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Abstract

Zellner and Revankar in their paper “Generalized Production Functions” introduced a
production function, which was illustrated by fitting the generalized Cobb-Douglas function
to the U.S. data for Transportation Equipment Industry. For estimating the production
function, they used a method in which one of the parameters (theta) is repeatedly chosen at
the trial basis and other parameters are estimated so as to obtain the global optimum of the
likelihood function. We show that this method of Zellner and Revankar (ZR) is caught into a
local optimum trap and the estimated parameters reported by ZR are somewhat sub-optimal.
Using the Differential Evolution (DE) and the Repulsive Particle Swarm (RPS) methods, we
re-estimate the parameters of the ZR production function with data used by ZR and show that
our estimates of parameters are better than those of ZR. We also find that the returns to scale
do not vary with the size of output in the manner reported by ZR.
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1. Introduction: Arnold Zellner and Nagesh Revankar in their well-known paper 

“Generalized Production Functions” [Zellner and Revankar, 1969] introduced a new 

production function, which was illustrated by an example specified as:  
(1 )exp( ) : 0 1; 0; 0.V V K L

α δ αδθ γ δ γ α−= < < > >           … (1) 

where, , ,V K L  stand for output, capital and labour. The parameters , , (1 )α δ δ−  and γ  

relate to the parameters of returns to scale, output elasticities with respect to labour and 

capital and efficiency. The parameter θ  attribute to other parameters the scale variability 

character and thus makes the function specified above “general”.  In particular, for 0θ =  

the Zellner-Revankar production function (ZRPF) degenerates into the simple Cobb-

Douglas production function. The returns to scale function obtained from the ZRPF is 

given as ( ) /(1 )V Vα α θ= +  that changes with the volume of output. 

 

2. Estimation of ZRPF: Now we present the Zellner-Revankar method of estimation of 

the ZRPF parameters. Let us have sample data on output, capital and labour in n  

observations. Introducing multiplicative random error and log-transforming we have  

log( ) log( ) (1 ) log( ) log( ) : 1,2,...,
i i i i i

V V K L u i nθ γ α δ δ+ = + − + + =   … (2) 

where 
i

u ’s are random errors, normally and independently distributed, each with mean 

zero and common variance 2σ . It is also assumed that log( )
i

K  and log( )
i

L  are distributed 

independently of the error term, 
i

u , or they are fixed quantities. Then, the logarithm of 

the likelihood function, log( )l , is: 
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Now, substituting from (4) in (3) we get 
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Differentiating (5) partially with respect to 2σ  and setting the derivatives equal to zero 

we obtain 
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as the conditional maximizing value for 2σ . When 2σ̂  in (6) is substituted for 2σ  in (5), 

we obtain 
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Now, for any given value of 
0

θ θ= , the conditional maximizing values of 
0 1
,c c  

and 
2

c  may be obtained by regression of 
0

( )
i

z θ  on the explanatory variables, log( )
i

K  and 

log( )
i

L  by minimizing 

{ }0 1 2

2
( ) log( ) log( )

1
i i i

n
z c c K c L

i

θ − − −∑
=

    … (8) 

Minimization of (8) can be done with different trial values of θ , say, 
1 2 3
, , , ...θ θ θ  

such that we find out the best values of  (
0 1 2

, , ,c c cθ ) that obtains the global optimum of 

the likelihood function in (7). Zellner and Revankar (Z&R) mention that this procedure of 

maximizing the likelihood function is similar to the procedure described by Box and Cox 

(1963). This procedure of estimation will be examined and revisited in this paper. 

