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Abstract

The paper analyzes a Cournot model with two types of firms: Maximizers of profits and
maximizers of relative payoffs. It is shown that the equilibrium is located somewhere
between the regular Cournot-Nash equilibrium and the competitive Walrasian (or Bertrand-)
equilibrium.
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1 Introduction

The Cournot model of simultaneous oligopolistic quantityice is one of the
classic workhorses of economic theory. Since its origin888, countless varia-
tions of the original model have been brought up. More or édlsaspects of the
model have been changed, varied and re—organized, anaiyzkete—analyzed.
What has very rarely been looked at is the aspect of the firmisa@oral mo-
tives: What happens if firms have aims other than the meremmzation of their
profits? Apart from ‘classical’ profit maximization, theseanother out-standing
way of behavior: maximization of relative payoff, meanifgt a firm aims to
have higher profits than the competitors. Besides the fadtitfdividuals may
hold certain preferences about relative payoffs (Fehr arr&it, 1999; Bolton
and Ockenfels, 2000), there are many more reasons why a figit woncentrate
on being better than the others, instead of just trying tosoerafitable as possi-
ble. One frequently named reason is the firm’s wish to in&éasmarket share,
which can serve as a means of pushing other firms out of theenarkto pre-
vent market entry. A second possible reason for maximiaaifaelative payoffs
is the fact that managers are paid due to relative perforenahtheir firm: The
manager of the largest firm in the market gets the highest pdfird reason is
a lack of information. Vriend (2000) shows that firms thatrairrely on private
information and are forced to determine their productioargity by mimicking
other firms’ decisions are de—facto maximizers of relatayqgsf. Finally, it seems
worthwhile noting that, in a somewhat broader sense, itesBértrand model of
oligopoly that represents the most severe model of maximgizlative payoff by
maximizing the market share.

Schaffer (1989) was probably the first author to analytycatialyze firm be-
havior in a Cournot model in an evolutionary context. Refgyito the concept
of spite from evolutionary biology (Hamilton, 1970), he sisthat there is a way
of unilaterally deviating from a Cournot equilibrium tha¢aeases the profit of
the deviator, but at the same time decreases the other finmoitspeven more.
Given a force that ‘selects for’ the firm with the highest prdfie deviator will
be better off than the others. The Cournot equilibrium is‘siatble’ in an evolu-
tionary sense. The evolutionarily stable solution resfutis a process of every
firm trying to be ahead of every other one (maximizing remapayoff), which
in the Cournot model results in the Walrasian (competitiagkat) equilibrium.
Schaffer shows this for a model with zero costs.

For the basic evolutionary concept of ‘being better tharothers’, it does not
matter if a firm’s ‘relative payoff’ means the ratio of its ovpayoff to the total
payoff of all firms or if it means the difference between thenfg payoff and the

IFor an instructive survey on oligopoly theory, see ShafieB).



average payoff of all firms. The latter concept, which shantde aptly be named
‘differential payoff’ is the one used by Schaffer (1988, 298

In an important subsequent paper, Vega-Redondo (1997%)g wkfferential
payoffs, replicates Schaffer’s results in a dynamic frawrdywwhile Riechmann
(2006) finds the same results for a more general class of Gbgames, again
using differential payoffs. Relative payoffs in form of i are in frequent use
in basic evolutionary dynamics, but turn into the differahtormulation as soon
as these dynamics take place in continuous time (see, eiQuiVEQ95; Vega-
Redondo 1996; Samuelson 1997; Fudenberg and Levine 1998).

Thus, the results of two extreme forms of Cournot models are glear: If
all firms follow the classical motive of profit maximizatiotine result will be the
Cournot equilibrium. If all firms maximize relative payothey will all end up
in the Walrasian equilibrium of a competitive market (whiaiturn, is identical
to the oligopolistic Bertrand equilibrium). What has noeheanalyzed yet is the
guestion of what happens if in the same market there are lgp#stof firms,
maximizers of absolute payoff as well as maximizers of nedgbayoff.

In the field of experimental economics, a finding common to tn@surnot
experiments is the one that the experimental outcome isllysmore competitive
than the Cournot prediction’ (Holt, 1995, p. 367). This pap#él show that this
finding can be explained by a heterogeneity of individualstiwes in the game:
As soon as both, maximizers of absolated maximizers of relative payoff are
active in the same market, the resulting equilibrium musessarily be located
somewhere in between the oligopolistic Cournot- and thepaiitive Walrasian
outcome.

The paper proceeds as follows. In the second section, thepallistic model
is introduced. Section three analyzes a duopolistic versidhe model, before
the fourth section presents the general model of mixed stiva Cournot game.
The paper ends with a summary.

