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Abstract

The volatility of returns plays a pivotal role in modern finance and an accurate evaluation of
this parameter is crucial in portfolio and risk management decisions. Until quite recent it was
common practice in the literature to use the squared return as proxy of volatility. However, as
pointed out by several authors, this measure of volatility includes a large noisy component. In
this paper we propose a procedure, based on a generalized dynamic factors model
methodology, to obtain a more accurate estimate of volatility of a basket of returns.
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1 Introduction

The volatility of returns plays a pivotal role in modern finance and an accu-
rate evaluation of this parameter is crucial in portfolio and risk management
decisions.

It is well known that the volatility is a latent variable. Until quite recent
it was common practice in the literature to use the squared return as proxy
of volatility (see, for example, Pagan and Schwert (1990) and West and Cho
(1995)). However, as pointed out by Anderesen and Bollerslev(1998), this
measure of volatility includes a large noisy component (the squared returns
are contaminated with highly non-Gaussian measurement error). These au-
thors proposed a different proxy, the ”realized volatility”, based on the in-
traday returns.1 Since its introduction, the realized volatility has been con-
sidered the best estimator for the latent variable. However, intraday data
sets might be unavailable or not readily available or too short and quotes
might be missing or corrupt. In this paper we propose an alternative proxy
of the daily average volatility of a basket of returns, representative of a mar-
ket or a segment of market, that does not require the intraday returns and
could be utilised to address the situations where high-frequency price data
are unavailable.

This proxy is derived by using a procedure based on generalised dynamic
factors models methodology, proposed by Forni et al. (2000, 2001 and 2004).
Under the dynamic factor model approach, we suppose that volatility of each
returns series is decomposable into two mutually orthogonal components, a
common component, driven by a small number of latent shocks or factors,
and an idiosyncratic component. Thus, the proxy of volatility is obtained by
aggregating the common components.

We consider n assets in a basket. The spot price of each asset i, on day
t, is denoted by Pit, and its return is defined as

rit = logPit − logPit−1

. We shall assume throughout that the conditional second moments of the rit

process exist. The volatility, denoted with σ2
it, is defined as the conditional

variance of the return rit, that is

σ2
it ≡ var(rit|It−1)

where It−1 is the σ-algebra induced by variables that are observed at time
t− 1.

1This approach has been popularized recently in a collection of papers such Andersen
et al. (2000, 2001)
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For the basket as a whole, the volatility is measured as the average volatil-
ity across all returns, that is

σ2
t =

∑
wi,tσ

2
it

where the weights wi,t are proportional to market value of asset i on day t. It
is important to note that this measure does not coincide with the volatility
of the market index, defined as

IMt =
∑

wi,trit

It is clear that the parametric specification for σ2
it depends on the model

used to describe the process generator of returns.
The search for model specification is always guided by stylized facts. Some

typical features of returns series are now well documented. The tails of the
distributions of these series are fatter than the tails of the normal distribution,
the volatility is time-varying and is highly persistent2, and squared returns
exhibit pronounced serial correlation whereas little or no serial dependence
can be detected in the return process itself. A class of models reproducing
adequately such stylized facts is that of stochastic volatility (hereafter SV)
models introduced by Taylor (1986).3 These models represent a natural alter-
native to the GARCH family of time-varying volatility models (Engle (1982)
and Bollerslev (1986)). We remember that one of the problems in GARCH-
type models is that the variance equation does not contain an innovation.
The volatility changes deterministically. The SV models, instead, assume
the variance to be a random variable. The assumption that the volatility
changes stochastically rather than deterministically has a intuitive appeal.
Thus, in this paper, we suppose that any returns series follows an appropriate
SV model.

The remainder of the article is organized as follows. Section 2 introduces
the SV models utilized in the paper. In Section 3 we present a new proxy of
volatility of a return index. Section 4 contains a simulation-based comparison
between the proposed procedure to estimate the volatility and the proxy
based on squared returns.

2The persistence of volatility implies that there will be volatility clustering: high volatil-
ity periods tend to be followed by high volatility periods, and similarly for low volatility
days

3For a discussion of theoretical details about SV models see Shephard (1996) and
Ghysels et al. (1996)
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2 The stochastic volatility models of returns

In this section we describe three different SV models considered in the study,
namely the basic SV model (M1), the SV-t model (M2) and the SV-t model
with leverage (M3).