 

Z&R apply this procedure for estimating the optimal values of 
0 1 2

, , ,c c cθ , the 

parameters of the ZRPF, for the U.S. Transportation Equipment Industry. The data used 

by them have been presented in their paper (Z&R, 1969). They measure output 

(represented by the net value added, V), capital (K) and labour (L) per unit of 

establishment, that is, 
, , ,

( / ); ( / ); ( / )
i a i i i a i i i a i i

V V N K K N L L N= = = . They obtain:  

0 1 2
ˆ ˆ ˆ ˆ( , , , ) (0.134, 3.0129, 0.3330, 1.1551)c c cθ =     … (9) 

and, since the estimate of returns to scale parameter, 
1 2

ˆ ˆ ˆc cα = + , they also obtain for each 

state of the U.S. 
1 2

ˆˆ ˆ. ( ) ( ) /(1 ) 1.49 /(1 0.134 ) .
i i i

Est V c c V V approxα θ= + + = +  According to their 

estimates, Indiana, Kentucky, Georgia, Ohio, Connecticut, Missouri, Kansas and 

Michigan exhibit decreasing returns ( ˆ( )Vα  decreasing in that order); Illinois, 

Pennsylvania, New Jersey, Maryland and Washington show ˆ1 1.1α< ≤  while other states 

have ˆ 1.1α > . Florida has the highest value of ˆ 1.45α =  (see Z&R, 1969). 

 

3. The Objective of this Paper: We intend to demonstrate here that the estimates of 

parameters of ZRPF as reported by Z&R in their paper are somewhat sub-optimal, that is: 

0 1 2
ˆ ˆ ˆ ˆ( , , , ) (0.134, 3.0129, 0.3330, 1.1551)c c cθ =  do not quite maximize the likelihood function. 

However, that is so due to the trial and error method used by Z&R in which a trial value 

of θ  is chosen, and 
i

c ’s are estimated by minimization of (8). This is done repeatedly for 

different trial values of θ  so as to maximize the likelihood function.  

 

 To show that Z&R estimates are sub-optimal, we use two methods of global 

optimization to minimize (8) in which 
0 1 2

, , ,c c cθ  are estimated together. This approach 

frees us from the risk of obtaining a sub-optimal set of estimated parameters of ZRPF.  

 

4. Global Optimization:  Most of the conventional methods of optimization that work 

very well in optimizing convex functions often perform poorly when the problem has 

multiple or ill-conditioned minima/maxima. They are often caught or trapped in the local 



minima/maxima. Versatile search methods such as those of Nelder and Mead (1964) and 

Box (1965) succumb to the traps of local optima.  

 

Since the work of Holland (1975) several methods have been developed to escape 

from being caught in such local optima. A brief history of development of the methods of 

global optimization is available in Mishra (2006-a). Among these methods, the Genetic 

Algorithms (GA), the Simulated Annealing (SA) and the Generalized Simulated 

Annealing (GSA) procedures, the Particle Swarm (PS) and the Repulsive Particle Swarm 

(RPS) methods, and the Differential Evolution (DE) method have found numerous 

applications in various disciplines. A general-purpose Genetic Algorithm based 

optimization subroutine (PIKAIA) in FORTRAN-77 is freely downloadable from the High 

Altitude Observatory site (http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html). 

The program is particularly useful (and robust) in treating multi-modal optimization 

problems.  SIMANN, a global optimization algorithm using simulated annealing 

(Kirkpatrick et al., 1983) written in FORTRAN-77 by William Goffe et al. is very effective. 

It may be downloaded from http://www.netlib.no/netlib/opt/simann.f absolutely free of 

cost. Mundim (1996) provides a Fortran program for Generalized Simulated Annealing 

(Tsallis and Stariolo, 1995) on www.unb.br/iq/kleber/GSA/artigo2/node2.html. A Fortran 

program for Repulsive Particle Swarm Optimization (written by the present author) is 

available on http://www1.webng.com/economics/rps.txt. This program also lists the 

Fortran codes of (over) 90 benchmark functions of different dimensions, complexities 

and difficulty levels, and the RPS method that minimizes them. A Fortran program of the 

Differential Evolution method (written by the present author) is available on 

http://www1.webng.com/economics. It uses the most recent advances in the crossover 

scheme as recently suggested by Kenneth Price. 

