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Abstract

We use low-order projection methods to compute numerical solutions of the basic
neoclassical stochastic growth model. We assess the quality of the obtained solutions, and
compare them to numerical approximations derived with first and second-order perturbation
techniques. We show that projection methods perform surprisingly poor when the degree of
approximation is very low, and we provide some intuition behind this finding.
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1. Introduction

Projection methods are becoming an increasingly popular approach for solving dynamic eco-
nomic models.1 The main reason behind this development is the extraordinary robustness and
flexibility they offer. In particular, the projection approach works well in many applications
where other methods typically fail, as for example, to solve models with occasionally bind-
ing inequality constraints.2 Furthermore, it is well documented in recent papers by Aruoba,
Fernandez-Villaverde, and Rubio-Ramirez (2006) and Heer and Maussner (2004) that, when
implemented with high-degree polynomials, projection methods allow to derive very precise
approximations to the equilibria of dynamic economic models.

In many of the recent applications, however, the complexity of the considered models places a
constraint on the feasible order of approximation within the projection algorithm. Precisely,
in models with many state variables, high-order accurate solutions are computationally too
demanding. This is due to the well-known curse of dimensionality. Researchers are thus left
with using low-order implementations of the projection approach. Still, very little is known
about the quality of these low-order projection solutions. It is the aim of this note to provide
some evidence on this issue.

We proceed as follows. Section 2 briefly discusses the model we use to judge the quality of
approximate solutions. Section 3 gives a short illustration of the numerical solution methods
we employ. Section 4 presents the results of our evaluation exercise. Finally, we provide some
conclusions in section 5.

2. The model

We evaluate the quality of low-order projection solutions using the basic neoclassical stochastic
growth model as a testing ground. We basically choose this model for two reasons. First,
several solution methods have already been tested on this model, such that our results can
easily be compared to other studies.3 Secondly, the model forms the core of many models used
in modern macroeconomics, such that lessons learnt with this simple framework are likely to
hold also (to some extent) in other setups.

As the model is very well-known, we restrict ourselves to presenting the main formulas and the
competitive equilibrium. The model economy is populated by a single representative household.
Time is discrete, i.e. t ∈ {0, 1, 2, . . .}. The household chooses sequences of consumption {ct}∞t=0,
investment {it}∞t=0, output {yt}∞t=0 and capital {kt+1}∞t=0 such that it maximizes the expected
discounted utility derived from its current and future consumption stream. The maximization
is subject to constraints posed by a production function, a budget constraint, a law of motion
for the exogenous productivity level, and by non-negativity requirements for consumption and
capital. We assume a CES utility function and a Cobb-Douglas production function. Formally,
the household solves

max
ct, it, yt, kt+1

E0

∑∞
t=0 βt 1

1−γ
c1−γ
t (1)

1For recent applications see Bohacek and Kejak (2005), Ortigueira (2006), Siu (2004), Reiter (2005), Gapen
and Cosimano (2005), Jones, Manuelli, and Siu (2005) and Dueker, Fischer, and Dittmar (2004).

2See Judd (1992) and Christiano and Fisher (2000).
3See, for example, Taylor and Uhlig (1990).
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subject to

yt = atk
α
t

it = yt − ct

kt+1 = (1− δ)kt + it

log at+1 = ρ log at + σεεt+1

εt+1 ∼ N(0, 1)

ct, kt ≥ 0 for all t

The parameters and variables have the following interpretation: at denotes an exogenous tech-
nology level, β ∈ (0, 1) is the household’s time discount factor, α ∈ (0, 1) describes capital’s
share in output, γ > 0 denotes the household’s risk aversion, δ ∈ (0, 1) is the depreciation rate
of capital, εt+1 denotes a shock to technology at time t + 1, the parameter σε captures the
standard deviation of technology shocks, and ρ governs their persistence.
It is well known that the necessary condition for optimality in this model is given by the Euler
equation

c−γ
t = βEtc

−γ
t+1[αat+1k

α−1
t+1 + (1− δ)]. (2)

Above, Et denotes the expectation operator conditional upon the information available to the
decision maker at time t. When augmented with a transversality condition

lim
t→∞

βtc−γ
t kt+1 = 0, (3)

the Euler equation (2) becomes sufficient for optimality.4

The full system of necessary equilibrium conditions can be summarized by an operator

R(·) =




Etβct+1
−γ[αat+1kt+1

α−1 + (1− δ)]− c−γ
t

yt − atk
α
t

yt − ct − it
(1− δ)kt + it − kt+1

ρ log at − log at+1




= 0.

