{ lg are approximately high-pass and low-pass filter, 
i.e., they preserve information at high or low frequencies of the original series. 
     The DWT can be performed using the so-called pyramid algorithm. The algorithm 
works as follows: At first stage, the time series T

ttX 1}{ =  with T=2J is filtered using the 
wavelet and scaling filters and downsampled by two. The resulting coefficients consist of 
a vector of wavelet coefficients W1 and scaling coefficients V1 each with length T/2.  At 
the second stage, the vector of scaling coefficients are filtered with both wavelet and 
scaling filtered to obtain a vector of wavelet W2 and scaling coefficients V2 each with 
length T/4. The process continues until we reach level J to get a wavelet and scaling 
coefficients each with length 1.  
      To see more clearly the effects of DWT of the original series with pyramid algorithm. 
Consider the level 1 scaling coefficients V1, which is obtained by filtering the original 
                                                           
3 This part follows basically the structure of Fan and Whitcher (2001) section 2.1. 
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series with scaling filter }{ lg and downsampled by two. That is, the input is the original 
series, the operator is the scaling filter and the output is the level 1 scaling filter. At 
second stage, the level 1 scaling coefficients are filtered again by level 2 wavelet and 
scaling filters. In other words, the input is V1, the operator is the level 2 wavelet and 
scaling filters, and the output is W2 and V2. It is clear that we obtain the level 2 wavelet 
coefficients by a scaling filter first and then by a wavelet filter, and we can have the same 
wavelet coefficients W2 by a new filter which is the convolution of the level 1 scaling 
filter and level 2 wavelet filter. Define H2(f) as the transfer function of the new filter 
which is the convolution of the level 1 scaling filter and level 2 wavelet filter, we have 
                                                           H2(f)=H(2f)G(f)                 |f|≤1/2 
where the transfer function of level 2 wavelet filter H(2f) captures the idea of 
downsampling by two since in the frequency domain which is equivalent to scaling the 
transfer function by two.  Similarly, for the transfer function of the convolution of the 
level 1 scaling filter and level 2 scaling filter G2(f), we have 
                                                                      G2(f)=G(2f)G(f)                  |f|≤1/2 
Continuing in this way, if Hj(f) and Gj(f) are the transfer functions of the equivalent filters 
which are the convolution of level 1 through j-1 scaling filters and level j wavelet and 
scaling filters respectively, we have 
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2.2 Fractionally Integrated Processes and Long Memory 

Before talking about the approximate de-correlation property of DWT, we briefly go over 
some important properties of long memory processes in this subsection for the purpose of 
illustrating the approximate de-correlation property of DWT of a long memory process.  
     We focus on the discrete time realization of a fractionally integrated auto-regressive 
and moving average (FIARMA(0, d, 0)) process { }T

ttX 1=  with differencing parameter d 
and innovation variance σ2: 
                                                               (1-B)dXt=εt                                                         (3) 
where B is backward shift operator with BXt=Xt-1. If the differencing parameter satisfies –
1/2≤d<1/2, then the process is stationary and its spectral density can represented as (see 
Taniguchi and Kakizawa (2000)): 

                                                     d
X ffS 2

2

|)sin(2|
2

)( −= π
π
σ                                           (4) 

If 0<d<1/2, the process is a stationary long memory process, and if d≥1/2, the process is 
non-stationary, but we can difference the series to the [d+1/2]th order to obtain 
stationarity. 
     When 0<d<1/2, it is easy to show that  
                                           )|(|),cov( 12 −

+ = d
ktt kOXX as |k|→∞                                     (5) 
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Compared with stationary short memory processes which have exponential rate of decay 
for the auto-covariance function. We can see the rate of decay for the long memory is 
much slower. That is where the name of long memory processes comes from. 
2.3 The Approximate De-correlation Property of DWT 