It may be noted, however, that the methods of global optimization are 

probabilistic in nature. Therefore, one cannot take their results for sure or those methods 

infallible. Secondly, all of them adapt themselves to the surface on which they find the 

global optimum. The scheme of adaptation is largely based on some guesswork since 

nobody knows as to the true nature of the problem (environment or surface) and the most 

suitable scheme of adaptation to fit the given environment. Surfaces may be varied and 

different for different functions. A particular type of surface may be suited to a particular 

method while a search in another type of surface may be a difficult proposition for it.  

Further, each of these methods operates with a number of parameters that may be 

changed at choice to make it more effective. This choice is often problem oriented and 

that for obvious reasons. A particular choice may be extremely effective in a few cases, 

but it might be ineffective (or counterproductive) in certain other cases. Additionally, 

there is a relation of trade-off among those parameters. These features make all these 

methods a subject of trial and error exercises.  Nevertheless, RPS and DE find optima 

more frequently and accurately than the other methods of global optimization. They also 

have the least number of parameters to adjust. 

5. Some Details on the Particle Swarm and the Differential Evolution Methods: In 

this study we have used two methods of global optimization: the RPS and the DE. Our 

choice is based on their efficiency in searching the optima of complicated functions. 



The Particle Swarm (PS) method of global optimization (Eberhart and Kennedy, 

1995) is an instance of a successful application of the philosophy of bounded rationality 

and decentralized decision-making to solve the global optimization problems (Simon, 

1982; Bauer, 2002; Fleischer, 2005). It is observed that a swarm of birds or insects or a 

school of fish searches for food, protection, etc. in a very typical manner. If one of the 

members of the swarm sees a desirable path to go, the rest of the swarm will follow 

quickly. Every member of the swarm searches for the best in its locality - learns from its 

own experience. Additionally, each member learns from the others, typically from the 

best performer among them. Even human beings show a tendency to learn from their own 

experience, their immediate neighbours and the ideal performers. The Particle Swarm 

method of global optimization mimics the said behaviour (see Wikipedia: 

http://en.wikipedia.org/wiki/Particle_swarm_optimization). The Repulsive Particle 

Swarm method (see Wikipedia, http://en.wikipedia.org/wiki/RPSO) is a variant of the PS. 

It is particularly effective in finding out the global optimum in very complex search 

spaces (although it may be slower on certain types of optimization problems). 

 

The DE method was developed by Kenneth V. Price and Rainer Storn (1995). The 

crucial idea behind the DE is a scheme for generating trial parameter vectors. Initially, a 

population of points (p in d-dimensional space) is generated and evaluated (i.e. f(p) is 

obtained) for their fitness. Then for each point (pi) three different points (pa, pb and pc) are 

randomly chosen from the population. A new point (pz) is constructed from those three 

points by adding the weighted difference between two points (w(pb-pc)) to the third point 

(pa). Then this new point (pz) is subjected to a crossover with the current point (pi) with a 

probability of crossover (cr), yielding a candidate point, say pu. This point, pu, is 

evaluated and if found better than pi then it replaces pi else pi remains. Thus we obtain a 

new vector in which all points are either better than or as good as the current points. This 

new vector is used for the next iteration.  This process makes the differential evaluation 

scheme completely self-organizing (Price et al., 2005). The DE is perhaps the fastest and 

the most accurate method among all methods of global optimization.  

 

6. Estimation of Zellner-Revankar Production Function by the Methods of Global 

Optimization: As mentioned before, in this paper we have estimated the parameters of 

ZRPF by two methods; the RPS and the DE. We have used our own program for 

estimation of the said function. The program (in FORTRAN 77) is downloadable from 

http://www.geocities.com/artha_indica/revankar.txt or http://ssrn.com/abstract=950731.  

