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Abstract

In standard economic growth theory it is assumed that labor force follows exponential
growth, a not realistic assumption. As described in Maynard Smith (1974), the growth of
natural populations is more accurately depicted by a logistic growth law. In this paper we
analyze how the Ramsey growth model is affected by logistic growth of population,
comparing it with the classic Ramsey model. We show that there is a unique nontrivial steady
state of the model and that the parameters of the logistic equation play no role in determining
long run equilibrium per worker level of consumption and capital. In addition, we study the
stability of the model showing that its nontrivial equilibrium is a saddle point.
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1 Introduction

The main purpose of this short paper is to improve the classical Ramsey model of optimal economic
growth ([4], [6], [9]) by modifying its population growth law. In ([1]), ([3]) and ([5]), the dynamics
of the Solow-Swan growth model when the labor growth rate is non-constant but variable and
bounded over time is analyzed. In this paper we reproduce this exercise for the Ramsey model.

One of the usual characteristics of any standard economic growth model is the assumption that
labor force L grows at a constant rate n > 0. In continuous time it is natural to de�ne this growth

rate as r =
_L
L =

@L
@t
L which implies that the labor force grows exponentially and for any initial level

L0, at time t the level of the labor force is L(t) = L0ert. The simple exponential growth model can
provide an adequate approximation to such growth only for the initial period because, growing
exponentially, as t ! 1; labor force will approach in�nity, which is clearly unrealistic. As labor
force becomes large enough, crowding, food shortage and environmental e¤ects come into play, so
that population growth is naturally bounded. This limit for the population size is usually called
the carrying capacity of the environment. From the other hand, it is a very well known fact that
since the 1950s, population growth rate is decreasing and it is projected to go down to 0 during
the next decades. This decrease, prominent in developed countries, can also be seen on a global
scale. The decrease in the rate of growth is mainly due to the population aging and, consequently,
a dramatic increase in number of deaths.

Then, a more realistic law of growth of the labor force L(t)must verify the following properties:

1. when population is small enough in proportion to environmental carrying capacity L1, then
L grows at a constant rate r > 0;

2. when population is large enough in proportion to environmental carrying capacity L1, the
economic resources become more scarce and this a¤ect negatively growth of the population;

3. population growth rate is decreasing to 0.

In this paper we assume that labor force L(t) verify all these properties. In particular, in
section 2 we introduce the logistic law that is a very general equation verifying the previous
conditions frequently used to describe and analyze population processes. Under this population
growth law we obtain a generalization of the Ramsey model. In section 3 we �nd the equilibria
and analyze the stability of the model and in section 4 we study the speed of convergence and
transitional dynamics of the model. Finally, in section 5 we present some concluding remarks.

2 The model

Consider an economy developing over time, where K = K(t) denotes capital stocks, C = C(t)
consumption and Y = Y (t) net national product at time t: We suppose that labor force L = L(t)
(identi�ed with population) follows a logistic law (see [10]). Then L(t) is the solution of the initial
value problem:

_L = aL� bL2; a; b > 0;
L(0) = L0;

(1)
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and therefore

L(t) =
aL0e

at

a+ bL0 (eat � 1)
: (2)

A detailed description of how logistic equation describes a real population, can be found in [7].
Note that if L0 < a

b = L1 then _L(t) > 0;8t � 0 and lim
t!+1

L(t) = L1 and that logistic growth

rate is:

n(t) =
_L

L
= a� bL = a (a� bL0)

a+ bL0 (eat � 1)
; (3)

which goes to zero in the long run.
If we have a production function f and y = Y

L and k =
K
L are income and capital per worker

respectively, we can express y as a function of k, y = f(k), where as usual we suppose that:

� f(0) = 0;

� f 0(k) > 0;8k 2 R+

� lim
k!+1

f 0(k) = 0

� lim
k!0+

f 0(k) = +1

� f 00(k) < 0;8k 2 R+

We suppose that output is consumed or invested

Y (t) = C(t) + I(t) (4)

and that capital stock changes _K (t) equal the gross investment I(t) minus the capital depreciation
�K (t):

_K(t) = I(t)� �K(t): (5)

Hence
Y (t)

L(t)
=
C(t)

L(t)
+
_K(t)

L(t)
+
�K(t)

L(t)
(6)

i.e.