One important property of DWT which makes it ideal for long memory processes is the 
so-called approximate de-correlation property. It states that the DWT coefficients of a 
long memory process are approximately uncorrelated both with and across scales.  
     The covariance between DWT coefficients of a long memory process can be 
expressed as4: 

            dffSfHfHkkfiWW Xjj
jj

kjkj )()()())1(2)1'(2(2exp(),cov( *
'

2/1

2/1

'
',', +−+= ∫− π     (6) 

where Hj(f) is the transfer function for the jth level wavelet filter, and SX(f) is the spectral 
density function for a long memory process. 
     Fan (2003) shows formally that for the within scale correlation at level j, we have the 
following property: 
                          )|]'|2([),cov( )2(

',,
dLj

kjkj kkOWW −−−= , as 2j|k-k’|→∞                         (7)  
The above equation gives the relationship between the rate of decay of auto-covariance 
and the time periods separating the wavelet coefficients given any level j and length L of 
the wavelet filter. 
     While for the across scale correlation, we have 
                                )(),cov( 4/3

',',
−= LOWW kjkj  uniformly in k and k’                             (8) 

So when the length of wavelet filter tends to infinity, the across scale correlation is quite 
small even for fixed separating time periods between two wavelet coefficients. 
     Note the difference in rate of decay between the original long memory processes, and 
the DWT coefficients, compared with the original series, the DWT coefficients have 
much faster rate of decay. 
 

3.  DWT Estimation of Long Memory Processes 
In this paper, we consider a regression model where both regressors and disturbances 
have long memory. Specifically, the model takes the following form: 
                                                           Yt=α+β’Xt+µt                                                                                    (9) 
where both Xt and ut possess long memory property, and ut is covariance stationary, 
having zero mean and absolute continuous spectral density function.  
     Robinson and Hidalgo (1997) derived the asymptotic property for the frequency 
domain estimator. In this section, we describe how to estimate the same model using 
DWT of the original series. As in Robinson and Hidalgo (1997), the regression model 
takes the form as in equation (9) where both Xt and ut have long memory with 
differencing parameter c and d. Let T=2J be the number of observations, and Tj=T/2j. Let 

X
kjW ,  denote the level j boundary independent DWT coefficients for X={X1, …XT} 

obtained from the level j wavelet filter 1
0, }{ −

=
jL

lljh , that is 

                                                           
4 For details of derivation here, see Fan (2003). 
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where Lj=(2j-1)(L-1)+1 and Mj is the number of boundary independent coefficients at 
level j. Similarly define Y

kjW ,  and U
kjW ,  for Y={Y1, …YT} and U={u1, …uT}.  

     Consider the least squares regression with the DWT coefficients of Y and X:  
                                               U

kj
X
kj

Y
kj WWW ,,, ++= βα                                                     (11) 

Due to the de-correlation property, we expect the OLS regression with DWT of the 
original series should perform reasonably well. 
     Although DWT has good de-correlation property, it is possible the residuals from the 
above OLS regression with DWT coefficients have correlation among them. To see how 
the generalized least squares estimator improves the efficiency of the estimation, we 
consider a simple feasible generalized least squares estimator using Cochrane-Orcutt 
method. After the OLS regression with DWT coefficients, we regress the estimated 
residuals on its own first lag: 
                                                       kj

U
kj

U
kj WW ,1,,

ˆˆ ερ += −                                                  (12) 
 to get an estimated autocorrelation coefficient ρ̂ . Then using the estimated 
autocorrelation coefficient, we transform the DWT coefficients to estimate the following 
model: 
                                                     U