The solution of our model is the zero of the operator R : B1 → B2, where B1 and B2 are
function spaces. We denote this solution by a vector-valued function f : D ⊂ R2

+ → R5.
The function f maps the state space (spanned by the state vector xt = (kt, at)

′) into decision
outcomes for consumption, investment and output, as well as the next period capital stock and
technology level.

3. Approximate equilibria

Since we cannot compute f analytically, we use numerical methods to obtain approximate solu-
tions. An approximate solution f̂ is characterized by the requirement R(f̂) ≈ 0. Alternatively,

4See, for example, Stokey and Lucas (1989) for a proof of the sufficiency
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we can define an approximate equilibrium as the solution of R̂(f̂) = 0, where we have replaced
the operator R by a (computable) operator R̂. Note that R̂ implicitly defines the norm we use
to judge the size of R(f̂).

When using projection methods, we have several degrees of freedom in the choice of f̂ and R̂. A
general kth order projection approach uses orthogonal polynomials up to order k to construct
f̂(x; κ), where x is the vector of state variables and κ summarizes the unknown coefficients
in the approximate decision rules. Note that typically only a few elements of f have to be
approximated by parametric forms, since the remaining elements can be computed directly
from the operator R. In our example, we parameterize only the decision rule for consumption,
whereby we use a complete basis of Chebyshev polynomials. Conditional on ĉ(x; κ), we derive
the remaining elements of f̂ directly from the last four conditions in R(f̂) = 0.

Having constructed a functional form f̂(x; κ), the problem of solving R̂(f̂) = 0 boils down to
finding an appropriate parameter vector κ. Projection methods achieve this by solving

∫

D

R(x; f̂ , κ)ωi(x)dx = 0 i = 1, . . . , #κ (4)

The functions ωi(x) are weighting functions that define the norm used to judge the size of
R(x; f̂ , κ). The three most popular choices correspond to Least squares, Chebyshev Collocation,
and Galerkin methods. In this paper, we follow a Galerkin approach.5

In section 4, we compare the quality of approximate solutions obtained via low-order Galerkin
projection methods with solutions obtained with the popular perturbation approach. The latter
replaces R with its kth order Taylor series expansion around the non-stochastic steady state,
and inverts R̂(f̂) = 0 to obtain kth-order accurate decision rules for all variables. The main
strength of this approach lies in its speed. Even for large-scale models, perturbation solutions
can typically be derived within a couple of seconds. Its arguably main weakness is that the
perturbation approach is not universally applicable. For example, it cannot be applied to solve
models with occasionally binding inequality constraints.

4. Results

The main purpose of this paper is to investigate the quality of low-order projection solutions.
To this end, we solve our model with Galerkin methods of order 1, 2, and 4, and we compare
these solutions with approximations obtained with first and second-order perturbation methods.
Overall, we thus evaluate 5 different numerical procedures.

Since the model’s structural parameters strongly affect the non-linearity of the problem and
the deviations of the model’s variables around the steady state, they are likely to have a
non-negligible effect on our results. To guarantee robustness, we thus consider 500 different
calibration sets for our evaluation. We derive these parameters by drawing randomly from
postulated uniform distributions, which are given in table 1. These distributions are chosen to
cover the parameter range typically considered in the literature.

For each parameter constellation, we solve the model using any of our five approaches, and
we construct artificial time series for all model variables. We use these series to compute

5Further details are provided in the working paper version, Pichler (2005).
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Table 1: Postulated Distributions for Structural Parameters

α β γ δ ρ σε

U [0.24, 0.36] U [0.95, 0.99] U [1.5, 3] U [0.025, 0.1] U [0.85, 0.95] U [0.01, 0.1]

Euler equation errors as suggested by Judd (1992). The average absolute and the maximum
absolute error across our simulations will serve as the main indicators of numerical accuracy.
Furthermore, we compare the averages and standard deviations of the simulated consumption
and capital series.

Let us first discuss the Euler equation measures. We summarize the base 10 logarithm of
the average error (log10 ||E||1) and the maximum error (log10 ||E||∞) associated with a specific
approach in table 2. Furthermore, we list the average computing time (in seconds) required
by every method. We observe that for the case of a linear approximation, Galerkin projection
performs only poorly. The associated mean absolute euler equation error is approximately seven
times larger as compared to first-order perturbation. In particular, it states that on average
the household makes a mistake of 0.4% in its consumption decision. This error is by far larger
than what is typically accepted by a researcher.

