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Abstract

This paper presents a stochastic approach to the theory of aggregateproduction function,
based on the theory of stochastic differentialequations. The main result is that under certain
restrictions the productionfunction converges from below to the Cobb-Douglas
functionproviding further support for the conclusion drawn by Jones (2005).
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1. Introduction

The best known production function is the famous Cobb-Douglas function

F (L, K) = ALαKβ

originally constructed to approximate the output of American manufacturing
from 1899 to 1922 as a function of the average number of employed wage
earners and the value of fixed capital goods, reduced to dollars of constant
purchasing power (Cobb and Douglas 1928).

Despite several stringent criticisms, the continued popularity of the Cobb-
Douglas production function may largely be attributed to the remarkable
statistical results obtained in fitting this function to time series data (Fraser
2002). Two concepts play a crucial role in the derivation of production
functions: returns to scale and the elasticity of substitution. Interpreted
in terms of marginalist theory, the Cobb-Douglas function complies with a
certain number of requisites. One such requisite is to suppose that the returns
are constant. Only with constant returns the sum of the two exponents, α
and β is equal to one. It is also assumed that technical progress is neutral.
In other words, the efficiencies of capital and of labor increase but their
reciprocal substitutability does not change with respect to variations in the
relative prices of the same factors. Finally it is assumed that the elasticity of
substitution is equal to one. Apparently, we may say that the Cobb-Douglas
function is the only linearly homogenous production function with a constant
elasticity of substitution in which each factor’s share of income is constant
over time. Kaldor (1961), for example, insists that an important task of the
theory of economic growth is to account for long run constancy.

The first attempt to relax one of these requisites was done by Robert
Solow (1957). He found an elementary way of segregating variations in output
per head due to technical change from those due to changes in the availability
of capital per head. The fundamental hypothesis of Solow says that shifts in
the production function are defined as neutral if they leave marginal rates of
substitution untouched but simply increase or decrease the output attainable
from given inputs. In that case the production function takes the special form

F (L, K, t) = A(t)F (L, K).

Another production function, known as the CES was introduced by Arrow,
Chenery, Minhas and Solow (1961).

F (L, K) = γ [δLϕ + (1− δ)Kϕ]
1
ϕ .
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Possibly the weakest point of the CES formulation is the assumption of the
existence of a relationship between F/L (value added per unit of labor) and
W (the wage rates), independent of the stock of capital. If this assump-
tion does not hold, the value of elasticity of substitution derived from the
estimated CES function may be biased. The CES function is also subject
to the limitation that the value of the elasticity of substitution is constant,
although not necessarily equal to one. Soon after the explicit derivation of
this production functions, several articles appeared trying to obtain general-
ized solutions such as the papers of McFadden (1963), and Lu and Fletcher
(1968).

There is also some work done related to the dynamic properties of the
Cobb-Douglas function. The first one is attributed to Sylos Labini (1995)
who claims that the traditional interpretation of the Cobb-Douglas function,
which refers to the marginalist theory of income distribution should be aban-
doned, and another interpretation should be adopted. Traditional theory is
founded on the concept of substitution, defined with reference to a given level
of production that can be obtained with different combinations of labour and
capital, given the technology, already known and available. The passage from
one type of technology to another is stimulated by the trend of output to
increase. Technology can not be assumed as given and technological change
comes to depend on a variation in the ratio of an increasing output trend.
This process requires time and the problem of factor substitution is a dy-
namic, not a static, phenomenon. This is not a new idea. See for example
the papers of Solow (1958), Newman and Read (1691) and, Ferguson and
Pfouts (1962). The second one is attributed to Barelli and Pessoa (2003). In
their paper they proved that the Inada conditions force the production func-
tion to be asymptotically Cobb-Douglas that is, its elasticity of substitution
is asymptotically equal to one. This is a very important result and it is in
accordance with the previous result of Labini and also with the third result,
due to Charles Jones (2005). Jones concludes that Pareto distributions lead
the production function to take a Cobb-Douglas form and defends the view
that the long term production function is Cobb-Douglas.

In our paper we try to prove that under certain restrictions the produc-
tion function converges from below to the Cobb-Douglas function providing
further support for the conclusion drawn by Jones. To arrive to our main
result we claim that our variables (output, labor and capital) are stochastic
processes. To our knowledge, the stochastic extension of the deterministic
theory of production functions has so far not been subject to a widely inves-
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tigation. It is not possible to suppose a purely deterministic process for the
evolution of output, labor and capital stock. The purpose of this paper is
to provide a stochastic alternative of production function and to prove that
under certain restrictions this function converges from below to the Cobb-
Douglas function. This result will be given in section 2. In the last section
we present some concluding remarks.