kj
X
kj

Y
kj WWW ,,,

~~~ ++= βα    

where  Y
kj

Y
kj

Y
kj WWW 1,,, ˆ~

−−= ρ  and similarly for X and U. If the specification in (12) is 
correct, i.e., there is just first order correlation among the residuals from OLD regression, 
then asymptotically this method yields efficient estimation.  
      

4. Simulation Result 
Simulation study similar to that in Robinson and Hidalgo (1997) is performed to examine 
the relative efficiency of wavelet estimation. Specifically, we compare the ratio of 
asymptotic variance 11

1
−−
−Σ

g
T  of the generalized least squares estimator in Robinson and 

Hidalgo (1997): 
                               )221(/)1( 21

1 dcdc
g

+−Γ+−Γ=Σ−
−   

to the Monte Carlo mean squared errors of DWT estimator, where c and d are the order of 
fractional integration for independent variable and error term. Since the feasible GLS 
estimator in Robinson and Hidalgo is quite efficient, we want to see the relative 
efficiency of DWT estimator to the feasible estimator in Robinson and Hidalgo (1997). 
     In this paper, we use three wavelet filters from the family of the Daubechies 
compactly supported wavelet filters: Haar, D4 and LA8 wavelet filters. We generate 500 
iterations. Table 1 shows the ratio of 11

1
−−
−Σ

g
T  to the mean squared errors of ordinary least 

squares estimator using level 1 DWT coefficients. Several interesting features can be 
noticed from Table 1. First, as in Robinson and Hidalgo (1997), the efficiency of OLS 
estimator of DWT coefficients increases in d and decreases in c. Second, the efficiency of  
DWT OLS estimator is lower than the feasible GLS estimators in Robinson and Hidalgo 
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(1997). One possible reason is that we use only level DWT coefficients which is of length 
T/2. Third, the three wavelet filters perform quite similarly with Haar slightly better 
overall.  
     Table 2 shows the same ratios as in Table 1 using wavelet coefficients up to level 4. 
The significant improvement in efficiency with more levels of DWT coefficients is 
apparent compared with Table 1. The reason is simple, since with level 4 DWT 
coefficients, we use almost 94% of the complete DWT coefficients, so there is much 
more information used compared with estimation with only level 1 coefficients. The 
other general pattern is quite similar to that in Table 1.  
 

Table 1: Ratios of 11 −− Σ gT  to MSE of DWT OLS (level 1) 

T=128 c/d 0.05 0.15 0.25 0.35 0.45 

Haar 

0.05 

0.15 

0.25 

0.35 

0.45 

0.4563 

0.3886 

0.3923 

0.2947 

0.1709 

0.5327 

0.4602 

0.4363 

0.3591 

0.2969 

0.5264 

0.5265 

0.4353 

0.4230 

0.3909 

0.6129 

0.6015 

0.5128 

0.4541 

0.4065 

0.6395 

0.6469 

0.5597 

0.5349 

0.5110 

 c/d 0.05 0.15 0.25 0.35 0.45 

D4 

0.05 

0.15 

0.25 

0.35 

0.45 

0.4364 

0.3618 

0.3855 

0.2711 

0.1641 

0.5097 

0.4555 

0.4080 

0.3095 

0.2900 

0.5675 

0.4731 

0.4532 

0.4065 

0.3207 

0.5736 

0.5839 

0.5354 

0.4778 

0.4102 

0.8056 

0.6251 

0.5996 

0.5225 

0.4597 

 c/d 0.05 0.15 0.25 0.35 0.45 

LA8 

0.05 

0.15 

0.25 

0.35 

0.45 

0.4006 

0.3843 

0.3317 

0.2716 

0.1593 

0.5672 

0.4422 

0.4036 

0.3326 

0.2483 

0.5174 

0.4800 

0.4384 

0.3787 

0.3325 

0.5598 

0.5587 

0.4995 