 
Table-A: Estimated Parameters of ZRPF  for U.S. Transport Equipment Industry 

Accuracy Method 
0

ĉ  
1̂

c  
2

ĉ  θ̂  SSQD  ( *)l  

Zellner-Revankar 3.0129 0.3330 1.1551 0.134 1.2016# 5.4790 

Differential  Evoln   2.91527   0.352646   1.087540   0.106441 1.0689  5.5769 

Low 

Accuracy (LA) 
R Particle Swarm 2.91476   0.350784   1.090654   0.106506 1.0691 5.5773 

Zellner-Revankar 3.0129 0.3330 1.1551 0.134 1.2118# 5.4945 

Differential  Evoln    2.91161   0.350226   1.090161   0.106184 1.0665 5.5917 

High 

Accuracy (HA) 

R Particle Swarm    2.91587   0.350255   1.092447   0.106811 1.0692 5.5918 

SSQD = Sum of Squared Deviations; #  = Computed by us; l*  = Log Max Likelihood 

 



We present here (Table-A) two sets of estimates of the parameters of ZRPF: the 

one based on highly accurate values (correct up to 8 places after decimal) of ,
i i

V K  and 
i

L  

and the other when these variables are measured with values correct only up to two 

places after decimal (rounded off at the third place after decimal). We do not know of the 

accuracy level of the original computations (done by Z&R). 

 
Table-B: 1957 U.S. Transportation Equipment Industry Value Added  [Per Establishment] 

Zellner-Revankar Production Function Estimated by Different Methods 

 V 

(Emp) 

V(DE)LA V(RPS)LA V(ZR)LA V(DE)HA V(RPS)HA V(ZR)HA 

Florida 0.193 0.245 0.244 0.245 0.245 0.244 0.241 

Maine 0.364 0.306 0.305 0.306 0.306 0.305 0.303 

Iowa 0.477 0.478 0.477 0.478 0.477 0.476 0.477 

Louisiana 0.638 0.601 0.601 0.601 0.600 0.600 0.608 

Massachusetts 1.404 1.363 1.362 1.363 1.363 1.363 1.375 

West Virginia 1.513 1.704 1.703 1.704 1.700 1.700 1.723 

Texas 1.712 1.997 1.999 1.997 1.998 1.999 2.061 

Alabama 1.855 2.378 2.384 2.378 2.381 2.384 2.502 

New York 2.040 2.954 2.954 2.954 2.956 2.958 3.012 

Virginia 2.052 2.088 2.090 2.088 2.093 2.095 2.140 

California 2.333 2.128 2.127 2.128 2.127 2.127 2.124 

Wisconsin 2.463 2.510 2.509 2.510 2.507 2.508 2.508 

Illinois 2.629 2.354 2.350 2.354 2.354 2.354 2.309 

Pennsylvania 2.651 2.762 2.763 2.762 2.765 2.766 2.777 

New Jersey 2.701 2.087 2.086 2.087 2.084 2.084 2.063 

Maryland 3.219 3.303 3.307 3.303 3.301 3.304 3.321 

Washington 3.558 3.134 3.135 3.134 3.136 3.137 3.094 

Indiana 3.816 4.979 4.975 4.979 4.972 4.975 4.840 

Kentucky 4.031 2.281 2.280 2.281 2.281 2.280 2.188 

Georgia 4.289 3.793 3.798 3.793 3.801 3.803 3.742 

Ohio 4.440 5.964 5.963 5.964 5.957 5.961 5.783 

Connecticut 4.485 5.616 5.622 5.616 5.614 5.619 5.535 

Missouri 5.217 4.340 4.342 4.340 4.336 4.336 4.141 

Kansas 6.507 5.238 5.254 5.238 5.259 5.261 5.067 

Michigan 7.182 6.663 6.657 6.663 6.655 6.652 6.001 

Abbreviations used: Emp = Empirical; LA = Low Accuracy; HA = High Accuracy; ZR = Estimates of Zellner-
Revankar Method of Estimation; DE = Differential Evolution; RPS = Repulsive Particle Swarm 