y(t) = c(t) +
_K(t)

L(t)
+ �k(t) (7)

where c = C
L denotes the per capita consumption. But

_k =
L _K �K _L

L2
=

_K

L
� k

_L

L
=

_K

L
� k(a� bL) (8)

and then
y = c+ _k + (a� bL+ �) k (9)

We therefore have the condition
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_k = f(k)� c� (a� bL+ �)k (10)

Suppose that u(c) denotes the utility of consumption per head. As usual, we require that u0(c) > 0
and u00(c) < 0. Then the aim is to maximize the discounted value of utility subject to equations
(10) and (1); i.e. 8>>>><>>>>:

maxc
R1
0 u(c)e��tdt

_k = f(k)� c� (a� bL+ �)k
_L = aL� bL2
k(0) = k0; L(0) = L0
0 � c � f(k):

(11)

The current value Hamiltonian of the problem is

Hc = u(c) + � [f(k)� c� (a� bL+ �)k] + �
�
aL� bL2

�
(12)

with �rst order conditions8>><>>:
@Hc
@k = u0(c)� � = 0
_� = �@Hc

@k + �� = �� [f
0(k)� (a� bL+ � + �)]

_k = f(k)� (a� bL+ �)k � c
_L = aL� bL2

(13)

If we di¤erentiate the condition u0(c) = � with respect to t we have that

u00(c) _c = _� (14)

and then it is
u00(c) _c = ��

�
f 0(k)� (a� bL+ � + �)

�
(15)

and using that u0(c) = �, this condition can be expressed as:

�u
00(c)

u0(c)
_c = f 0(k)� (a� bL+ � + �) (16)

But � (c) = � cu00(c)
u0(c) is the measure of relative risk aversion of Arrow-Pratt (see [8]) and then it is

_c =
[f 0(k)� (a� bL+ � + �)] c

� (c)
(17)

Then the model can be expressed by the following system of three di¤erential equations:8><>:
_c = c

�(c) [f
0(k)� (a� bL+ � + �)]

_k = f(k)� (a� bL+ �)k � c
_L = aL� bL2

(18)
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3 Equilibria and stability

The equilibria of the model are the solutions of the system8><>:
_c = 0
_k = 0
_L = 0

,

8><>:
c
�(c) [f

0(k)� (a� bL+ � + �)] = 0
f(k)� (a� bL+ �)k � c = 0
aL� bL2 = 0

(19)

If we exclude the trivial solutions obtained by considering c = 0; k = 0 or L = 0, then the model

has a unique positive equilibrium
�
ĉ; k̂; L̂

�
verifying:8<:
L̂ = a

b

f 0(k̂) = � + �

ĉ = f(k̂)� �k̂
(20)

To study the stability of the equilibrium
�
ĉ; k̂; L̂

�
we consider the linear approximation of the

system around this point. The Jacobian matrix of the linear approximation is given by

JG

�
ĉ; k̂; L̂

�
=

0BB@ 0
f 00(k̂)ĉ

� (ĉ)

bĉ

� (ĉ)
�1 � bk̂
0 0 �a

1CCA (21)

Then the characteristic polynomial of this matrix is

�
 
X2 � �X +

f 00(k̂)ĉ

� (ĉ)

!
(X + a) (22)

and, being � > 0 and
f 00(k̂)ĉ

� (ĉ)
< 0, this polynomial has two negative roots and one positive

root. Then the steady state
�
ĉ; k̂; L̂

�
is a saddle point and the stable transitional path is a two

dimensional locus.

4 Stability and transitional dynamics

The classic Ramsey model is a good approximation to the real world, nevertheless it describes the
economic reality incompletely. Our model has richer dynamics. As we will show, in the modi�ed
model we can have positive growth at the equilibrium levels of capital and consumption.

4.1 Analysis of the steady state

When population attains the stationary level L̂ = a
b , dynamics at the equilibrium of capital and

consumption of both models are equivalent. But the level of capital kmg de�ned by the gold rule1

1k follows the gold rule if it maximize the consumption at the trajectory _k = 0.
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for the modi�ed model is bigger than the corresponding level kcg in the classical model. This is a
consequence of (20) and the concavity of the production function.