2. Stochastic Production Functions

We define an aggregate production function as one for which the output
has to be a value measure, rather than a physical measure. The value measure
has to be used due to the heterogeneity of output, capital stock and labor.
In order to derive our production function we consider that the inputs L
and K and the output F (L, K) are aggregate stochastic value functions, we
follow the concepts of Karatzas (1991) and consider a time interval [0, T ] with
T > 0, possibly infinite. We define capital K = K(t), and labor L = L(t),
as the solutions to the following stochastic differential equations:

dL = L[µLdt + σLdWL]

dK = K[µKdt + σKdWK ].
(1)

We assume that WL and WK are standard Brownian motions satisfying

Et(dWL, dWK) = ρdt.

ρ ∈ (0, 1) is given and constant and the coefficients µL, µK , σL, and σK are
given by:

µl = lim
h→0

Et [logL(t + h)− logL(t)]

h
, σ2

L = lim
h→0

Et [logL(t + h)− logL(t)]2

h

µk = lim
h→0

Et [logK(t + h)− logK(t)]

h
, σ2

K = lim
h→0

Et [K(t + h)− logK(t)]2

h

with µL = µl +
σ2

L

2
and µK = µk +

σ2
K

2
. Using Itô’s lemma, at any instant

t, 0 ≤ t ≤ T we can write

dF =
∂F

∂t
dt+

∂F

∂L
dL+

∂F

∂K
dK +

1

2

∂2F

∂L2
dL2 +

1

2

∂2F

∂K2
dK2 +

∂2F

∂L∂K
dLdK. (2)
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Putting (1) and (2) together, we find that

dF =

[
∂F

∂t
+ µLL

∂F

∂L
+ µKK

∂F

∂K
+

σ2
LL2

2

∂2F

∂L2
+

σ2
KK2

2

∂2F

∂K2

+ρσLσKLK
∂2F

∂L∂K

]
dt + σLL

∂F

∂L
dWL + σKK

∂F

∂K
dWK . (3)

Here we suppose that the production function can be written as follows

F (L, K, t) = Fd(L, K, t) + ∆LL(t) + ∆KK(t) (4)

where ∆L and ∆K are two unknowns to be determined such that

dFd(L, K, t) = rFd(L, K, t)dt

where r is the risk-free interest rate. If we choose ∆L = ∂F
∂L

and ∆K = ∂F
∂K

,
then the stochastic terms vanish, and we arrive at

∂F

∂t
+rL

∂F

∂L
+rK

∂F

∂K
+

σ2
LL2

2

∂2F

∂L2
+

σ2
KK2

2

∂2F

∂K2
+ρσLσKLK

∂2F

∂L∂K
−rF = 0

which is a second order linear, two-dimensional partial differential equation.
For the sake of simplicity we denote by A the operator defined as follows:

A =:
∂

∂t
+ rL

∂

∂L
+ rK

∂

∂K
+

σ2
LL2

2

∂2

∂L2
+

σ2
KK2

2

∂2

∂K2
+ ρσLσKLK

∂2

∂L∂K
− r

As we pointed out above, in a recent paper Jones defends the point of view
that the long term production function is Cobb-Douglas and concludes that
Pareto distributions lead the production function to take a Cobb-Douglas
form. In order to find a solution to the above equation we adopt here Jones

′

hypothesis.

Theorem 0.1. If the dynamics of the function F (L, K, t) is described by

AF = 0 (5)

and 
F (0, K, t) = F (L, 0, t) = F (0, 0, t) = 0, for all t ∈ [0, T ]

F (L, K, 0) ≥ 0, for all L ∈ IR+ and K ∈ IR+

F (L, K, t) = ALαKβ, t ≥ T

(6)
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then the solution is given by

F (L, K, t) = F (L, K, T )eθ(T−t) = ALαKβeθ(T−t) (7)

where

θ =
α(α− 1)(σ2

L + σ2
K − 2ρσLσK)

2
. (8)

Proof. We consider the following changes of variables:

F (L, K, t) = e−rτV (x1, x2, τ),

τ = T − t,

x1 = λ1ln(L) + δ1τ,

x2 = λ2ln(K) + δ2τ

(9)

where λ1, λ2, δ1 and δ2 are unknowns to be determined so that the equation
(5) contains no terms in V , ∂V