2.1 The basic model

A standard formulation of the SV model for daily returns is given by

rit = σitzit

zit ∼ n.i.i.d.(0, 1)

σit = exp(vit/2)

vit = φivit−1 + σiεεit

εit ∼ n.i.i.d.(0, 1)

The errors processes εit and zit are mutually and serially independent
with mean zero and unit variance. The persistence parameter φi of the
autoregressive process is restricted to be positive and smaller than one to
ensure stationarity. The parameter σiε measures the standard deviation of
volatility shocks (the volatility of the log-volatility).

For |φi| < 1 the unconditional distribution of vit is normal with mean zero
and variance σ2

iε/(1−φ2
i ). The mean and variance of returns are respectively

E(rit) = 0

var(rit) = exp

(
1

2

σ2
iε

1− φ2
i

)

The kurtosis is

kurtosis(rit) = 3
E(r4

it)

E(r2
it)

2
= 3 exp

(
σ2

iε

1− φ2
i

)

which demonstrates that the SV model implies excess kurtosis in the series rit.
This is consistent with the observed leptokurtosis of the empirical distribution
of returns series.

For the sequel it is important to note that log z2
it follows the log(χ2

(1))
distribution and that

E(log z2
it) = −1.27

and

var(log z2
it) =

π2

2
= 4.93
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See Wishart (1947) and Abramovitz and Stegun (1970).
The appeal of the basic stochastic volatility model is its simplicity and

ease of interpretation. However, a number of studies has found that the SV
model has to be far more complicated if it has to actually fit the data (see,
for example, Kim, Shephard, and Chib (1998), Fridman and Harris (1998)
and Liesenfeld and Jung (2000)). We extend the basic model to allow for fat-
tails in the conditional distribution of the returns, and for so-called ”leverage
effect”.

2.2 Stochastic volatility model with heavy-tailed dis-
tribution

Although the normality assumption for zit coupled with time-varying volatil-
ity implies that unconditional distribution of rit has fatter tails than the
normal, this is typically not sufficient to account for all of the mass in the
tails in the distributions of returns. In many situations the distribution of
zit is far from being normal.4 In this cases a popular choice for zit is the nor-
malized t-distribution with p > 3 degrees of freedom, with the normalization
such that the variance of zit is unity. Thus, the model with fatter tails than
the normal (cfr. Taylor (2005, p. 291)), called the SV-t model, is given by

rit = σitzit

zit = ζit
√
wit

σit = exp(vit/2)

vit = φivit−1 + σiεεit

εit ∼ n.i.i.d.(0, 1)

where ζit ∼ N(0, 1) and (p− 2)w−1
it ∼ χ2

p independent of ζit.
The mean and variance of log z2

it are known to be−1.27+ψ(p/2)−log(p/2)
and π2/2 + ψ(p/2) respectively, where ψ(.) is the digamma function.

2.3 Stochastic volatility models with leverage effect

The independent SV models considered in previous subsections do not allow
volatility to depend on the direction of price changes: so-called leverage effect
(the volatility of returns tends to increase when the price drops). Black (1976)
and Christie (1982) have found empirical evidence of this effect. Several
different SV models have been employed in the literature for empirically

4Evidence in favor of fat-tails has been uncovered by Gallant et al. (1997) and Geweke
(1994).
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assessing the leverage effect (see, for example, Asai and McAleer (2005),
Jacquier et al. (2004) and Yu (2005)). Here we use the model with fat-tails
and correlated errors. Such model, called SV-t with leverage, is given by

rit = σitzit

zit = ζit
√
wit

δit ∼ n.i.i.d.(0, 1− ρ2)

ζit = δit + ρεit

σit = exp(vit/2)

vit = φivit−1 + σiεεit

εit ∼ n.i.i.d.(0, 1)

where ζit ∼ N(0, 1) and (p− 2)w−1
it ∼ χ2

p independent of ζit.
Since corr(zit, εit) = ρ, we have the leverage effect when −1 < ρ < 0.

3 A new proxy for market volatility

Now, we assume that the basic model (M1) holds and that the log-volatilities,
log σ2

it, can be represented as the sum of two unobservable mutually orthog-
onal components, a common component, χit, driven by few (fewer than n)
common factors, and an idiosyncratic component, ξit, driven by n idiosyn-
cratic factors, that is

log σ2
it = χit + ξit =

q∑
j=1

bij(L)ujt + ξit

where L stands for lag operator and the filters bij(L) are one-sided in L and
their coefficients are square summable. The q common shocks (ujt; j =
1, ..., q; t ∈ Z) are assumed to be mutually orthogonal white noise processes
(at all leads and lags) with unit variance. It important to note that the
idiosyncratic components are not assumed mutually orthogonal across the
market.