In the modi�ed model we can study the behavior of orbits verifying _c = _k = 0 and where the
population is not in its stationary state. This can be seen as a pseudo-equilibrium. In this case
consumption per capita follows the trajectory given by the equation f 0(k) = �bL + a + � + �,
implying that capital per capita increases with population. Similarly, _k = 0 implies: c = f(k) �
(a� bL+ �)k and then consumption per-capita is an increasing function of the population.

4.2 Transitional dynamics and speed of convergence

If we assume that the population is at the steady state L̂ = a
b , then the unique di¤erence of

the dynamics of transition between the two models is that kmg > kcg: However in other case the
transition of the optimal trajectories of k and c to the pseudo-equilibrium _k = _c = 0 depends on
population growth.

The transitional dynamics around the steady state
�
ĉ; k̂; L̂

�
can be quanti�ed by using the

linearization of system (18):

0@ _c
_k
_L

1A =

0BB@ 0
f 00(k̂)ĉ

� (ĉ)

bĉ

� (ĉ)
�1 � bk̂
0 0 �a

1CCA
0@ c� ĉ
k � k̂
L� L̂

1A
We know that the matrix representing this linear system has one positive eigenvalue and two
negative eigenvalues. Then, there is a straight line of solutions that tend away from the equilibrium
and a plane of solutions that tend toward the equilibrium as time increases. All other solution will
eventually move away from the equilibrium. This give us the local dynamics of system (18) near

the equilibrium
�
ĉ; k̂; L̂

�
: the model exhibits saddle-path stability. Then the dynamic equilibrium

follows a stable saddle path expressing the equilibrium ĉ as a function of k̂ and L̂. This relation
is called the policy function (see [2]).

We want now to provide a quantitative assessment of the speed of transitional dynamics.
The speed of convergence depends on the parameters of technology and preferences and can

be computed from the matrix JG
�
ĉ; k̂; L̂

�
. The positive eigenvalue of JG

�
ĉ; k̂; L̂

�
is excluded

from the analysis to ensure the convergence to the equilibrium. The negative eigenvalues are the
analogous to the convergence coe¢ cient in standard growth models. The �rst negative eigenvalue
�a corresponds to the speed of convergence of population to the carrying capacity L̂. The second

negative eigenvalue � = �
2 �

s
�2

4 �
f 00(k̂)ĉ

� (ĉ)
is identical with the negative eigenvalue for the basic

Ramsey model (see [2]) and depends on parameters of technology and preferences. Each eigenvalue
corresponds to one source of convergence and each stable transition path to the steady state of
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the system takes the form 8>><>>:
c(t) = ĉ+ xe�t + (c(0)� ĉ� x) e�at

k(t) = k̂ + ye�t +
�
k(0)� k̂ � y

�
e�at

L(t) = L̂+
�
L(0)� L̂

�
e�at

(23)

where x and y depends on the coe¢ cients of JG
�
ĉ; k̂; L̂

�
. Then the speed of convergence of

consumption and capital depends on eigenvalues �a and � and that of population only depends
on �a. In fact, their transition depend on the smaller of the eigenvalue in absolute value. If
j�j < a, then the speed of convergence of L is faster than that of c and k and if j�j � a then all
variables converge at speed a. In any case, the speed of convergence of the system is the absolute
value of the biggest negative eigenvalue.

5 Concluding Remarks

In growth theory it is usually assumed that population growth follows an exponential law. This
is clearly unrealistic because it implies that population goes to in�nity when time goes to in�nity.
In this paper we have developed an improved version of the Ramsey growth model suggesting a
more realistic approach by considering that population growth follows the logistic law. In this
case, the model can be represented by an autonomous system of three di¤erential equations and
one of the merits of the paper is in showing that the model is tractable. We show that the intrinsic
rate of population growth n(t) plays no role in determining the long run equilibrium levels of per
capita consumption, capital and output and that these values are greater than the steady states
values of the classical Ramsey model. Thus, in the long run, economic growth is improved if labor
force growth rate decreases to zero. This can be viewed as a motivation for policy makers to
have an e¢ cient population growth rate. We study the stability of the system showing that the
equilibrium is a saddle point with two negative eigenvalues. This implies that the model is saddle
stable and that the stable transitional path is two dimensional. Finally, we show that the model
has �nite speed of convergence, which depends on the parameters of technology and preferences.
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