∂x1
and ∂V

∂x2
. Choosing

λ1 =

√
2

σL

, λ2 =

√
2

σK

, δ1 =

√
2

σL

(
r − σ2

L

2

)
, δ2 =

√
2

σK

(
r − σ2

K

2

)
we obtain

∂V

∂τ
=

∂2V

∂x2
1

+
∂2V

∂x2

+ 2ρ
∂2V

∂x1∂x2

(10)

with

V (x1, x2, 0) = A exp

[
ασL√

2
x1 +

βσK√
2

x2

]
(11)

We will proceed here to another change of variables (see Logan 1998).

V (x1, x2, τ) = H(y1, y2, τ),

y1 = − ρ√
1−ρ2

x1 + 1√
1−ρ2

x2,

y2 = x1

(12)

to arrive to the following prototype two-dimensional diffusion equation

∂H

∂τ
=

∂2H

∂y2
1

+
∂2H

∂y2
2

(13)
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subject to the initial condition

h(y1, y2) = H(y1, y2, 0) = A exp

[
βσK

√
1− ρ2

√
2

y1 +
ασL + ρβσK√

2
y2

]
. (14)

As it is well known the solution of (13) with the initial condition (14) is given
by

H(y1, y2, τ) =
1

4πτ

+∞∫
−∞

+∞∫
−∞

h(z1, z2) exp

[
−(y1 − z1)

2 + (y2 − z2)
2

4τ

]
dz1dz2.

To evaluate the above integral we make the following change of variables:

u1 =
z1 − y1 −

√
2(1− ρ2)βσKτ√
2τ

, u2 =
z2 − y2 −

√
2(ασL + ρβσK)τ√

2τ

to obtain
H(y1, y2, τ) = A exp [ξ1(τ)] exp [ξ2(y1, y2)] (15)

where

ξ1 =
α2σ2

L + β2σ2
K + 2ραβσLσK

2
τ, ξ2 =

β
√

1− ρ2σKy1 + (ασL + ρβσK)y2√
2

.

Considering the change of variables (9) and (12) and the relation (15) we
finally obtain

F (L, K, t) = F (L, K, T )eθ(T−t) = ALαKβeθ(T−t) (16)

where

θ =
(α2 − α)σ2

L + (β2 − β)σ2
K + 2ραβσLσK + 2(α + β − 1)r

2
. (17)

Under the above hypotheses we conclude that α + β = 1 for all α, β ∈ (0, 1)
and consequently

θ =
α(α− 1)(σ2

L + σ2
K − 2ρσLσK)

2
(18)

and thus the proof is completed.
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Remark 0.1. Because α ∈ [0, 1] and σ2
L + σ2

K − 2ρσLσK ≥ 0, it follows that
θ ≤ 0

F (L, K, t) ≤ ALαKβ for all t ≤ T, (19)

and consequently the production function converges from below to the Cobb-
Douglas function. Equivalently, that production function is asymptotically
efficient.

Remark 0.2. If t = T , meaning that we are at the steady-state, we obtain

F (L, K, T ) = ALαK1−α, (20)

which is the Cobb-Douglas production function.

Remark 0.3. If θ = 0 and t ≤ T , we claim that

F (L, K, t) = ALαK1−α and ρ =
σ2

L + σ2
K

2σLσK

(21)

3. Some Properties and Concluding Remarks

3.1 As one can see from the hypotheses of the above theorem, the function
F (L, K, t) is not known on the interval (0, T ). Only the boundary
condition stipulates that the analytic form of the function is Cobb-
Douglas. This is one of the main hypotheses of our approach, and was
inspired by the paper of Jones (2005).

3.2 We may interpret θ as a penalty coefficient. This coefficient measures
”the distance” between the actual level of production and the steady
state level of production. This means that under certain restrictions
the production function converges from below to the Cobb-Douglas
function providing further support for the conclusion drawn by Jones
(2005). Equivalently, that production function is asymptotically effi-
cient. This is the main result of our paper.

3.3 If α + β 6= 1 then the production function is not Cobb-Douglas. As
it is shown by Jones (see Jones, page 537) the CES setup still delivers
a Cobb-Douglas global production function, at least on average, and
the theory suggests that we should expect a Cobb-Douglas production
function with a capital exponent of β/(α + β).
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