 

As it has been shown in Table-A, first, there is no significant difference in the 

values of estimated parameters (of ZRPF) due to accuracy in computation. HA and LA 

estimates are more or less same. Secondly, there is no significant difference between the 

estimated parameters obtained by DE and RPS.  However, the Zellner-Revankar estimates 

of parameters are quite different from those obtained by the methods of global 

optimization (DE and RPS). The SSQD (sum of squared deviations) of ZR is larger (and *
l  

is smaller) than those of DE and RPS. It shows very clearly that the ZR estimates are 

somewhat sub-optimal. This sub-optimality of ZR estimates may thus be clearly 

appreciated by the results presented in Table-A and Table-B.  

 

 Two points deserve a special mention. First, the returns-to-scale parameter, 

1 2
ˆ ˆ ˆc cα = +  obtained by DE/RPS method is 1.44 approx, against 1.488 obtained by the ZR 



estimation. Further, the value of θ̂  obtained by DE/RPS is about 0.106, while it is 0.134 

obtained by ZR. A consequence of all these changes is that ( )
i

Vα  values for different 

states are different from those obtained by ZR method. The estimates of ( )
i

Vα  are 

presented in Table-C. 

 
Table-C. Estimated Variable Returns to Scale by Zellner Revankar Method of Estimation 

Est ( )Vα  Est . ( )Vα  
State V 

ZR* DE/RPS 
State V 

ZR* DE/RPS 
Florida 0.193 1.45 1.41 Pennsylvania 2.651 1.10 1.12 
Maine 0.364 1.42 1.39 New Jersey 2.701 1.09 1.12 
Iowa 0.477 1.40 1.37 Maryland 3.219 1.04 1.07 
Louisiana 0.638 1.37 1.35 Washington 3.558 1.01 1.05 
Massachusetts 1.404 1.25 1.25 Indiana 3.816 0.98 1.03 
West Virginia 1.513 1.24 1.24 Kentucky 4.031 0.97 1.01 
Texas 1.712 1.21 1.22 Georgia 4.289 0.94 0.99 
Alabama 1.855 1.19 1.20 Ohio 4.44 0.93 0.98 
New York 2.04 1.17 1.18 Connecticut 4.485 0.93 0.98 
Virginia 2.052 1.17 1.18 Missouri 5.217 0.88 0.93 
California 2.333 1.13 1.15 Kansas 6.507 0.80 0.85 
Wisconsin 2.463 1.12 1.14 Michigan 7.182 0.76 0.82 
Illinois 2.629 1.10 1.13 * Source: Zellner & Revankar (1969),  p. 248  

 

7. Concluding Remarks: Z&R’s paper made two contributions: first, it generalized the 

production function to allow for the parameters to vary according to the scale of output 

and secondly it contributed a method to estimate such parameters by the maximum 

likelihood method. This paper has only an appreciation for the first contribution, but it 

has shown that the method of estimation (suggested by ZR) is neither convenient nor 

accurate. It gives us only a local optimum, not the global optimum, of the likelihood 

function. This observation may not sound very impressive when a simple function like 

Cobb-Douglas’s is generalized, but it may be very important if the basic function is 

intrinsically nonlinear. It is understandable that at the time when the ZR paper was 

written, there were no effective methods to find global optima of nonlinear functions, 

especially those with numerous local optima. Now that very effective methods of global 

optimization have been found, it would be appropriate to estimate the parameters of ZRPF 

by those advance methods. Our present paper has made a modest attempt to that effect. 

Using such global optimization methods, we have estimated other nonlinear production 

functions [Sato’s two-level CES and LINEX functions; Mishra, 2006(b)] as well. We have 

found that the performance of these methods is much better than that of the classical 

methods of estimation of nonlinear functions [Mishra, 2006(a)]. 
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