2 TheModd

The basic model is the following: Market demand is given by
D=1-p, 1)

with p giving the (market) equilibrium price. Let denote the quantity of firm
Firms must supply non—negative quantities. Aggregatelgufpis given as the
sum of the supplied quantities of théirms involved,S= 3! ; 5. The equilibrium

price, p, results as
p=1-Ys. (2)
2
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Assume that the total of all firms’ joint capacities are tow ko reach or even
exceed autonomous demaigk 1, such that prices will be positive.
Let then firms have identical quadratic cost functidd§ ),

C(s) =55 3)

Fixed costs are assumed to be zero.
The (absolute) profit of each firiis given by

1

m(s,Sq)=ps—C(s)=(1-9s -3¢, (4)

whereS_; gives the aggregate quantity of all firms except, & ; = Z?:l Sj.
J#i
Relative payoff to firmi will be defined in the tradition of evolutionary

game theory (Samuelson 1997, p. 66; Weibull 1995, pp. 72ag4he differ-
ence betweei's absolute payoff and the average absolute payoff off afidir
=_ 1c¢n .
=52 j-1Ty:

(s, S.) =T (s,S.) —Ti(s, S.i) (5)

:E:E(G—SS—%§>—1§

n

3 Duopoly

For a start, let us take a look at a duopolistic version of tloeleh For only two
firms in the marketA andR, (4) becomes

M85 =(1-s )8, i -ic{AR). 7)

From this, the reaction function for firdy, aiming to maximize absolute pay-
offs, becomes

g:%u—&o. (8)

A maximizer of relative payoff, though, derives the reactionction from the
duopolistic version of (5), which is

W@ﬁﬂ=%ﬁ@§m—nﬂ&&M- (9)

Maximizing (9) with respect tg; results in the reaction function for firR, max-
imizing relative payoff:

1
sR_:—%. (10)
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This is in fact identical to the Walrasian (competitive metjlequilibrium quantity:
A firm neglecting its influence on the equilibrium price andisequently using
the rule ‘produce the quantity that equates the price to yoarginal costs’ to
determine the output level will produce exac#fy (A Bertrand model would of
course result in the same equilibrium quantity.)

It is remarkable to see that the reaction function for reéapayoffs (10) is a
degenerate function. For a maximizer of relative payoffa auopoly, producing
the quantitysg is the optimum strategy as long as the opponent is restricte-
ducing quantities that keep prices positive (which is gotad by the assumption
thaty; s < 1): No matter what the opponent does, a maximizer of relgayoffs
should produce the Walrasian quantity. Note, thought,ttiiats a special trait of
the duopolistic case. As soon as there are more than two fivodv/ed, no type
of firms has a constant best strategy any more. (See equabdmé¢low, which
shows the general best response function foRatype firm.)

The equilibrium is easily derived as

2 1
= N 11
Obviously,s, < s;. TheR-firm produces a higher quantity than thefirm.
Moreover, it can be shown that the relative—payoff—maxanimas higher absolute

payoff. (Of course it has, because it maximized the diffeeeh
TR(SR: SA) > T (SA, SR) - (12)

Thus, the maximizer of relative payoff does exactly thise &reximizes her rela-
tive payoff. All that is left to do for the maximizer of abstéupayoff is to find his
best response to the strategy of his opponent. The maximizdrsolute payoff
does indeed maximize his payoff given the relative-payadiximizers quantity.

Considering this outcome, it might be asked why fiwdoes not switch to us-
ing R's strategy, too. The answer to this question is straighiéod: By switching
from s, to 3, he reduces his (absolute) payoff to a level less than hisqare pay-
off from playingsa (This should of course be obvious from the reaction function
(8).):

TA (SR, SR) < TA(SA, SR) - (13)

Moreover, following the usual definition of efficiency as aasare in absolute

payoffs, the resulting equilibrium is inefficient for therfis? Still, it should be

20f course, if we looked at a broader measure of efficiencytlikesum of producers’ and con-
sumers’ surpluses, efficiency would probably rise compérele original Cournot situation. An
efficient state for the producers would have both playerghisstandard Cournot-Nash quantity
or even collude on the monopolistic quantity.



kept in mind thagbsolute payoff is not what firmR cares for, such that the regular
measures of welfare might be inadequate in this model.

This result implies a structure that holds true for the gahease of the+
player model. As will be shown further down in this paper, he general case,
too, maximizers of relative payoff will at the same time &k higher payoffs
than maximizers of absolute payoff.

All'in all, the model subsumes at three different outcomebas been shown
before (Riechmann, 2006) that, given both players aim toimiae absolute pay-
offs, the result will be the usual Cournot equilibrium, biuboth players care for
relative payoffs instead, the result will be Walrasian.|#yrs hold different mo-
tives, the result will be the one presented in (11). A spexaak of this equilibrium
bears a nice interpretation. For the case of no variables ¢dst 0), the result is
equal to a Stackelberg equilibrium where tReype firm is the Stackelberg leader
and theA-type firm is the followef This outcome derives from the fact that in
the duopolistic case, tHe-type firm has an optimum strategy it needs not condi-
tion on what theA—type firm will do. In a strategic sense, this implicitly makee
R-firm the Stackelberg—leader, who (trivially) decides fiidte A-type ‘follows’
by playing a best response.