We propose the following proxy for the average volatility

σ̂2
t =

∑
wit exp(χ̂it)

where χ̂it is the estimator of common component χit.
However, this estimator appears infeasible as log σ2

it is not observable.
In order to solve this problem, we proceed by considering the innovation

process ηt defined by
ηit = log z2

it − E(log z2
it)

5



Since E(log z2
it) = −1.27, then

log z2
it = ηit − 1.27

Thus we have that

log r2
it = log σ2

it + ηit − 1.27 = χit + ξit + ηt − 1.27

or
log r2

it + 1.27 = χit + ξit + ηit

Now, we note that
λit = ξit + ηit

satisfies every property that a idiosyncratic component has to have, that is
{(λ1t, λ2t, ..., λnt)

′; t ∈ Z} is a zero-mean stationary vector process for any
n and E(λituj,t−k) = 0 for any i, j, t, and k. So, we can consider λit the
idiosyncratic component of log r2

it +1.27. It follows that log σ2
it e log r2

it +1.27
have the same common component. Thus, the common component of log σ2

it

can be estimated using the observations log r2
it+1.27, by applying the method

based on the generalized dynamic factors models proposed in Forni et al.
(2000, 2001, 2004).5

Of course, we can not pretend that such an estimator works as well as
that we could obtain if log σ2

it is observable. The latter is better since, though
log σ2

it and log r2
it +1.27 have the same common component, log r2

it +1.27 has
an idiosyncratic component λit = ξit + ηit heavier than log σ2

it. On the basis
of our simulations, it is confirmed this conclusion though the performance of
χ̂it is not at all bad.

Now, we assume that the model (M2) or (M3) holds. In this framework
the proxy of the average volatility obtained from common components is
again:

σ̂2
t =

∑
wt exp(χ̂it)

where the common components are estimated on the basis of the observations
log r2

it + 1.27− ψ(p/2) + log(p/2). In fact, under the hypothesis that zit has
a t distribution with p > 3 degrees-of-freedom, the common component of
the log-volatility coincides with that of log r2

it + 1.27−ψ(p/2) + log(p/2). In
general, the common component of the log σ2

it coincides with the common
component of the log r2

it + k where the value of constant k depends on the
distribution of zit.

5In particular, by applying this method, the common component is (non-
parametrically) consistently estimated as both the size n of the cross-section and the
series length T goes to infinity.
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4 Simulation experiments

To assess the performance of the new proxy we have carried out Monte Carlo
experiments on the three models M1, M2 and M3. In all models the values of
the autoregressive parameter φi are uniformly distributed over [0.90, 0.995].
This choice is motivated by empirical studies: the typical values estimated
from real returns data belong to this interval. Following Sandmann and
Koopman (1998), for each value of φi, the values of σi,ε are selected so that
the square of coefficient of variation:

CV 2
i =

var(σ2
it)

(E(σ2
it))

2
= exp

(
σ2

iε

1− φ2
i

)
− 1

takes the value of 0.5. High values of the ratio of volatility variance to its
squared mean indicate pronounced relative strength of the stochastic volatil-
ity process while low values of CV signify that the model is close to the one of
constant volatility. For the given values of φi, the σi,ε assume values around
0.2, coherently with the empirical evidence. In the models M2 and M3, the
degrees-of-freedom (df) are posed equal to 7. The parameter estimates vary
between 6 and 13 (see Liesenfeld and Jung (2000) and Bollerslev (1987)); we
assume the lower value in order to emphasize the heaviness of the tails. In
the model M3 the correlation coefficient (ρ) is posed equal to -0.3 (see Omori
et al. (2005), Yu (2005)).

In all these models we have posed

εit =
√

1− γ2ut + γeit

ut ∼ n.i.i.d.(0, 1), eit ∼ n.i.i.d.(0, 1).

where 0 < γ < 1. It implies the data generating process is such that the log
of volatility is expressible as sum of a common component (we assume only
one factor) and an idiosyncratic component.

Indeed, we have that

log σ2
it = vit

On the other hand, we have that

vit =
σiε

√
1− γ2

1− φiL
ut +

σiεγ

1− φiL
eit

So

log σ2
it =

σiε

√
1− γ2

1− φiL
ut +

σiεγ

1− φiL
eit
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The common component is given by

χit =
σiε

√
1− γ2

1− φiL
ut

and that idiosyncratic by

ξit =
σiεγ

1− φiL
eit.

We show two sets of results for γ = 1/
√

2 and γ = 0.95. The former value
of γ implies that the variance of the common component is equal to that of
idiosyncratic one, whereas the latter implies a bigger variance of the idiosyn-
cratic component.