0.4506 

0.3532 

0.7085 

0.6173 

0.5790 

0.5346 

0.4695 

 
 
 
      Table 3 gives the ratio of  11

1
−−
−Σ

g
T  to the mean square errors of feasible GLS 

estimator described above using level 4 wavelet coefficients. Compared with Table 2, an 
interesting observation is that the feasible GLS estimator performs relatively better 
compared with OLS estimator only when d is 0.35 or larger. The intuition is simple, since 
wavelet filter is two stage filter with de-correlation property, the usefulness of Cochrane-
Orcutt method is evident only when the degree of long memory of disturbances is large 
enough.   
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5.  Conclusion 
This paper examines the relative efficiency of wavelet estimator of a regression model 
with both regressors and disturbances having long memory. Though not so efficient as 
the feasible GLS estimator proposed by Robinson and Hidalgo (1997), the wavelet 
estimator is quite useful due to its computational convenience. Much can be still done in 
this direction. Further work includes (1) comparing the efficiency performance for 
different sample size; (2) studying the performance when regressors or disturbances are 
nonstationary, i.e., c or d is greater than 0.5. 
 
 

Table 2: Ratios of 11 −− Σ gT  to MSE of DWT OLS (level 4) 

T=128 c/d 0.05 0.15 0.25 0.35 0.45 

Haar 

0.05 

0.15 

0.25 

0.35 

0.45 

0.9428 

0.9110 

0.8545 

0.6958 

0.4618 

0.9942 

0.9195 

0.8331 

0.7477 

0.7706 

0.9328 

0.7585 

0.8006 

0.7223 

0.7114 

0.9001 

0.8006 

0.7125 

0.7463 

0.7527 

0.8420 

0.7350 

0.6800 

0.6486 

0.5677 

 c/d 0.05 0.15 0.25 0.35 0.45 

D4 

0.05 

0.15 

0.25 

0.35 

0.45 

0.8441 

0.7857 

0.7428 

0.5845 

0.4299 

0.9582 

0.8872 

0.7328 

0.6922 

0.6972 

0.8673 

0.7457 

0.7471 

0.7015 

0.6904 

0.8837 

0.7815 

0.6764 

0.7637 

0.7063 

0.8725 

0.6863 

0.6509 

0.7070 

0.5679 

 c/d 0.05 0.15 0.25 0.35 0.45 

LA8 

0.05 

0.15 

0.25 

0.35 

0.45 

0.6942 

0.7036 

0.6234 

0.4557 

0.3547 

0.8602 

0.7720 

0.6841 

0.6016 

0.5485 

0.7942 

0.7091 

0.6632 

0.6209 

0.5603 

0.8902 

0.7333 

0.6456 

0.6332 

0.6146 

0.8502 

0.7026 

0.5671 

0.6786 

0.5460 
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Table 3: Ratios of 11 −− Σ gT  to MSE of DWT FGLS (level 4) 

T=128 c/d 0.05 0.15 0.25 0.35 0.45 

Haar 

0.05 

0.15 

0.25 

0.35 

0.45 

0.9184 

0.8806 

0.8316 

0.6765 

0.4524 

0.9978 

0.8997 

0.8030 

0.7245 

0.7366 

0.8844 

0.7568 

0.7909 

0.7029 

0.6944 

0.8897 

0.8233 

0.7218 

0.7401 

0.7725 

0.8620 

0.7299 

0.7062 

0.6579 

0.5897 

 c/d 0.05 0.15 0.25 0.35 0.45 

D4 

0.05 

0.15 

0.25 

0.35 

0.45 

0.8204 

0.7678 

0.7317 

0.5555 

0.4284 

0.9550 

0.8607 

0.7549 

0.6765 

0.6737 

0.8744 

0.7483 

0.7447 

0.6916 

0.6701 

0.8659 

0.7608 

0.7047 

0.7722 

0.7402 

0.8613 

0.7281 

0.7064 

0.7198 

0.6042 

 c/d 0.05 0.15 0.25 0.35 0.45 

LA8 

0.05 

0.15 

0.25 

0.35 

0.45 

0.6664 

0.6681 

0.5994 

0.4344 

0.3351 

0.8433 

0.7642 

0.6592 

0.5849 

0.5214 

0.7869 

0.7209 

0.6632 

0.6321 

0.5571 

0.9178 

0.7384 

0.6681 

0.6241 

0.6202 

0.9112 

0.7503 

0.6237 

0.6839 

0.5738 
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