4 TheGeneral Case

The derivation of respective results for the genergblayer case is not compli-
cated, but involves some rather tedious computation. larddpreserve readabil-
ity, this section only gives the most important results, le/tihe technical details
are postponed to the appendix.

From (4), the reaction function fé¥-type firm numbejj derives as

1
Saj=3(1-S), (14)

with S_; giving the total quantity minusi-type) firmj’s quantity,S_j = S—sa j.
The respective function fdR-type firmk derives from (6):

k= (1— - &k) , (15)

with S_g giving the total quantity minus firrik’'s quantity.

Note that the reaction function d¥-types explicitely contains the number
of firms while the reaction function oA—types does not. The reason for this is
straightforward A—types effectively play against the rest of the economyfpsu
side, whileR-types effectively play against every single supplier.

3| am thankful to a referee to point out this fact.
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The equilibrium will be a semi—symmetric one (an equililbmiwith all players
of the same type behaving identically). Witk giving the number oR-type firms,
the equilibrium quantities result as

2n—nr—1
= 16
AT 2M_1)+3n-m)’ (16)
3n—nr—2

SR_2(n2—l)-|—3(n—nR)' (17

Notably, the equilibrium quantities are determined by lbthsize of the sup-
ply side of the market (i.e. the number of firmy, and the composition of the
supply side (measured by the numbeiRstypes,nr). There are no ‘dominant’
strategies any more.

All the other results remain true in thre-player game. AgainR-type firms
produce a higher quantity thaa-type firms, such th&-type firms are better off
thanA-type firms even in terms of absolute payoff. Again, switghfiom s, to
SR is not worthwhile.

Again, the result in (16) and (17) includes two special casasely the Wal-
rasian and the Cournot equilibrium. For a market with oAltype firms, the
equilibrium quantity becomes

SA(RR=0) = — (18)

the Cournot equilibrium quantity.
In a market with onlyR-type firms, the individual equilibrium quantity is

1
S n+l’
which is the Bertrand equilibrium quantity and the Walrastampetitive market
equilibrium quantity.

These two special cases represent the limiting cases fomthael. The
more R-types there are in the market, the more the market tends o th
Bertrand/Walrasian outcome. The moketypes there are, the closer the re-
sult will be to the Cournot outcome. Generally, the result ahvays fall into the
range between (including) the Cournot and the Walrasiailiequm.

SR(R=n) (19)

5 Summary

This paper makes one short point: In a Cournot model of otijsfic quantity
choice with regular profit maximizers and maximizers of tieapayoffs active at
the same time, the resulting equilibrium quantity will geally be located in the
range between (including) the Cournot and the Walrasiatv@&@®l quantity.
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Appendix: The General Case

In the generah-player case, there arefirms, ng of themR-types andh — ng
A-types. Les, j denote the quantity th@-type firm numbej produces and use
the respective notatiosk x for R-types.

S, the total quantity, is the sum of the individual quantitié#$\— andR-types:

N—NR NRr

S= SAjt+ ) SRk- (20)
,Zl ) kzl “

From (4), the reaction function fé&type firms numbej derives as
SAj =5 59 (21)

with S_; giving the total quantity minusi-type) firmj’s quantity,S_j = S—sa j.
The respective function fdR—type firmsk derives from (6):

— 2= S« (22)

with S_g giving the total quantity minus firrik’'s quantity.

As the equilibrium will be a semi—symmetric one (an equilibr with all
players of the same type behaving identically, $; = Saj = SA for all A-types
andsgy = S*Rk = s for all R-types), the equilibrium quantities can be derived
from a simple system of two equations. We find that

s:\:2+n1—nR_2+:R—nRS*R’ (23)
R= 2n— 2(:R_-1—1r: nR—1 B 2n(i;r212<(: ;nr;R>— 1 A (24)
The equilibrium quantities result as

S = 2(n? 3nl) +nF;3 (nl— nr)’ (25)
R= 2(n? :jnl) —CF;% (n2— nr) (26)

From  2n—rmR-1.
SA= 3N _nR_2 SR> (27)

it can be seen that

sgs(nr=1i)>sp(hr=1) V1i<i<n, (28)
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and
TR(NR=1)>Ta(Nr=1) Vi<i<n. (29)

Switching froms; to sg is not worthwhile:
TR(SA, RR=1) > TR(Sx, Rr=i+1) Vi<i<n-—1. (30)

For a market with onlyA—type firms, the equilibrium quantity becomes the
Cournot quantity:

N 1
SA(nR - O) - m . (31)
In a market with onlyR-type firms, the individual equilibrium quantity is
Walrasian: 1
SR(NR=n) = nrl (32)
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