We generated data from each model with n = 50, 100 and 200 and T =
200, 500, 1000 and 2000. Each experiment was replicated 1,000 times. For
simplicity we impose that the weights wit equal 1/n. In the experiments we
compared our proxy, σ̂2

t , with the mean of squared returns of asset in the
basket, that is

r2
t =

1

n

∑
r2
it

We measured the performance of the proxies by means of the relative
mean square errors, defined respectively by:

RMSEσ̂2
t

=

∑T
t=1(σ̂

2
t − σ2

t )
2∑T

t=1(σ
2
t )2

and

RMSE
r2
t

=

∑T
t=1(r

2
t − σ2

t )
2∑T

t=1(σ
2
t )2

.

Tables 1 and 2 present the simulation results.
A first notable finding is that the performance of σ̂2

t betters as the number
of the series n and the time dimension T in the basket increase.

As for the model M1, that assumes the normality of shocks of the returns,
the results show that our proxy σ̂2

t underperforms systematically r2
t when

the variance of the common component is equal to that of idiosyncratic one
(γ = 1/

√
2) whereas it does not happen when γ = 0.95. As result from the

Table 2, our proxy outperforms for n = 50.
In presence of fat tails (M2) and assuming again (γ = 1/

√
2), σ̂2

t outper-
forms r2

t beginning from t = 1000 and until n = 100. When we assume fat
tails with leverage effects (M3), our proxy outperforms for t = 500 and for
n = 50, though the relative advantage decreases as n increases.
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Table 1: Average of relative mean square error across 1,000 replications.
(γ = 1/

√
2)

n=50 n=100 n=200

σ̂2
t r2

t σ̂2
t r2

t σ̂2
t r2

t

Model M1

T = 200 0.1701 0.0494 0.1054 0, 0247 0.0784 0.0123
T = 500 0.0821 0.0492 0.0510 0.0248 0.0375 0.0125
T = 1000 0.0599 0.0492 0.0395 0.0249 0.0307 0.0124
T = 2000 0.0572 0.0497 0.0358 0.0250 0.0261 0.0125

Model M2

T = 200 0.1905 0.0859 0.1154 0.0431 0.0817 0.0218
T = 500 0.0892 0.0865 0.0517 0.0431 0.0388 0.0217
T = 1000 0.0640 0.0869 0.0404 0.0436 0.0311 0.0219
T = 2000 0.0600 0.0868 0.0367 0.0436 0.0257 0.0218

Model M3

T = 200 0.1901 0.1058 0.1140 0.0551 0.0896 0.0305
T = 500 0.0888 0.1076 0.0575 0.0564 0.0402 0.0310
T = 1000 0.0690 0.1086 0.0441 0.0568 0.0340 0.0311
T = 2000 0.0634 0.1082 0.0397 0.0564 0.0290 0.0312
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Table 2: Average of relative mean square error across 1.000 replications.
(γ = 0.95)

n=50 n=100 n=200

σ̂2
t r2

t σ̂2
t r2

t σ̂2
t r2

t

Model M1

T = 200 0.0837 0.0567 0.0472 0.0285 0.0353 0.0143
T = 500 0.0472 0.0573 0.0321 0.0288 0.0274 0.0144
T = 1000 0.0387 0.0573 0.0286 0.0288 0.0241 0.0144
T = 2000 0.0324 0.0572 0.0300 0.0288 0.0260 0.0144

Model M2

T = 200 0.0938 0.1128 0.0514 0.0585 0.0362 0.0290
T = 500 0.0507 0.1133 0.0333 0.0578 0.0271 0.0290
T = 1000 0.0402 0.1131 0.0283 0.0579 0.0241 0.0289
T = 2000 0.0334 0.1139 0.0255 0.0574 0.0236 0.0288

Model M3

T = 200 0.0954 0.1196 0.0513 0.0591 0.0393 0.0299
T = 500 0.0506 0.1188 0.0334 0.0598 0.0267 0.0302
T = 1000 0.0400 0.1166 0.0284 0.0601 0.0241 0.0306
T = 2000 0.0336 0.1187 0.0258 0.0594 0.0237 0.0299
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The outperformance of σ̂2
t is clear when the variance of the idiosyncratic

component is bigger than that of the common one (see Table 2).
Overall, the above simulations results suggest that the proxy σ̂2

t is suit-
able to be used to estimate volatility when the conditional density function
of returns exhibits leptokurtosis and skewness. This is an important point
because these features appear to be typical for the financial time series.

5 Conclusions

In this paper we have introduced a new method to compute a daily measure
of volatility. The main feature of this method is that it is based upon the
estimate of the common components of the volatilities of a basket of returns.
Using simulated time series, we illustrated that this method performs better
than the an average of squared daily returns in measuring volatility.
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