Table 2: Mean Computer Time and Euler Equation Errors

log10 ||E||1 log10 ||E||∞ CPU

Galerkin 1 -2.3803 -1.9831 1.4121
Galerkin 2 -4.3595 -3.7939 3.2370
Galerkin 4 -6.1182 -5.7091 8.1613

Perturbation 1 -3.2248 -2.2989 0.3587
Perturbation 2 -4.8259 -3.6626 0.4362

In the case of a second-order approximation, perturbation methods still outperform Galerkin,
although the difference is not as big as in the case of linear decision rules. A fourth-order
implementation of the projection approach, on the other hand, delivers very accurate results.
The resulting Euler equation errors are of several magnitudes smaller than those of a second-
order perturbation solution. Unfortunately, the computing time necessary to solve our model
with a fourth-order accurate projection method is substantially higher than with second-order
perturbation. In many applications, a fourth order implementation may not be feasible.

In the following, we investigate whether the dynamic properties of the model are affected by the
choice of solution method. In particular, we analyze whether low-order approximations distort
the first and second moments of our simulated consumption and capital series. The results in
table 3 provide an affirmative answer to this question. The time series simulated from the model
solved by a linear Galerkin method are substantially distorted. The average capital stock is
approximately 20% smaller than implied by higher order approximations. Similarly, we observe
that the mean capital stock associated with first-order perturbation is substantially biased, too
(-5%). This results from the well known certainty equivalence property of linear perturbation

4



Table 3: First and Second Moments of Simulated Consumption and Capital Series

Consumption Capital
Mean Std Mean Std

Galerkin 1 1.3697 0.2102 5.6038 1.4012
Galerkin 2 1.4151 0.2039 6.9427 1.7460
Galerkin 4 1.4155 0.2040 6.9510 1.7337

Perturbation 1 1.4003 0.2055 6.6450 1.6703
Perturbation 2 1.4177 0.2057 6.9861 1.7725

solutions: linearization around a non-stochastic steady state ignores precautionary saving, and
thus, implies a smaller capital stock in our model. Finally, the results in table 3 show that all
approximations of order higher than one deliver similar implications for the first and second
moments of consumption and capital.

Taken together, tables 2 and 3 indicate a surprisingly poor performance of low-order projection
methods. What is the explanation behind this result? Since, for a given order of approximation,
projection and perturbation methods use the same functional forms for the approximate decision
rules, the reason for the better performance of the perturbation approach must lie in the norm
used to determine the unknown coefficients. Indeed, both approaches differ crucially in this
aspect. Perturbation methods choose the coefficients such that the approximation becomes
exact in the non-stochastic steady state, and thus, they deliver approximations which are very
accurate in the neighborhood of this point. Projection methods, on the other hand, use global
criteria. In particular, they minimize a weighted approximation error over the entire state
space, whereby they put a heavy weight on the outer regions. If the functional form for the
decision rules is a low-order polynomial, this implies that the approximation is relatively poor,
as compared to perturbation, in the neighborhood of the steady state. Our results demonstrate
that, only if higher-order polynomials are in use, projection methods achieve a good fit in the
neighborhood of the steady state. Since our model stays relatively close to the steady state
during the simulation, it is not surprising that perturbation delivers better results for low-order
approximations.

Let us finally emphasize this argument using the following simple example. Assume that we
want to obtain an approximate solution to the function f in the interval [−1, 1], whereby f is
defined by

f(x)− ex + 1 = 0.

Obviously, the true solution is given by f(x) = ex − 1. Figure 1 plots the errors r(x) =
f̂(x) − f(x) for each of our considered numerical methods. We observe that the quality of
perturbation approximations is very high in the neighborhood of x∗ = 0, in particular, the
approximations are better as compared to first and second-order projection methods. Only if
we move far away from 0, abs(x) > 0.5, the low-order projection approximations are better. A
projection solution of order 4, on the other hand, is able to generate an excellent approximation.
The corresponding error is virtually zero across the entire state space.
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Figure 1: Approximation errors to the function f(x) = ex − 1
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5. Concluding remarks

We have documented that, when implemented with a high degree of approximation, projection
methods are an excellent way to solve dynamic economic models. If, however, the order of
approximation is relatively low, then projection methods may perform only poorly. This will
be true particularly for models where the economy stays relatively close to its steady state. A
researcher following a low-order projection approach should have this result in mind, and thus
she should always check the accuracy of the obtained numerical solution.
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